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Abstract. This research evaluates pattern recognition techniques on a
subclass of big data where the dimensionality of the input space (p) is much
larger than the number of observations (n). Specifically, we evaluate mas-
sive gene expression microarray cancer data where the ratio κ = n/p is less
than one. We explore the statistical and computational challenges inherent
in these high dimensional low sample size (HDLSS) problems and present
statistical machine learning methods used to tackle and circumvent these
difficulties. Regularization and kernel algorithms were explored in this re-
search using seven datasets where κ < 1. These techniques require special
attention to tuning necessitating several extensions of cross-validation to
be investigated to support better predictive performance. While no single
algorithm was universally the best predictor, the regularization technique
produced lower test errors in five of the seven datasets studied.

ACM Computing Classification System (1998): C.3, C.5.1, H.1.2, H.2.4., G.3.
Key words: HDLSS, machine learning algorithm, pattern recognition, classification, pre-

diction, regularization, discriminant analysis, support vector machine, kernels, cross validation,
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1. Introduction. According to A Cancer Journal for Clinicians [25],
although cancer death rates are on the decline, cancer remains a major health
problem in many parts of the world. In the United States alone one in four
deaths are due to cancer. A total of 1,665,540 new cancer cases and 585,720
cancer deaths are projected to occur in the United States in 2014. With the advent
of gene expression microarray technology, cancer is predominantly explored and
studied through datasets gathered from microarray probes.

Microarray cancer data is an example of HDLSS data where the sample
size n is very small, usually in the tens, and the number of variables p is massively
large, numbering in the thousands. For this research, seven existing gene expres-
sion microarray cancer datasets were chosen, four binary and three multiclass.

Table 1. These datasets are freely available to download and use through the following
resources: Prostate [26], Colon [1], Leukemia [12], WestBC [31], Lung [2], Breast [16],

Brain [21]

n p # Classes κ Distribution of classes

Prostate Cancer 79 500 2 0.15800 37 42

Colon Cancer 62 2000 2 0.03100 22 40

Leukemia Cancer 72 3571 2 0.02016 47 25

West BC Cancer 49 7129 2 0.00687 24 25

Lung Cancer 197 1000 4 0.19700 139 17 21 20

Breast Cancer 97 1213 3 0.07997 11 50 36

Brain Cancer 42 5597 5 0.00750 10 10 10 4 8

When n is very small and the dimension of the space of variables p is
extremely large n ≪ p, the underlying statistical problem becomes ill-posed
or ill-defined [9]. Traditional statistical techniques of relying on strong model
assumptions analogous to parametric or being distribution free as with fully non-
parametric are inadequate, and inference breaks down. This failure of traditional
statistics is due to a phenomenon known as ill-posedness. An explanation for this
circumstance can be found in the works of Hadamard [14], where he states that
for a problem to be well-posed it must meet the following conditions:

• A solution must exist

• The solution must be unique

• The solution must be stable so that the inverse mapping is continuous

In dealing with HDLSS microarray cancer data these conditions were con-
tinually violated, leaving traditional methods performing badly or not at all. For-
tunately, modern statistics is forging ahead where traditional methods failed and
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adeptly providing computer-intensive machine learning techniques employing sta-
tistical algorithms that are proving to be quite skillful at dealing with these types
of HDLSS data where κ < 1. This paper compares and contrasts the ability of
various machine learning techniques to perform accurate prediction on microarray
cancer data via supervised learning.

The following four approaches can be used in machine learning as tech-
niques for dealing with ill-posed problems.

• Regularization (Introduces a small amount of bias through the constraint
but stabilizes the variance) [28]

• Kernelization (Captures arbitrary nonlinear decision boundaries in high-
dimensional space) [29]

• Randomized Ensemble (A collection of models averaged out to stabilize
variance) [23], [6], [3]

• Feature Selection (Extraction of meaningful markers) [11], [13]

The two main goals when analyzing microarray cancer data are accurate
prediction of a given disease from a set of corresponding gene profiles, and gene
selection. The focus of this paper is on obtaining accurate prediction by employing
the more commonly used techniques of regularization and kernelization.

The remainder of the paper is organized as follows. In section 2, we present
a detailed description of the techniques used and analyzed, with a focus on the
aspects that make them suitable for microarray data. Section 3 is dedicated to the
description of our data preprocessing and various extensions of cross-validation
used to optimize the tuning parameters. Section 4 presents the results from our
computational experiments with an emphasis on the comparison of the average
test errors across all the methods considered. Section 5 concludes with a discussion
of our findings and the strengths and weaknesses of each of the methods. We also
provide elements of our future work.

2. Predictive learning methods.
Discriminant Analysis. In general the goal of discriminant analysis

is to build the best classifier function f that assigns points to one of several
classes or labels y ∈ {1, 2, . . . , k, . . . ,K} based on a set of measurements X =
(x1, x2, . . . , xp) such that the classification error is as small as possible [11], [9].
This function is constructed from a posterior distribution created via the majority
rule concept where new points, or observations, are assigned to a class k that
maximizes their probability, which equivalently minimizes their loss.

