
Serdica J. Computing 8 (2014), No 2, 183–198 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

DATA MINING FOR SOFTWARE DEVELOPMENT LIFE

CYCLE QUALITY MANAGEMENT

Galia Novakova Nedeltcheva

Abstract. Computer software plays an important role in business, govern-
ment, society and sciences. To solve real-world problems, it is very important
to measure the quality and reliability in the software development life cycle
(SDLC). Software Engineering (SE) is the computing field concerned with
designing, developing, implementing, maintaining and modifying software.

The present paper gives an overview of the Data Mining (DM) techniques
that can be applied to various types of SE data in order to solve the chal-
lenges posed by SE tasks such as programming, bug detection, debugging
and maintenance. A specific DM software is discussed, namely one of the
analytical tools for analyzing data and summarizing the relationships that
have been identified. The paper concludes that the proposed techniques of
DM within the domain of SE could be well applied in fields such as Customer
Relationship Management (CRM), eCommerce and eGovernment.

1. Introduction. Over the recent years Data Mining has been estab-
lishing itself as one of the major disciplines in computer science with growing
industrial impact. DM is a hot topic of computer science research in recent

ACM Computing Classification System (1998): H.2.8.
Key words: Data mining, software engineering, software development, data mining, quality

management.



184 Galia Novakova Nedeltcheva

years and has an extensive application in various fields. DM technology is an
application-oriented technology. It is not only a simple search, query and transfer
on the particular database, but also analyzes and integrates that data to guide
the solution of practical problems and find the relations between events, and even
to predict future activities through using the existing data.

Data Mining techniques are extensively used by private organizations and
research communities to uncover hidden trends and knowledge from historical
data. Data Mining concepts are successfully implemented in several areas such as
“Banking”, “Credit Card Business”, “Insurance”, “Super Store Sales data analysis”,
“Stock Market”, “Gaming”, “Network and Security”, “Financial Market”, “Telecom-
munication”, “Oil and Gas exploration”, “Weather Forecasting”, etc. In recent
years, government organizations have also recognized the potential use of Data
Mining on eGovernance data to find hidden trends and knowledge from historical
data.

For example, a large amount of data is generated and disseminated by
different government departments at various levels of administration. It is impor-
tant to integrate the different departments in terms of data sharing so that all
departments can work under a single controlling authority without repetition of
work. It is important to create a centralized nationwide data warehouse which
has horizontal as well as vertical interconnections having limited accessibility at
lower-level authorities and fully accessible at the higher levels. Use of efficient
DM techniques may surely enhance government decision-making capabilities. So
the DM technologies discussed in this paper can have good applications in areas
as eGovernance.

Undoubtedly, research in DM will continue and even increase over com-
ing decades, involving mining complex objects of arbitrary type, fast, transparent
and structured data preprocessing, and increased usability. All aim at understand-
ing consumer behavior, forecasting product demand, managing and building the
brand, tracking performance of customers or products in the market and driving
incremental revenue from transforming data into information, and information
into knowledge. By using pattern recognition technologies and statistical and
mathematical techniques to sift through warehouse information, DM helps an-
alysts recognize significant facts, relationships, trends, patterns, exceptions and
anomalies that might otherwise go unnoticed.

Modern data mining combines familiar and novel statistical methods to
identify reproducible patterns in big data. The objective outcome is prediction.
If a given model predicts new data better than the alternatives, then it has made
a contribution. Rather than build a model that relates one or two experimental



Data Mining For Software Development Life Cycle Quality Management 185

results to a response, data mining involves searching for patterns. Such searches
commonly scan thousands of features, looking for the few that are predictive of the
response. The search might be entirely automated or allow expert insight. Data
mining is needed when dealing with wide data tables, those having more variables
than cases, and it does not require exotic hardware or software. Recently, however,
one of the most innovative technological challenges for DM is the application of
cloud computing.

