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Abstract. Data analysis after parallel sequencing is a process that uses

combinations of software tools that is often subject to experimentation

and on-the-fly substitution, with the necessary file conversion. This article

presents a developing system for creating and managing workflows aiding

the tasks one encounters after parallel sequences, particularly in the area of

metagenomics.

The semantics, description language and software implementation aim

to allow the creation of flexible, configurable workflows that are suitable for

sharing and are easy to manipulate through software or by hand. The execu-

tion system design provides user-defined operations and interchangeability

between an operation and a workflow. This allows significant extensibility,

which can be further complemented with distributed computing and remote

management interfaces.
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1. Parallel sequencing and metagenomics. Parallel sequencing
is a technological process to digitise genetic data from biological organisms, pro-
ducing computer data in the form of sequences of a four-letter alphabet, with
each letter corresponding to a different nucleotide base. It produces considerable
amounts of genetic data in the form of thousands to millions of short reads ranging
from tens to hundreds of bases.

These short reads represent small fragments of the nucleotide sequences
found in a biological sample. These reads can be further combined into much
larger datasets and sequences during the data processing. This data is subject to
various intensive computational operations, including preprocessing and numeric
experiments, that often depend on the specific field of research.

De novo genome sequencing takes reads from specific biological organ-
isms that have not been fully sequenced yet and attempts to assemble them into
complete organism genomic sequence. It involves working with terabytes of data
at once, in a process that involves data processing operations such as clustering
the data, aligning the clusters, combining shorter reads into larger contigs from
each aligned cluster and attempting to match those contigs into a single genomics
sequence [10]. This process has been mostly streamlined in the various software
solutions for de novo assembly that implement every required step to assemble
the genomes.

In contrast, metagenomics is a newer field that deals with the analysis
of short genetic fragments coming from samples of micro-organism communities
found in environments such as soil, water basins and various macro-organisms.
The full genomic sequencing of these organisms is technically infeasible due to
the huge number of organisms and the computational complexity involved [12],
so the researchers focus on the biodiversity and the evolutionary relationships
between the species, studying them using less precise methods.

Metagenomics still lacks comprehensive procedures and software tools,
and it often deals with numerical experiments that are performed without the
availability of common well-defined pipelines. The research methods need to be
adapted to the emerging sequencing technologies, which focus on full genome
sequencing. Thus they require the provisional combination of multiple software
programs with experiment-specific fine-tuning. Such combinations are sometimes
also necessitated by the computational challenges that metagenomics datasets
pose. [4, 12, 13]

The topic of this paper is the development of a solution and a software
package for describing metagenomics as well as generic genomics workflows. The
presented system provides all the necessary tools to glue various software packages
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together, tune them and provide drop-in replacements as needed. It is utilised
within a larger work of designing denoising methods and implementing new quality
validation techniques in metagenomics [8]. Work is also done on applying it for
analysis of complex de novo sequenced genomes such as hexaploid wheat (Triticum
aestivum).

2. Describing operations and data conversions in bioinfor-

matics workflows. A key element to the presented software system is an oper-
ation description system that has some similarity to function prototyping seen in
some programming languages and interfaces seen in other, but is focused on pro-
viding aid to classify compatible operations and suggest any necessary conversions
between those operations that could be inferred at run time.

The need for operation and data type descriptions arises during the work-
flow design. Workflow construction tools would need to be aware of the available
operations, together with their input and output datatypes to asses their compat-
ibility. At the same time, workflow static validation tools would need to be able
to verify this compatibility on an already completed workflow. Furthermore, a
workflow execution framework would benefit from a datatype conversion system
to deal with non-consequential incompatibilities.

2.1. Data type descriptions. The common data that is subject to anal-
ysis in genomics and related studies are DNA sequences and fragments, as well as
aminoacid sequences and fragments. Digitally they are represented as sets of tex-
tual strings of a four-letter or a 20-letter alphabet in various formats with different
forms of additional metadata. The analysis also has to work with sequences of
quality scores, sequence clusters and contigs (larger fragments) in various formats,
phylogenetic trees, gene and phenotype ontologies, gene annotations and many
others. The main area of research in our larger metagenomics work deals mainly
with DNA sequences, clusters and phylogenetic trees (evolution-based hierarchical
clustering).

To describe the data types accepted and produced by the workflow op-
erations, an extension of the Python class system is used [3]. Python provides
significant extensibility features to classes, including the dynamic creation as well
as defining class parent-child relationships using arbitrary expressions that can
act as a ready-to-use meta language for defining hierarchies using abstract base
classes (ABC) [6, 14].

In Python each standard class A can have multiple direct ancestors and
descendants, and a class B is considered a subclass of A if it is A, or a subclass
of any class that inherits A as a base class (ancestor).
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For the purposes of creating and validating a bioinformatics workflow,
and for the purposes of handling implicit data conversions, we need a collection of
ABC classes to describe our datatypes, and a set of extensions thereof. Below we
provide a formal description of a portion of the resulting class system, focusing
on the extensions introduced as part of our work.