Each observation is assumed to be a member of one and only one class.
An error is incurred when an observation is assigned to the incorrect class [11].
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The loss from this error is defined as

(1) L(k, k̂), 1 ≤ k, k̂ ≤ K

Thus the expected loss or risk incurred when classifying vector X as k̂ is

(2) R(k̂ | X) =

∑K
k=1 L

(
k, k̂
)
pk(x)πk

∑K
k=1 pk(x)πk

where pk(x) ≡ Class conditional density of x in class k
and πk = Pr[y = k] based on prior class membership probability
The posterior class membership probability is

(3) dk(x) = Pr[y = k | x] = πkpk(x)∑K
l=1 πlpl(x)

By choosing the optimal k̂ for minimization of loss, Equation (2) can be
simplified to

(4) f̂DA(X) = ̂class(x) = k̂ = argmax
k=1,...,K

{πkpk(x)}

By assigning a one-unit loss to each mistake or observation incorrectly
classified, the misclassification risk simply becomes a fraction of assignments that
are incorrect. The resulting rule (4) from choosing the optimal k̂ to minimize
the risk function R(k̂ | X) is the Bayes rule. The Bayes rule will achieve the
minimum misclassification risk among all possible rules [11].

However, since conditional densities pk(X) are seldom known the obser-
vations in the training sample are used to construct the classification rule from
estimates of pk(X). This results in added complexity when dealing with high-
dimensional data.

When the class prior probabilities are also unknown, we use the training
data once again as a random sample from the pooled population distribution.
The prior probabilities are then estimated by the fraction of each class in the
pooled training set [11]. This process emphasizes the importance of using stratified
sampling when creating training data sets in order to maintain the integrity of
the prior probability estimates π̂k.

To estimate the prior probabilities of each class in the pooled sample we
use the following equations where v is the ith observation and c(v) is the class of
the vth observation. Wv is a weight or mass assigned to each observation [11].

π̂k = Wk/W(5)
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Wk =
∑

c(v)=k

wv(6)

W =

K∑

k=1

Wk(7)

Linear Discriminant Analysis (LDA). In linear discriminant analysis
(LDA) the classification rule is based upon a normal distribution with the data
in each group or class following a Multivariate Gaussian distribution with means
µk and common covariance matrix Σ [9]. As a result of the covariance matrices
between the classes being relatively close and assumed equal such that Σ0 = Σ1 =
Σ, the decision boundary and discriminant function are inherently linear. In this
special case of discriminant analysis the discriminant function becomes

(8) dk(X) = X⊤(Σ−1µk)−
1

2
µ⊤
k Σ

−1µk + lnπk

Fig. 1. Simple binary decision boundary (2-dimensions)

The assumption that the covariance matrices are equal is fundamental
when dealing with sparse datasets because it means only one inverse covariance
matrix needs to be estimated which is key when dealing with small sample sizes.

However, when dealing with HDLSS data a technique must also be able
to handle variable sizes p several times larger than sample size n. When faced
with this n ≪ p scenario, as in the microarray cancer data, LDA suffers from
multicollinearity and is prone to overfitting the data. This happens because the
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dimension d of the data vectors is much larger than the data vectors available in
the sample size n.

This situation was encountered repeatedly in the research documented in
this article. Every microarray cancer dataset listed here obtained warnings of
collinear variables when executed with LDA. LDA struggled to classify the data
due to the covariance matrix Σ−1 being essentially singular. In fact, no direct
matrix inversion is actually used.

Even though these datasets have already been reduced through feature
selection and preprocessing, for the LDA technique to work optimally, further
reduction in variable size would be required. In our research, LDA is used solely
for the purpose of providing a baseline.

A practical implementation of LDA is given in the R package MASS [30].

Quadratic Discriminant Analysis (QDA). In the case where the co-
variance matrices between classes are not equal, the quadratic discriminant anal-
ysis (QDA) technique is normally employed. The quadratic discriminant function
containing the Mahalanobis distance between X − µk [11] is given as

(9) dk(X) = ln |Σk|+ (X − µk)
⊤Σ−1

k (X − µk)− 2 ln πk

However, when faced with the situation where n ≪ p, the QDA technique
will not run. The sample sizes are too small to estimate more than one inverse
covariance matrix. Therefore QDA is not an option for the microarray cancer
data in this research.

A practical implementation of QDA is given in the R package MASS [30].

Regularized Discriminant Analysis (RDA). The failure of LDA and
QDA prompts the need for regularization to stabilize the covariance matrix Σk. In
the presence of high dimensionality, the variance estimator is typically very high
and in the process of reducing the variance of the estimating function, some bias
is inevitably introduced. Regularization of the estimating parameters is therefore
a common protocol for introducing a small amount of bias into the covariance
matrix in exchange for the gain in stabilizing the variance and thereby reducing
generalization error.

There are several variations of regularized discriminant analysis available.
In this research the shrunken centroids regularized discriminant analysis from the
R rda package was chosen [13].

The shrunken centroid regularized discriminant analysis, hereafter referred
to as RDA, strives to minimize the within-class scatter while maximizing the



A Comparative Analysis of Predictive Learning Algorithms . . . 143

between-class scatter in order to define the feature vectors that allow the high-
dimensional data to be projected onto a low-dimensional feature space to facilitate
maximum class separation.

Fig. 2. Shrunken centroids for a multiclass dataset (2 dimensions)

This RDA method uses regularization of the LDA method as a way to
resolve the singularity problem that occurs when the sample covariance matrix is
singular and cannot be inverted. Having a covariance matrix that is singular is
an expected impediment of dealing with n ≪ p data. The regularization hyper-
parameter α is used here. Regularization of Σ̂ to resolve singularity and stabilize
the covariance estimate:

(10) Σ̃ = αΣ̂ + (1− α)Ip where 0 ≤ α < 1

The regularized discriminant function becomes

(11) d̃k(X) = x⊤Σ̃−1x̄k −
1

2
x̄⊤k Σ̃

−1x̄k + log πk

RDA handles shrinkage slightly different than the other conventional shrink-
age methods. Rather than shrinking the centroids directly as done in the “nearest
shrunken centroids” method [27], the shrunken centroids RDA method [13] shrinks
in the following way:

(12) Shrinkage of x̄∗ = Σ̃−1x̄
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Resulting in the following formula with ∆ as the shrinkage hyper-parameter

(13) x̄∗′ = sgn (x̄∗) (|x̄∗| −∆)+ where 0 ≤ ∆ ≤ 3

The bias variance tradeoff for RDA is now optimized through careful
tuning of the two hyper-parameters, α for regularization and ∆ for shrinkage
(Fig. 3). The hyper-parameter values jointly producing the minimal error, thus
concurrently maximizing classification performance, are determined from the use
of cross-validation as explained in the Preprocessing and Tuning section of this
paper.