When we put the complexities of big data aside and strip it down to its
fundamentals, the true definition of this historical shift in business analytics is
about connecting many pieces of data to identify patterns which help us make
better decisions. Good data analysis begins by looking at the data. That can be
hard to do when the dataset has hundreds of columns, but it is not impossible. The
objectives are to gain familiarity with the data, spot unusual patterns, recognize
collinear variables and form conjectures. Hypothesis generation, not just testing,
is an important aspect of DM. Most datasets contain missing values, and this
class discusses simple methods for handling these anomalies – which are far too
common – during data mining. To find interesting views of data it is also good to
borrow ideas from multivariate analysis (e.g., principal components and cluster
analysis).

The purpose of this study is to explore how DM techniques can be applied
to improve SE. So the objectives of the present study are:

• To review the concept of SE and DM;

• To determine some of the problems in SE;

• To enhance the SDLC quality assessment process;

• To identify some of the most efficient DM techniques and to propose avail-
able DM software that can be applied to solve SE problems.

The paper is structured in four sections: In the Introduction, a short
overview on the important role of the DM methods is presented. A discussion on
the proposed DM techniques for SE, in particular for SDLC quality management,
is offered in Section 2. Some of the available DM software and its disvantages
are given in Section 3. Finally, some conclusions are drawn and future research
directions are outlined in Section 4.

2. Data Mining for software development quality manage-

ment. Data Mining represents a shift from verification-driven data analysis ap-
proaches to discovery-driven data analysis approaches. In the former approach, a



186 Galia Novakova Nedeltcheva

decision maker must hypothesize the existence of information of interest, collect
this information and test the posed hypothesis against the information collected.

Discovery-driven approaches sift through large amounts of data and au-
tomatically (or semi-automatically) discover important information hidden in the
data.

Some of the popular DM methods are as follows:

• Decision trees and rules

• Nonlinear regression and classification methods

• Example-based methods

• Probabilistic graphical dependency models

• Relational learning models

DM problems can be resolved by employing supervised and unsupervised
algorithms. In the first case, a learning phase is necessary to build a predictive
model from historical labeled data records, which is used later to make predictions
about new, unlabeled data. Unsupervised algorithms are used in knowledge dis-
covery modeling. This is a descriptive task whose objective is to detect patterns
in actual data without need of previous learning.

In predictive modeling there is a special attribute called the “label” that
one intends to predict. By encoding the relation between the label and the other
attributes, the model can make predictions about new, unlabeled data. The two
most common supervised modeling methods are classification and regression. If
the label is discrete, the task is called classification; if the label is continuous, the
task is called regression.

The goal in Knowledge Discovery (KD) modeling is to discover rules and
segments of the data that behave similarly (clusters). These are unsupervised
tasks. Unsupervised modeling is a descriptive task, not a predictive task. Associ-
ations and clustering are two unsupervised modeling tasks. The techniques listed
in Table 1 are classified in these categories.

Table 1. Supervised and unsupervised data mining techniques

Supervised Unsupervised

Decision tree Deviation detection

Neural induction Clustering

Regression Association rules

Time series Sequential pattern discovery



Data Mining For Software Development Life Cycle Quality Management 187

DM algorithms can be complemented with data visualization techniques
taking advantage of the human brain’s amazing pattern recognition capability.
Usually the data is not organized in a way that will facilitate automated or semi-
automated knowledge induction. In the DM process, visualization tools help
to explore data before modeling and verify the results of other DM techniques.
Visualization tools are particularly useful for detecting patterns found in only
small areas of the overall data and they are very useful for noticing phenomena
that hold for a relatively small subset of the data. There are many ways of
visualizing data. Three-dimensional scatterplot and splat graphs can be used for
multidimensional data. Color, opacity and other features can be used to represent
variables.

SE text data includes bug reports, e-mails, code comments, and documen-
tation for API methods. Common types of text mining algorithms include text
clustering, classification and matching.

One of the main problems for data mining is that the number of possible
relationships is very large, thus prohibiting the search for the correct ones by sim-
ply validating each of them. Hence, we need intelligent search strategies, as taken
from the area of machine learning. Another important problem is that informa-
tion in data objects is often corrupted or missing. Hence, statistical techniques
should be applied to estimate the reliability of the discovered relationships.

The economies of all developed countries are dependent on software, be-
cause software controls systems that affect our daily needs. Thus, SE has become
more and more important and it concerns computer-based system development;
this includes system specification, architectural design, integration and deploy-
ment.