Fig. 3 The RDA technique represented pictorially to show the hierarchy leading to the
two tuning hyper-parameters alpha and delta

Support Vector Machines (SVM). When using the support vector
machine (SVM) technique for classification the goal is to use xi, the vector of
explanatory variables, to estimate the decision boundary that best separates the
classes or yi labels [29], [9]. In the simple binary case (Figure 4) where p = 2, the
two classes separate linearly and the boundary between the two classes is called
the hyperplane represented by w⊤Φ(x)+b = 0, where b is equivalent to w0 and Φ
is the function that maps the vector of xi’s into a higher dimensional space [29].

For support vector machines, optimal prediction comes from jointly max-
imizing the margin while minimizing the misclassified points or observations. In
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Fig. 4 Support vector machine

Figure 4, the margin is identified as the distance between the w⊤Φ(x) + b = −1
line and w⊤Φ(x)+ b = +1 line. The misclassified points are shown by the arrows
pointing to the two observation points labeled ξ > 1 and ξ < 1. The four observa-
tion points found on the two lines defining the margin are called support vectors.
These observations or support vectors help to define the margin. In general, if two
models perform equally in prediction and are the same with respect to complexity,
it is best to choose the model defined with the least amount of support vectors.

Reiterated, with support vector machines the prediction goal is to find the
optimal hyperplane that separates the data with the least errors while simultane-
ously maximizing the margin (14). It can be found by satisfying the conditions
of formula (16) while minimizing (15) [29].

Maximize the margin

(14) ρ =
2

‖w‖ =
2√

w⊤w
.

The SVM binary classifier is found by minimizing

(15)
1

2
(w⊤w) +

C

n

n∑

i=1

ξi

subject to the constraints

(16) yi(w
⊤Φ(xi) + b) ≥ 1− ξi, and ξi > 0, i = 1, . . . , n.
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The estimating equation is given by

(17) f̂SVM (xnew) = sign




n∑

j=1

α̂jyjΦ(xj)
⊤Φ(xnew) + b̂




To this purpose, attempting to identify this optimal hyperplane in the
original q-dimensional input space can be extremely cumbersome and difficult,
if possible at all. Additionally, in the case of multiclass data, there are multi-
ple intersecting hyperplanes that need to be found. The actual computations
involved in training a support vector machine to find a hyperplane require solving
a quadratic optimization problem [29], [18]. Attempting to train an algorithm on
a HDLSS dataset using a standard quadratic problem solver for training would
be unmanageable and impractical.

Opportunely, since the inner product in feature space is exactly equal to
a non-linear transformation in input space [29], by projecting the vector of xi’s
from input space into a higher dimensional feature space, solving a quadratic
optimization problem becomes attainable. As illustrated in Figure 5, for each
point xi in q-dimensional space there is an equivalent Φ(xi) in feature space.
The projection or mapping of these xi points into a higher dimension makes it
possible to find the hyperplane that separates the data optimally in feature space
and consequently avoids the much more complicated decision boundary shown in
the input space (Fig. 5).

Fig. 5. Mapping input space to feature space

Unquestionably the explicit mapping of the xi’s is labor-intensive and
problematic due to the non-linear, high dimensionality of the mapping. Fortu-
nately, the kernel function Φ facilitates implicitly mapping the input data points
into feature space and returning the inner product between the images of two data
points from feature space [18]. This kernelization of the SVM classifier enables
each x to obtain an estimated response. This is often referred to in literature as
the “kernel trick” [24].
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Projection Φ
∀Φ : X → F

Kernel function of K

∃K(·, ·) such that K(xi,xj) = 〈Φ(xi),Φ(xj)〉 = Φ(xi)
⊤Φ(xj)

Kernelized SVM classifier

(18) f̂SVM (xnew) = sign




n∑

j=1

α̂jyjK(xj ,xnew) + b̂




Each kernel K(·, ·) defines a flexible class of base functions indexed by one
or more tuning parameters. Once the proper kernel for the data is identified, the
calculation of the mapping of Φ happens implicitly through tuning the kernel.
Given the critical importance of choosing the best kernel for a given dataset, the
following kernels were explored in this research.

• Vanilla or linear kernel

(19) K(xi,xj) = 〈xi,xj〉 = x⊤
i xj

• Polynomial kernel

(20) K(xi,xj) = (scale · 〈xi,xj〉+ offset)degree = (γ · 〈xi,xj〉+ τ)degree

where γ ≡ scale and typically set to 1 and τ is set to 1 or 0
• Gaussian Radial Basis Function (RBF) kernel

(21) K(xi,xj) = exp(−γ‖xi − xj‖2)

where γ ≡ bandwidth and

‖xi − xj‖2 =
P∑

ℓ=1

(xiℓ − xjℓ)
2

• Laplace RBF kernel

(22) K(xi,xj) = exp(−γ‖xi − xj‖)

where γ ≡ bandwidth and

‖xi − xj‖ =

P∑

ℓ=1

|xiℓ − xjℓ|
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• Hyperbolic tangent or sigmoid kernel

(23) K(xi,xj) = tanh(scale · 〈xi,xj〉+ offset) = tanh(γ〈xi,xj〉+ τ)

where γ ≡ scale and τ is the offset

• ANOVA radial basis kernel

(24) K(xi,xj) =

(
n∑

k=1

exp(−γ(xk
i − xk

j )
2)

)d

where γ ≡ bandwidth and d is the degree.

The support vector packages e1071 and kernlab were evaluated in this re-
search for their ability to correctly classify HDLSS microarray cancer data through
supervised learning. Once again these tuning parameters (Figure 6) are optimized
utilizing cross-validation as explained in the Preprocessing and Tuning section of
this paper.

Fig. 6. The SVM technique is represented pictorially to show the hierarchy leading to
tuning parameters γ, ν, and C or cost

SVM (e1071) and (kernlab). These two packages are very similar in
mathematical theory, as outlined previously, but have different technical imple-
mentations. Both packages offer a C and ν classification type for binary datasets
with C being the default for both when y is a factor. The C classification uses a
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tuning parameter as a regularization parameter to control the cost of a constraint
violation in an attempt to balance the tradeoff between a wide margin and clas-
sification errors [20]. Essentially, this is the ‘C’-constant of the regularization
term in the Lagrange formulation [19]. The C formulation is trying to control the
dimensionality of the p by p matrix and will perform better on data that has a
more discrete distribution [9]. The nu classification type works by controlling the
error rather than the dimensionality directly [9]. It uses the tuning parameter ν
to control the ratio of support vectors to data points [20]. The ν parameter is
bounded between 0 and 1 and the higher the value of ν is the wider the margin
will be [19].

Classification for multiclass datasets is offered by both packages. Package
e1071 documents that SVMs can only solve binary classification problems and
therefore handles multiclass datasets using a one-against-one technique that fits
all of the binary subclassifiers and then finds the correct class via a voting mech-
anism [20]. The kernlab package offers a native multiclass classification formu-
lation through two additional classification types: spoc-svc, based on Crammer,
Singer native multi-class and kbb-svc, based on Weston, Watkins native multi-
class [19]. These additional classification types utilize a chunking algorithm based
on TRON QP solver and work by solving a single quadratic problem involving all
the classes [19].

Each package offers a standard set of kernels. In our research several
kernels were investigated for each package due to the vital importance of choosing
the optimal kernel function Φ for mapping the xi vector into feature space. The
linear, polynomial, radial basis and sigmoid kernels were investigated for e1071.
The vanilla, polynomial, laplace, ANOVA, radial basis, and hyperbolic tangent
kernels were investigated for kernlab.

Package e1071 allows tuning of the hyper-parameter γ which is used in
all kernels except the linear. Kernlab does not provide tuning of the γ parameter
directly. Also, the e1071 package implements an interface to the libsvm C++
code [8] for support vector machines.

3. Preprocessing and tuning parameter optimization. Pre-
processing data and properly tuning the algorithms is a very important and often
overlooked step in performing accurate prediction. One of the key tasks in pre-
processing data is to scale it. One of the main advantages of scaling the data is
to prevent a feature with a large range of values from dominating a feature with
a small range of values [17]. In the case that different measurement scales are
involved, scaling the data will also transform all of the features to the same scale
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of measurement for a fair comparison between them [29], [22]. It essentially “levels
the playing field” so all of the features or input variables are treated equally with
a consistent reference of measurement. Furthermore, scaling the data provides
the added benefit of avoiding numerical difficulties in calculations [17]. This is
key when dealing with kernel techniques as kernels rely on the inner products of
the features vectors, as was shown in the Predictive Learning Methods section of
this paper.

The authors of e1071 and kernlab deemed scaling the data so important
that their software scales the input data by default. However, it was discovered
that the rda package did not scale automatically and some anomalies in our input
data were discovered that effected prediction in a way that sometimes lead to
lower errors during cross-validation with the unscaled data. While it is our belief
that scaling the data is best, in the principle of authenticity, we report both the
non-standardized and the standardized values in our results where applicable.

Understanding the sparsity and unevenness between class labels in a given
dataset is also a key component in performing accurate tuning and prediction in
classification. Initial investigation of a dataset should identify the proportions in
each class label. It is vitally important to then diligently ensure these proportions
are properly maintained when performing cross validation and replication. In
other words, when dealing with this microarray cancer data, or any HDLSS data,
stratification of the sampling is central to obtaining minimal misclassifications.
This is highlighted in detail in a later example (Table 2) of the Stratified sampling
subsection.

Recall from Hadamard [14] that for a problem to be well-posed a solution
must not only exist, but it must be unique and stable. In our research, classi-
fication with this microarray cancer data proved to be anything but stable and
returned multiple minimums when searching for the optimal tuning parameters
via cross-validation. This led to the use of various cross-validation implemen-
tations in an attempt to determine which one was the best performer for this
HDLSS data.

Undeniably, the arduous process of selecting the correct hyper-parameters
to optimize accurate classification prediction proved to be one of the most inten-
sive and crucial portions of this research. This level of tuning involves dealing
with the ubiquitous bias-variance tradeoff. This is one of the most important con-
cepts in machine learning as it helps explain why there is no universally optimal
learning method.

Machine learning algorithms must generalize from the training data rather
than just memorize it. Regularization, although it introduces a small amount of
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Fig. 7. Bias Variance Tradeoff (Striped arrow indicates the lowest test error) [15], [4]

bias, facilitates the training algorithm’s ability to generalize and accurately predict
out-of-sample observations. Identifying the optimal hyper-parameters and tuning
parameters via cross-validation becomes vital in order to find the optimal bias-
variance tradeoff for a particular technique and dataset.