With the increasing importance of SE, the difficulty of maintaining, creat-
ing and developing software has also risen. Challenges in SE include SDLC quality
assessment, requirement gathering, systems integration and evolution, maintain-
ability, pattern discovery, fault detection, reliability and complexity of software
development [15, 5].

DM is a process that employs various analytic tools to extract patterns and
information from large datasets. Today, large numbers of datasets are collected
in various fields, including eGovernment for instance, and stored.

Humans are much better at storing data than extracting knowledge from
it, especially accurate and valuable information needed to create good software.
There are seven steps in the process of extracting knowledge: data integration,
data cleaning, data selection, data transformation, data mining, pattern evalua-
tion and knowledge presentation (see Fig. 1).



188 Galia Novakova Nedeltcheva

1. Data

integration

2. Data

cleaning

3. Data

selection

4. Data

transformation

5. Data

mining
6. Pattern

evaluation

7. Knowledge

presentation

Fig. 1. Steps in the process of extracting knowledge from large datasets

DM techniques that can be applied in improving SE include generaliza-
tion, characterization, classification, clustering, associative tree, decision tree or
rule induction, frequent pattern mining, etc. [4]. SE has become increasingly
important these days and research on its problems has proposed various methods
for improving SE. The study of SE problems has followed several approaches.
The early research of Thayer et al. [14] was concerned with SE project manage-
ment. They introduced planning, organizing, staffing, and controlling problems
as major challenges in this area. Ramamoorthy et al. [13] stated that as more
complex software applications are required, programmers will fall further behind
the demand. This causes the development of poor quality software and higher
maintenance costs. The problems stated by Thayer are more closely tied to the
processes of SE project management, while those introduced by Ramamoorthy
are more closely tied to the limitations of human beings. Later work by Clarke [3]
identified challenges in SE associated with the complexity of the software devel-
opment process. He stated that the complexity of software development causes
the software to become harder to maintain. This leads to other problems such as
software integrity and difficulty in detecting application bugs or flaws. A bug is
a flaw in a computer program that can ultimately cause glitches, program failure
or software destruction.

Data perturbation techniques for preserving privacy in DM were proposed
by Islam and Brankovic [9]. Aouf proposed the clustering technique to identify
patterns in the underlying data [1]. Later work by Ma and Chan [11] suggested
iterative mining for mining overlapping patterns in noisy data. The three data
mining approaches discussed above are all clustering techniques. The data per-
turbation technique described by Islam and Brankovic [9] involves adding noisy
data into some part of the dataset in order to preserve privacy, while Ma and
Chan [11] were concerned with the elimination of noisy data to enable extracting



Data Mining For Software Development Life Cycle Quality Management 189

valuable information. So different types of data require different DM techniques.

In the business environment, complex DM projects may require the coordi-
nate efforts of various experts, stakeholders, or departments throughout an entire
organization. In the data mining literature, various “general frameworks” have
been proposed to serve as blueprints for how to organize the process of gathering
data, analyzing data, disseminating results, implementing results, and monitor-
ing improvements. One such model, CRISP (Cross-Industry Standard Process for
DM) was proposed in the mid-1990s by a European consortium of companies to
serve as a non-proprietary standard process model for data mining. This general
approach postulates the following (perhaps not particularly controversial) general
sequence of steps for data mining projects:

Another approach – the Six Sigma methodology—is a well-structured,
data-driven methodology for eliminating defects, waste or quality control prob-
lems of all kinds in manufacturing, service delivery, management, and other busi-
ness activities. This model has recently become very popular (due to its successful
implementations) in various US industries, and it appears to gain favor worldwide.
It postulated a sequence of so called DMAIC steps –

– that grew up from the manufacturing, quality improvement and process control
traditions, and is particularly well suited to production environments (including
“production of services”, i.e., service industries).

Another framework of this kind (actually somewhat similar to Six Sigma)
is the approach proposed by SAS Institute called SEMMA –



190 Galia Novakova Nedeltcheva

– which is focusing more on the technical activities typically involved in a data
mining project.

All these models are concerned with the problem of how to integrate data
mining methodology into an organization, how to “convert data into information”,
how to involve important stakeholders, and how to disseminate the information
in a form that can easily be converted by stakeholders into resources for strategic
decision making.