As seen in Figure 7, the training error will decrease as the model becomes
more complex and lowers the bias. Conversely, this will result in a proportionally
higher amount of variability. Once the test sample, containing data the algo-
rithm has never seen, is introduced the test error shoots up quickly. Thus, the
challenge becomes to find the balancing point between bias and variance that
correspondingly gives the lowest test error as indicated by the stripped arrow in
the diagram.

As mentioned previously, several extensions of cross-validation were ex-
plored to determine which machine learning technique would produce the low-
est prediction error when executed for classification against microarray cancer
data. Leave-one-out cross-validation (LOOCV) and three types of k-fold cross-
validation were evaluated.

For classification techniques the goal is to minimize the error over the
whole population. This is often referred to as minimizing the generalization er-
ror. This is achieved by determining the optimal hyper-parameter(s) for a given
method (Figure 3,6). For example, in the simple case of binary classification
each observation in the validation case is predicted either correctly or incorrectly.
The misclassifications are summarized and the average cross-validation error for
each hyper-parameter or hyper-parameter combination is calculated. The hyper-
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parameter or combination of hyper-parameters producing the lowest misclassifica-
tion rate is chosen as optimal. For all cross-validation forms the following zero-one
loss function applies:

(25) ℓ(yi, f(xi)) = 1{yi 6=f(xi)} =

{
1 if yi 6= f(xi)
0 if yi = f(xi)

Leave-One-Out Cross-Validation (LOOCV). The LOOCV form ba-
sically performs k-fold = n iterations on a given dataset where one observation
is held out as a test case and the remaining observations are used for training.
The label of the held-out observation is then predicted using the trained classifier
and compared to the actual label. Accuracy of prediction is assessed and the
process is repeated for each observation. The mean misclassification rate for a
given parameter or set of parameters is then assessed at the end of n iterations.

Erri ≡ ℓ(yi, ŷi)(26)

Err =
1

n

n∑

i=1

Erri(27)

LOOCV Pseudocode

Given a specific parameter or parameter set execute the following

For i = 1 to n

• Hold out the ith observation

• Build a classifier using the remaining n − ith observations for a specific
technique

• Give the ith held out xi variables to the trained classifier to predict the yi
label.

• If ŷi 6= yi

◦ Total Misclassifications = Total Misclassifications + 1

• End If

End Loop

Mean CV error for the parameter(s) = Total Misclassifications/n

K-fold cross-validation methods. The following three k-fold forms
involve splitting the data into k equal, or nearly equal, folds and following a sim-
ilar process as above for cross-validation. These three k-fold methods all perform
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cross-validation exactly the same and the difference lies in how the samples are
split into folds. When splitting or partitioning the data the mean misclassifica-
tion rate for a given parameter or set of parameters is assessed at the end of K
iterations.

(28) Errℓ ≡
1

nℓ

nℓ∑

ℓ=1

ℓ(yi, f̂
(−ℓ)(xi))1{(xi,yi)∈Outℓ}

(29) Err =
1

K

K∑

ℓ=1

Errℓ.

Traditionally, when choosing the number of k folds to partition the data
into for cross-validation the industry standard has been to use 5 or 10 folds [7], [5],
[9] with k = 10 being the default in most software packages. However, with this
microarray cancer data where κ < 1, the class proportions are often extremely
uneven, and there is great sparsity of data, the choice of k becomes important for
optimal prediction. In this research k = 5 or smaller was found to perform the
best. This is explained in more detail in the Stratified sampling section of this
paper.

K-fold Cross-Validation Pseudocode

For i = 1 to K

• Hold out the ith fold of observations

• ni = number of observations in the ith fold

• Build a classifier for a given technique using the observations in the remain-
ing K − ith folds

• Give the xi variables for all observations in the held out ith fold to the
trained classifier for prediction of the yi labels

• Average ith Misclassifications =
∑

(Ŷi label predictions 6= yi actual labels)/ni

• Total Average Misclassifications = Total Average Misclassification + Aver-
age ith misclassifications

End i Loop

Mean CV error for the parameter(s) = Total Misclassifications/K

Shuffle and Split (SS). This is the form of cross-validation typically
used by default in existing machine learning software in both R and Matlab. In
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this process the data is randomized and then simply split into k folds without
stratification.

Each fold is held out in turn and predicted by the remaining k − 1 folds
for each unique parameter or set parameters as described above in the K-fold
Pseudocode.

SS Pseudocode

• Shuffle the observations into random order

• Split the observations into K fold partitions

• Given a specific parameter or parameter set execute

◦ K-fold Cross-Validation Pseudocode

Stratified Cross Validate (SCV) and Balanced Stratified Cross-
Validate (BSCV). These methods differ from the SS method above in that
both these techniques use stratification when splitting the samples into k folds.
This means that these two techniques will maintain the dataset class proportions
within each fold when the data is split. This ensures that the probability of each
class label occurring in a fold is kept consistent to its probability of occurring in
the original dataset. The difference in the two methods is in how they handle
uneven sample splits of classes.

The SCV form of cross-validation performs a strictly theoretical stratifica-
tion which results in folds that are slightly uneven but it maintains pure statistical
stratification of classes. The BSCV performs a more computational stratification
when splitting the data. BSCV adheres to the statistical stratification on splits for
an even multiple of k. It will then gather any remainder from uneven class splits
and spread them evenly across all folds at the end of the process. This results in
folds of equal or almost equal sizes that are also stratified. These subtleties will
become apparent from the example in the Stratified sampling subsection (Table 2).

SCV and BSCV Pseudocode

For j = 1 to # of classes

• For the jth class label shuffle the observations into random order for that
class

• Split the randomized samples for the jth class label into K fold partitions

• If SCV
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◦ When the observations for the jth class do not split evenly across the
folds, the extra observations for the jth class are distributed one at a
time from the 1st fold, in sequence until they are exhausted

Else BSCV

◦ When the observations for the jth class do not split evenly across the
folds, the extra observations for the jth class are stored in a matrix

End If

• Concatenate this jth class’s K fold splits together with the previous jth − 1
class’s K fold class splits such that they accumulate together

End j Loop

If BSCV

• Any remaining observations from the classes that were stored in the matrix
are now Shuffled randomly and then distributed one at a time from the 1st

fold, in sequence until they are exhausted

End If

Given a specific parameter or set of parameters execute

• K-fold Cross-Validation Pseudocode

Stratified sampling. The importance of stratifying the sampling when
partitioning data for cross-validation and replication was discussed previously in
other sections. Below is an explanation as to why stratifying the samples is vital
to obtaining optimal prediction when classifying data.

Following is a brief explanation of the various cross-validation techniques
which will illuminate the need for stratification especially when dealing with very
sparse data with uneven class sizes. For this example the Brain Cancer Data is
used.

Table 2. Brain label partition splits

Label 1 2 3 4 5

Class Size 10 10 10 4 8

Partition Splits Partition 1 Partition 2 Partition 3 Partition 4 Partition 5

SS Results (k=5) 31114235 45552224 23153512 34213132 5153312321

SS Results (k=4) 31212212523 12212341115 1314255534 5323533534

SCV Results (k=4) 111222333455 111222333455 112233455 112233455

BSCV Results (k=4) 22515411323 41315323152 5423321513 5351212432
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Table 2 aids in illustrating the importance of stratification and careful
selection of the k-fold value when dealing with the kind of sparse data that is
encountered in this research. Given that the brain class label 4 only contains
four observations, if it is split into folds of five or more then not all of the folds
will accurately represent the label 4. As seen in the table when executing SS with
k = 5 partitions, partition 3 and 5 are not representing label 4 at all and partition
2 is inaccurately representing its true proportion. From this we can conclude that
for this dataset k-fold must be set to 4.

Continuing in this table we discover the importance of stratifying the
sample in conjunction with choosing the proper amount of k-folds. In observing
the three k-fold extensions of cross-validation represented in the last three rows it
can be seen clearly that only the stratified sampling methods (SCV and BSCV)
correctly maintain the class proportions and represent label 4 in each fold or
partition.

In the early works of Friedman [11] when he discusses estimation of the
prior probabilities he emphasizes the importance of maintaining the correct class
proportions so that the π matrix is accurately preserved. Upholding the integrity
of the π matrix is a key component to accurate classification.

Comparison of cross-validation performance in this research. Al-
though LOOCV is an unbiased estimator that is extensively used in data mining,
when it comes to HDLSS space it often performs sub-optimally. According to
Breiman [7], [5], leave-one-out cross-validation is less accurate than leave-many-
out. In this research the LOOCV extension had difficulty finding the minimum
error and often returned 30, 40, or even over 100 optimal minimum parameters.
The 3 k-fold extensions also struggled to find the optimal minimum but usually
returned far fewer possible optima than LOOCV. The normal amount returned
for the k-fold cross-validates was from 3 to 10 depending on the technique inves-
tigated.

Due to the complexity inherent in dealing with this type of massive data,
it was discovered that replicating the k-fold extensions 3 to 5 times provided a way
of controlling some of the instability and high variability. The replication of the
k-fold cross-validations also provided an opportunity to recognize any repeating
minimum tuning parameters, thus identifying them as more plausible candidates
for the true minimum.

Once a reasonable group of possible optimum tuning parameters or pa-
rameter sets was determined from all cross-validation extensions, they were put
through a replication loop of R = 500 to determine the true average test error
(TE) across replications. These results would then substantiate the final choice
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of the optimal tuning parameter or parameter set. The SCV and BSCV exten-
sions were the most successful at consistently identifying the minimum parame-
ters across classification techniques. Neither the BSCV nor SCV outperformed
the other in every scenario. It is not surprising that these two extensions were
more successful in determining the optimal tuning parameters as they both per-
form stratified sampling which is crucial to maintaining the class probabilities and
thus performing more accurate classification prediction.

It should also be noted that the LOOCV method is much more compu-
tationally intensive and time consuming than the k-fold split techniques. The
LOOCV option took anywhere from 3 times up to 8 or 9 times as long to run
as 3 replicates of the k-fold splits depending on the classification technique and
dataset combination being evaluated. All performance testing was completed on
a Unix server with dedicated core and adequate memory.

Hyper-parameter optimization summary. To reiterate, prior to
choosing the optimal hyper-parameters and regularization parameters for a given
classification technique the data should be scaled, unless done within the tech-
nique, and any transformations or other preprocessing steps should be completed.
For the actual cross-validation process, due to the high multiplicity inherent in
this data, it is recommended to use replicates of either BSCV or SCV in order to
consistently obtain the optimal tuning parameters across techniques. If time and
resources allow, perform both BSCV and SCV on the given data.

The need for such careful optimization of the tuning parameters stems
from the fact that in this type of high-dimensional space, the objective function
of the model space is bound to be complex with potentially many local minima
and saddle points.

4. Computational experiments. The following tables contain the
culmination of our intensive cross-validation analysis to obtain the optimal tuning
parameters for each predictive technique across datasets.