2.1 Analysis. Different DM algorithms produce patterns that reflect
different levels of information, and which algorithm to choose depends on the
specific SE task’s mining requirements.

SE data can be divided into three categories as follows [16]:

• Sequences, such as execution traces collected at run-time, and static traces
extracted from source code;

• Graphs, such as dynamic call graphs extracted from source code;

• Text, such as code comments, documentation and bug reports.

Software quality attributes provide the means for measuring the fitness
and aptness of a software product. The desired attributes for a good software
system are Reliability, Efficiency, Security, Maintainability, Supportability, Per-
formance, Usability, etc. During the complete process of software development,
at each phase, effort is made to achieve these attributes.

When problems such as bugs or flaws arise in systems or software, it
is difficult for developers or programmers to determine the cause(s). DM is a
valuable tool for solving such SE problems. DM techniques can be applied to
solve problems in all three categories of SE data. The following sub-topics review
and describe DM techniques that can solve problems in each type of SE data.

A. Sequence Data Mining. Examples of SE sequence data include method-
call data that is dynamically collected during program execution, or statically
extracted from source code. The challenge inherent in SE sequence data is the
difficulty of extracting sequential patterns and information from the source code
[16] or program during program execution [2] for software bug or flaw detection.
DM techniques that can be applied to solve these problems are frequent item set
mining (FIM) and frequent sequence mining (FSM). FIM and FSM are types of
frequent pattern mining that use alternative support counting techniques [16].

Figure 2 shows the process of frequent pattern mining on program source
code. A program source code is composed of elements written in a particular
programming language. To mine sequential data from source code, we need to



Data Mining For Software Development Life Cycle Quality Management 191

Software
source code

Preprocess

Data mining Source
code analysis

Later

stage handle

Clue
information

Programming

model

Information
database

Fig. 2. The procedure of frequent pattern mining on source code [17]

divide it into different units, such as tags, blocks, function, and classes, for fur-
ther mining. The information extracted from different units of source code can
be used to remove the wrong source code [17]. In this case, FIM can be used
to characterize the importance of program elements. FIM is used to mine the
frequency of program elements, and to extract the procedural rules of fault and
bug detection. FIM is only suitable for mining static traces or paths extracted
from source code as it does not reflect the sequential order of information in the
mined pattern [16, 12]. FIM uses a bottom-up approach and follows the principle
wherein an item set X of variables can only be frequent if all its subsets are also
frequent [12]. Thus, it is not suitable for application to run-time data [17].

B. Graph Data Mining. Most SE data can be represented as graphs.
Dynamic-call graphs generated during execution of a program and static call
graphs generated from program source code are instances of SE data represented
in graphs [16]. A graph is an expressive representation for SE data and is useful
for modeling complicated structures and their relationships [7]. Mining graph
data has great potential to help in software development quality management.
Thus, graph DM is often an active research area in SE.

As graph data is usually large and complex, it is hard for the human eye to
uncover patterns in them and classify the patterns to ease program bug analysis
[3]. Application of graph classification can solve this problem, since the technique
automates the identification of subgraph patterns from graph data and constructs
a graph classification model for automating the classification process.



192 Galia Novakova Nedeltcheva

Software is unlikely to ever be failure-free. The more failures and bugs
encountered in the software, the more unreliable the software is. By detecting
bugs and failures and pinpointing their origin software programmers or developers
can fix them and thus increase the software reliability. There are two types of
software bugs: crashing and non-crashing [10]. Crashing bugs are those that cause
program execution to halt under non-ordinary conditions. Examples of crashing
bugs include inputting characters into a field of integer data type, or referring to
a null pointer. Non-crashing bugs do not terminate the program [10] but may
result in errors in execution or output. An example of a non-crashing bug would
be logical errors such as when the final result generated by the program is not the
result that it should be. Non-crashing bugs are more difficult to detect as they
have no crashing point——that is, the program continues running past the point
of error [10].