Recalling that RDA is a regularization technique with an algorithm to
shrink the centers, it is interesting to note that δ, the shrinkage parameter, is
zero for three of the datasets: Leukemia, Lung, and Breast(NS). All three of
these datasets also use an α regularization parameter of only 0.05. Essentially,
for these three datasets, the parameter responsible for shrinking the centers is
not used. When looking at the actual prediction error for these datasets in Table
6, it can be seen that the Leukemia and Lung datasets have an average TE
of less than 3% and the breast dataset’s average TE is less than 8% whether
standardized or not. These were the lowest prediction errors for RDA and two
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Table 3. RDA Optimal Hyper-Parameters

Regularized Discriminant Analysis (RDA)

Class α δ

Prostate Cancer Binomial 0.30 0.20

Colon Cancer (NS) Binomial 0.10 0.15

Colon Cancer (S) 0.05 0.20

Leukemia Cancer Binomial 0.05 0

West Breast Cancer Binomial 0.00 0.55

Lung Cancer Multiclass 0.05 0

Breast Cancer (NS) Multiclass 0.05 0

Breast Cancer (S) 0 0.10

Brain Cancer (NS) Multiclass 0.15 0.10

Brain Cancer (S) 0.05 0.55

of the datasets were actually predicted more accurately by another technique. It
could be theorized that when a dataset is relatively easy to classify or separate,
then the corresponding penalization applied on the parameter space by RDA
regularization and shrinkage algorithms may turn out to be unnecessary.

Another noteworthy observation is the effect that standardizing the data
has on the α regularization parameter. In all three datasets that initially resisted
standardization it can be observed that the NS version requires a stronger, or
larger, regularization parameter than the S version. This would be expected, but
it underscores the importance of scaling the data when performing classification.

Following in Table 4 and Table 5 are the optimal SVM tuning parameters
for e1071 and kernlab respectively.

Table 4. SVM (e1071) Optimal Hyper-Parameters and Regularization Parameters

Support Vector Machine (e1071)

Class Classification Kernel γ Cost/ν

Prostate Cancer Binomial nu-classification radial γ = 0.002 ν = 0.5

Colon Cancer Binomial C-classification sigmoid γ = 0.0005 cost = 1

Leukemia Cancer Binomial nu-classification linear ν = 0.5

West Breast Cancer Binomial C-classification sigmoid γ = 0.0001402721 cost = 2

Lung Cancer Multiclass nu-classification sigmoid γ = 0.001 ν = 0.125

Breast Cancer Multiclass nu-classification linear ν = 0.0625

Brain Cancer Multiclass C-classification sigmoid γ = 0.0001786671 cost = 2
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Table 5. SVM (kernlab) Optimal Regularization Parameters

Support Vector Machine (kernlab)

Class Classification Kernel

Regularization

Parameter

(C/ν)

Prostate Cancer Binomial C-svc vanilladot C = 0.0008302176

Colon Cancer Binomial C-svc vanilladot C = 0.0006579332

Leukemia Cancer Binomial C-svc vanilladot C = 0.0001629751

West Breast Cancer Binomial C-svc vanilladot C = 0.0002595024

Lung Cancer Multiclass kbb-svc anovadot —

Breast Cancer Multiclass spoc-svc vanilladot —

Brain Cancer Multiclass spoc-svc vanilladot —

The author of package e1071 emphasizes the importance of choosing the
correct kernel parameters for the data and recommends an extensive grid search
on a range of parameter values before the results are to be trusted [20]. Stated
another way, simply executing this code off-the-shelf and accepting all defaults
would not provide optimal results.

It can be seen in Table 4 that there is no single best classification type or
kernel for all datasets. The cost and ν values also vary between datasets. The
γ value is the only uniformly consistent tuning parameter with all datasets using
the default value of 1/p, where p is the dimensionality or number of features in
the dataset.

Of the packages evaluated in this research, e1071 was the simplest to tune
because the stability of the results coupled with lower levels of multiplicity made
obtaining the optimal hyper-parameter and tuning parameters a far easier and
smoother process across all datasets.

For the kernlab package the tuning results are very consistent and stan-
dard across the datasets. The C classification type that uses regularization to
control the dimensionality is chosen for all binary datasets. The simple linear
kernel (vanilladot) is chosen almost exclusively for all datasets in this study. In-
terestingly, the linear kernel does not use the gamma parameter. Recall that there
was no direct method to tune gamma with this package.

Evaluating the predictive results between just the two SVM kernel meth-
ods studied in this research, it can be observed that the e1071 had the lowest
test error on 4 of 7 datasets. The remaining 3 datasets were better classified by
kernlab then e1071 (Table 6).
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In summary, no classification technique chose the default settings for all of
the tuning parameter values on any dataset and none of them executed optimally
off-the-shelf without tuning.

Following in Table 6 is the performance comparison of the classification
techniques evaluated in this research. The final evaluation is based on the mean
or average test error (TE) across replications. Throughout this section we use R
= 1000 replicates of the data partitioned into a 2/3 training dataset and a 1/3 test
dataset. Performing replication is believed to help stabilize unstable procedures
because the averaged predictors are a more stable sequence with lower predictive
loss and less biased predictive estimates [5]. In the interest of reproducibility and
unbiased comparison between techniques, the same seed (1398398) is used for all
random number generators across classification techniques during comparisons.

The algorithm below summarizes the comparison procedure used in this
research.

Test Error (TE) Replication Loop Pseudocode

R = 1000
For r = 1 to R

• Using stratification, randomly split the data into a 2/3 and 1/3 partition

• Build the model with the chosen technique and optimal tuning parameters
using the 2/3 partition as training data

• Test the model created by the training data with the held out 1/3 partition

• Store the rth error in a matrix

End Loop

Error(TE) =
1

R

R∑

r=1

errorr

Following are the final results of our comparative analysis of predictive
learning classification algorithms on HDLSS microarray cancer data.