In order to disclose traces of non-crashing bugs, a graph classification
technique is used. Software behavior graphs from program execution comprise the
data to mine. However, the number of frequent subgraphs mined from behavior
graphs is often large, which may result in low performance of graph mining and
classification [10] due to the difficulties and the time consuming nature of mining
huge numbers of frequent subgraphs. Closed frequent subgraphs are a legitimate
substitute for frequent graphs for classification purposes, as the number of closed
frequent subgraphs generated is lower. The mined closed frequent subgraphs are
used for classifier construction [7]. A classifier is built at each checkpoint for every
function in a program to detect the location of the bug [10].

Bug detection is achieved by monitoring for classification accuracy boost.
The classification accuracy of each classifier will remain low before the bug is
triggered [16], because the classifier lacks information about the behavior of the
bug. When the bug is triggered, the classification accuracy of the classifier at
that checkpoint increases, and therefore the location of that classifier is probably
the location of the bug [10]. This eases the process of debugging for non-crashing
bugs, since in this way programmers can deal with the bugs directly without going
through the difficulty and time to search for the bugs on their own.

Figure 3 shows the process of bug report (BR) classification using text data
mining’s Natural Language Description Technique. The initial step is to obtain a
set of labeled BR data that contains textual descriptions of bugs correctly labeled
to indicate whether they should be classified security BR or non-security BR.
Labeling of the BR data set is required for creating and evaluating a Natural
Language Predictive Model.

An example of an architecture for mining software engineering data is



Data Mining For Software Development Life Cycle Quality Management 193

Textual-Data Preparation

Configuration File Preparation

Training,
validation
and text
data sets

Predictive Modeling

Application
of trained
model on
new BR

Model
retraining with

corrected
mislabeling

Fig. 3. Bug reports classification using text data mining [6]

given in Fig. 4 below.

3. Preprocess

Data

4. Develop/

Adapt Mining

Algorithm

5. Postprocess

the mining results
SE Task

SE Data

1. Collect/Investigate

SE Data

2. Determine

SE Task

Fig. 4. Architecture for mining software engineering data

3. Data mining tools in software engineering. Several resear-
chers and organizations have conducted reviews of DM tools and surveys of data
miners. They identify some of the strengths and weaknesses of the software pack-
ages and also provide an overview of the behaviors, preferences and views of data
miners.

Some examples of software packages for DM are the following:

• 2CEE Cost Estimation

• Data.Mining.Fox (www.easydatamining.com)



194 Galia Novakova Nedeltcheva

• AdvancedMiner Professional (www.statconsulting.eu)

• Coheris SPAD (www.coheris.fr/en/page/produits/Spad.html)

• PEPITo software (www.pepite.be)

• SAS Enterprise miner
(www.sas.com/en_us/software/analytics/enterprise-miner.html)

• STATISTICA Data Miner

The general underlying philosophy of StatSoft’s STATISTICA Data Miner
is to provide a flexible data mining workbench that can be integrated into any
organization, industry, or organizational culture, regardless of the general data
mining process-model that the organization chooses to adopt. For example, STA-
TISTICA Data Miner can include the complete set of (specific) necessary tools
for ongoing company-wide Six Sigma quality control efforts, and users can take
advantage of its (still optional) DMAIC-centric user interface for industrial data
mining tools. It can equally well be integrated into ongoing marketing research,
CRM (Customer Relationship Management) projects, etc., that follow either the
CRISP or SEMMA approach—it fits both of them perfectly well without favoring
either one. Also, STATISTICA Data Miner offers all the advantages of a general
data mining oriented development kit that includes easy-to-use tools for incorpo-
rating not only such components as custom database gateway solutions, prompted
interactive queries, or proprietary algorithms into the projects, but also systems of
access privileges, workgroup management, and other collaborative work tools that
allow for designing large scale, enterprise-wide systems (e.g., following the CRISP,
SEMMA, or a combination of both models) that involve the entire organization.

Some of the disadvantages of DM software packages. DM brings many
benefits to business, society, government as well as individuals. However privacy,
security and misuse of information are the big problem if it is not addressed
correctly.

Privacy Issues—Concerns about personal privacy have been increasing
enormously recently, especially when the Internet is booming with social net-
works, e-commerce, forums, blogs, etc. Because of privacy issues, people are
afraid that their personal information is collected and used in unethical ways,
potentially causing them a lot of trouble. Businesses collect information about
their customers in many ways for understanding their purchasing behavior trends.
However, businesses don’t last forever, some day they may be acquired by oth-
ers or gone. At this time the personal information they own is probably sold to
another or leaks.



Data Mining For Software Development Life Cycle Quality Management 195

Security issues—Security is a big issue. Businesses own information about
their employees and customers including social security number, birthday, payroll,
etc. However, how properly this information is taken is still in question. There
have been many cases when hackers accessed and stole customers’ data from
big corporations such as Ford Motor Credit Company, Sony, etc. with so much
personal and financial information available, credit card stolen, identity theft
become a big problem.

Misuse of information/inaccurate information—Information collected
through DM intended for marketing or ethical purposes can be misused. This
information is exploited by unethical people or businesses to take benefit of vul-
nerable people or discriminate against groups of people.

In addition, a DM technique is not perfectly accurate therefore if inaccu-
rate information is used for decision making it will cause serious consequence.

The challenges of DM can be outlined as follows:

• Software development quality assessment

• Scalability

• Dimensionality

• Complex and heterogeneous data

• Data quality

• Data ownership and distribution

• Privacy preservation

• Streaming data

So while DM techniques have been applied across broad domains, they
have rarely been applied in the field of software development quality assessment,
a subfield of SE [4].

4. Conclusions and future enhancement. Future work needs to
investigate more DM algorithms that can help to improve the process of SDLC
quality assessment and are easy to use.

Some predictive DM problems are of the non-linear (NL) type. For very
complex prediction (or forecasting) problems, NL algorithms or a blend of both
linear and NL will be best. This means that blends of different algorithms or tech-
niques which combine strengths will be more useful. Effort should be geared to-
wards building supermodels that combine two or more of these techniques. Much



196 Galia Novakova Nedeltcheva

work is going on in evaluating the strengths of the techniques: neural networks
(NN), support vector regression (SVR), regression trees, kernel regression, kernel
SVR, etc. Some of the breakthroughs are kernel support vector machines, kernel
principal component analysis and least square support vector machines.

Another area of DM that has been and will continue to be a fertile ground
for researchers is the area of data acquisition and storage. The ability to correctly
acquire, clean and store data sets for subsequent mining is not an easy task. A
lot of work is going on in this area to improve on what is available today.

There are many commercial software packages produced to solve some of
the problems but most are uniquely made to solve a particular type of problem.
It would be desirable to have mining tools that can switch to multiple techniques
and support multiple outcomes. Current DM tools operate on structured data,
but most of the data in the field is unstructured. Since large amounts of data are
acquired, for example in the World Wide Web, there should be tools that would
manage and mine data from this source, a tool that can handle dynamic, sparse,
incomplete or uncertain data. The dream looks very high but given the time and
energy invested in this field and the results which are produced, the development
of such software is not far away.

As well, DM technique is used in CRM. Nowadays it is one of the hot topics
of research in the industry, because CRM have attracted both practitioners and
academics. Research on the application of DM in CRM will increase significantly
in the future based upon past publication rates and the increasing interest in the
area. The majority of the existing articles relate to customer retention.

E-commerce is also the most prospective domain for DM. It is ideal be-
cause many of the ingredients required for successful DM are easily available:
data records are plentiful, electronic collection provides reliable data, insight can
easily be turned into action, and return on investment can be measured. The
integration of e-commerce and DM significantly improves the results and guide
the users in generating knowledge and making correct business decisions. This
integration effectively solves several major problems associated with horizontal
DM tools including the enormous effort required in pre-processing of the data
before it can be used for mining, and making the results of mining actionable.

Besides, the exploration of the DM techniques discussed in the paper could
be for empowering eGovernment applications and services for the citizen’s benefit.
Existing eGovernment applications entail a limited adaptation. In particular, the
need to transform eGovernment services to e-inclusion applications is a motivation
for utilization of data mining techniques for processing the governmental data so
as to extract and associate information fragments with real citizen needs and thus



Data Mining For Software Development Life Cycle Quality Management 197

enable the encapsulation of the latter in future governmental decisions. DM tech-
niques have a potential adoption in many government sectors such as healthcare,
agriculture, education, social security funds, pollution control, electronic voting,
rainfall prediction, customer complain, road traffic violation, crime control, crime
forecasting, taxing, etc.