From the results, it is evident that there is no one universally optimal
classification algorithm or technique. However, regularization is proving to be a
strong contender by producing the lowest classification error in 5 of the 7 datasets
investigated in this research. Following is a graphical representation of the test
error results ordered by increasing dimensionality.

Note that only the optimal performer between non-standardized and stan-
dardized data for the three RDA datasets is carried forward in the remainder of
our research results.
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Table 6. Average Test Error for 1000 Replicates with seed (1398398)

Comparison of classification techniques

Class n p κ Dimension LDA RDA
SVM

(e1071)

KSVM

(kernlab)

Prostate Cancer Binomial 79 500 0.15800 10−1 29.36% 28.39% 30.20% 29.90%

Colon Cancer (NS/S) Binomial 62 2000 0.03100 10−2 13.96% 11.05%/13.14% 11.77% 11.85%

Leukemia Cancer Binomial 72 3571 0.02016 10−2 3.43% 1.99% 1.47% 1.45%

West Breast Cancer Binomial 49 7129 0.00687 10−3 38.90% 19.99% 35.99% 37.31%

Lung Cancer Multiclass 197 1000 0.19700 10−1 3.93% 2.88% 3.11% 3.62%

Breast Cancer (NS/S) Multiclass 97 1213 0.07997 10−2 9.22% 7.15%/7.55% 6.43% 5.96%

Brain Cancer (NS/S) Multiclass 42 5597 0.00750 10−3 31.18% 16.74%/16.71% 16.73% 17.07%



162 Jo Bill, Ernest Fokoué

Fig. 8. Raw TE outcome for binary datasets

Fig. 9. Raw TE outcome for multiclass datasets

From the average test error graphs it is easier to observe how close these
techniques are in raw predictive ability and that RDA was the strongest classifier
overall by a narrow margin.

Table 7 details the percent reduction in error from the baseline LDA tech-
nique. Note that the two kernel techniques actually had an increase in percent
error from the baseline for Prostate Cancer.

From the graphs of percent reduction, the differences in techniques from
the LDA baseline give a better representation of the differences in classification
techniques.

Following is a comparison of average test error from our research compared
to two other publications using some of the same datasets. Our test errors were
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Table 7. Percent reduction in Average Test Error from LDA baseline

Percent Reduction in Average Test Error

LDA-RDA LDA-SVM LDA-kSVM Dimension κ

Prostate Cancer 3.30% −2.25% −1.84% 10−1 0.15800

Colon Cancer 20.85% 15.69% 15.11% 10−2 0.03100

Leukemia Cancer 41.98% 57.14% 57.73% 10−2 0.02016

West Breast Cancer 48.61% 7.48% 4.09% 10−3 0.00687

Lung Cancer 26.72% 20.87% 7.89% 10−1 0.19700

Breast Cancer 22.45% 30.26% 35.36% 10−2 0.07997

Brain Cancer 46.41% 46.34% 45.25% 10−3 0.00750

Fig. 10. Multiclass percent reduction in average test error

Fig. 11. Binary percent reduction in average test error
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Table 8. Comparison of SVM errors across studies.

Support Vector Machine (SVM) Results1

SVM
Bill/Fokoue

(e1071)

Bill/Fokoue

(kernlab)

Guo/Hastie/

Tibshirani
Dettling

Colon 11.71% 11.85% 6/22 ∼ 27.27% 16.67%

Leukemia 1.47% 1.45% 0/23 ∼ 0.00%∗∗ 3.50%

Brain 16.73% 17.07% 3/14 ∼ 21.43% 28.14%

** Note that the Leukemia data in the Guo et al. study used a
training to test ratio of 1:1.

Table 9. Comparison of RDA errors across studies

Regularized Discriminant Analysis (RDA) Results1

RDA Bill/Fokoue Guo/Hastie/Tibshirani (SCRDA)

Colon 11.05/13.14 3/22 ∼ 13.64%

Leukemia 1.99% 2/23 ∼ 8.70%

Brain 16.717% 5/14 ∼ 35.71%

generated on all of the features with a 2/3 training, 1/3 test split based on 1000
replicates. The test errors from Guo [13] were divided into training and test
subsets with a ratio of 2:1 with an unknown number of replicates. Dettling’s [10]
test errors are using a 2/3, 1/3 split with 50 replicates.

The result of the average test error comparison above strongly supports the
importance of properly tuning the regularization parameters and hyper-parameters
to facilitate better classification performance. A striking finding of this research
is the fact that by carefully optimizing these tuning parameters we consistently
outperformed the previous research cited in this paper.

5. Conclusion and discussion. Due to the extreme multiplicity
inherent in HDLSS data, a more rigorous and methodical approach was needed
when tuning algorithms for classification. Given that any one cross-validation run
could bring back one to one-hundred or more parameters as optimally minimum,
we discovered that replicating the cross-validation process multiple times was
beneficial in enabling us to identify the one optimal parameter or parameter set.

1It was our desire to perform a thorough comparison of our results against the results of other
authors’ research for all seven datasets evaluated in this paper. Unfortunately, the datasets listed
in these tables were the only ones we were able to locate research papers on that used the same
techniques covered in this paper and reported the average test error or average test accuracy.
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Additionally, when predicting with classification algorithms, performing
stratified sampling for cross-validation as well as the average test error calcu-
lations proved crucial to maintaining class probabilities for optimal algorithm
performance.

The regularization technique outperformed both variations of the kernel-
ization algorithms on 5 of the 7 HDLSS microarray cancer datasets. Still, no
single universally superior learning method was discovered during this research.

Currently we are continuing our exploration by conducting preliminary
investigations into ensemble methods, as well as a fully Bayesian technique, in
our quest to find the lowest test errors for classification of HDLSS microarray
cancer data.
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