Through the proposed DM techniques in the paper effective and efficient
detection of anomalies in massive data sets can be achieved, e.g., outliers, dupli-
cates, inconsistencies, and dubious data. There is a potential to apply the DM
approach also for ontology validation in the data collection.

R EFER EN CES

[1] Aouf M., L. Lyanage, S. Hansen. Critical review of data mining tech-
niques for gene expression analysis. In: Proceedings of the International Con-
ference on Information and Automation for Sustainability (ICIAFS), 2008,
367–371.

[2] Bhasker B. An algorithm for mining large sequence in databases. Commu-
nications of the IBIMA, 6 (2008), 149–153.

[3] Clarke J. et al. Reformulating software engineer as a search problem. IEEE
Proceeding Software, 150 (2003), No. 3, 161–175.

[4] DePree R. W. Pattern recognition in software engineering. IEEE Com-
puter, 16 (1983), No 5, 48–53.

[5] Fern X. L., C. Komireddy, V. Gregoreanu, M. Burnett. Mining
problem-solving strategies from HCL data. ACM Trans. Computer-Human
Interaction, 17 (2010), No 1, Article 3, 1–22.

[6] Gegick M., P. Rotella, T. Xie. Identifying security bug reports via text
mining: an industrial case study. In: Proceedings of the 7th IEEE Working
Conf. Mining Software Repositories (MSR), Cape Town, 2010, 11–20.

[7] Han J., M. Kamber. Data mining concepts and techniques. 2nd Edition,
The Morgon Kaufman Series in Data Management Systems, 2005.

[8] Hihn J., K. Lum. 2CEE, A twenty first century effort estimation methodology.
In: Proceedings of the ISPA/ SCEA Joint International Conference, 2009,
Lane Dept. CSEE West Virginia University.



198 Galia Novakova Nedeltcheva

[9] Islam M. Z., L. Brankovic. Detective: a decision tree based categorical
value clustering and perturbation technique for preserving privacy in data
mining. In : Proceedings of the Third IEEE Conference on Industrial Infor-
matics (INDIN), 2005, 701–708.

[10] Liu C. et al. Mining behavior graphs for “backtrace” of noncrashing bugs. In:
Proceedings of the 2005 SIAM Int. Conf. on Data Mining (SDM’05), 2005,
286–287.

[11] Ma P. C. H., K. C. C. Chan. An iterative data mining approach for mining
overlapping coexpression patterns in noisy gene expression data. IEEE Trans.
Nano Bioscience, 8 (2009), No 3, 252–258.

[12] Parsons T., J. Murphy, P. O Sullivan. Applying frequent sequence
mining to identify design flaws in enterprise software systems. In: Proceedings
of the 5th Int. Conf. MLDM, 2007, 261–275.

[13] Ramamoorthy C. V., A. Prakash, W. T. Tsai, Y. Usuda. Software
engineering: problems and perspectives. Computer archive, 17 (1984), No 10,
IEEE Computer Society, 191–209.

[14] Thayer R. H., A. Pyster, R. C. Wood. Validating solutions to major
problems in software engineering project management. Computer archive, 15
(1982), No 8, IEEE Computer Society, 65–77, 1982.

[15] Wahidah H., Pey Ven Low, Lee Koon Ng, Zhen Li Ong. Application
of Data Mining Techniques for Improving Software Engineering. In: Proceed-
ings of the 5th International Conference on Information Technology ICIT,
Amman, Jordan, 2011.

[16] Xie T., S. Thummalapenta, D. Lo, C. Liu. Data mining for software
engineering. Computer archive. 42 (2009), No 8, IEEE Computer Society,
55–62.

[17] Zong C. M., Z. L. Li. Applying data mining techniques in software devel-
opment. In: Proceedings of the 2nd IEEE Int. Conf., Chengdu, China, 16–18
Apr. 2010, 535–538.

Galia Novakova Nedeltcheva

Faculty of Mathematics and Informatics

Department of Computing Systems

Sofia University

5, J. Bourchier Blvd

1164 Sofia, Bulgaria

e-mail: g.novak@fmi.uni-sofia.bg

Received December 4, 2014

Final Accepted February 23, 2015