If we are only interested in the class hierarchy, the definition of a class A

can be described as following.

(1) A : A ⊂ B1, A ⊂ B2, . . . , A ⊂ Bn

The set of class objects {Ai} are subject to two relations—subclass relation,
denoted here with Ai ⊂ Aj, and membership relation, denoted here with x ∈ Ai.
Excluding their transitivity, these relations are usually defined explicitly—every
class is defined with its superclasses, and every class member is defined with its
class. Using the flexibility of the Python ABC, we will introduce extensions that
define new implicit rules between special categories of classes.

Definition 1 (Class itemization). We introduce A[B] describing the sub-

class of a container class A whose elements contain only subelements belonging to

class B. Element x belongs to A[B] if and only if it belongs to A, and its subele-

ments belong to B. A′[B′] is a subclass of A[B] if and only if A′ is a subclass

of A and B′ is a subclass of B. Thus we define the class A[B] as a class whose

membership and subclass relations fulfil the following.

x ∈ A[B] ⇔ x ∈ A ∧ ∀i(xi ∈ B)(2)

A′[B′] ⊂ A[B] ⇔ A′ ⊂ A ∧B′ ⊂ B(3)

The class A[B] is abstract, it has no actual instances or functionality
beyond the thus defined relations. A[B1, B2, B3] is defined in a similar manner as
the container classes A containing triplets of the classes B1, B2, B3.

x ∈ A[B1, B2, . . . , Bn] ⇔ x ∈ A ∧ ∀i∀j(xi,j ∈ Bj)(4)

A′[B′

1, B
′

2, . . . , B
′

n] ⊂ A[B1, B2, . . . , Bn] ⇔(5)

⇔ A′ ⊂ A ∧B′

1 ⊂ B1 ∧ . . . ∧B′

n ⊂ Bn

The itemization is defined as an associative operation between our custom
classes so that A[B[C]] is equivalent to A[B][C]. This follows from the intuitive
expectation that an A container of B containers of C elements is itself an A[B]
container of C elements.
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Definition 2 (Class set-like operations). We introduce A ∪ B, A ∩ B,

¬A describing union, intersection and complement of classes respectively. X is

a subclass of A ∪ B if and only if X is a subclass of either A or B, a subclass

of A ∩ B if and only if it is a subclass of both A and B, and a subclass of ¬A
if and only if it is not a subclass of A. The membership relationship is defined

analogously to the subclass relationship.

From a programming perspective, for the type system to be complete, we
need to explicitly define some operations between set operation classes, examples
of which are listed below.

• ¬A is a subclass of ¬B if B is not a subclass of ¬A.

• A ∪B is a subclass of C ∪D if both A and B are subclasses of C ∪D.

• A ∩B is a subclass of C ∩D if either A or B is a subclass of C ∩D.

Definition 3 (Constant classes). Constant classes are classes that have

only one constant as an instance, e.g. C = {4}.

Classes defined through itemization, set operation or constants are consid-
ered composite classes. In the software implementation, for all the non-composite
abstract classes defined in our typing systems, we can register an arbitrary num-
ber of regular Python classes, or our own abstract classes as explicitly defined
subclasses of the said abstract class. The system also supports registering Zope
interfaces that are sometimes used in Python programs to denote class features
instead of subclassing.

For example, we can define the abstract class Sequence and register the
Python classes list, tuple as sequences, which signals our typing system that every
list or tuple is a Sequence in the same manner as Python’s ABC.

The most commonly used datatype our software deals with is
BioSequences datatype which refers to a collection of nucleotide or aminoacid
sequences stored in a file on the disk in an arbitrary sequence format, in a
network resource or in memory. A naturally compatible datatype would be
list[BioSequence] which describes a list of BioSequence objects, and we would
like to be able to implicitly convert between the two.

2.2. Type conversions. Let’s define the BioSequencesLike abstract
data class as the composite class BioSequences ∪ Sequence[BioSequence]. We
would like to define the conversation BioSequencesLike → BioSequences by
registering a function that handles this conversion. Upon encountering an opera-
tion that requires a BioSequences object or a parent of it that has been instead
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provided a BioSequencesLike or a child of it, the defined convertor function for
BioSequencesLike → BioSequences would be implicitly included in the work-
flow execution.

The convertors are registered by their target class. Let’s assume a method
accepting class A as input is instead provided with data of class B that is not
a subclass of A. The type resolver looks for all convertors registered for the A

target class or one of its subclasses. Then it selects those with a source that is a
superclass of B. They are sorted by the generation distance between the convertor
source class and A, and the convertor that is the most specific (closest to A) is
chosen.

2.3. Service, method and function prototypes.

2.3.1. Function prototypes. Using the available classes in our typing
systems, we would like to define the signatures of the functions that would execute
bioinformatics operations. A potential prototype signature would look like:

(6) alignment-multiple : align(sequences : BioSequencesLike) →

→ BioSequences

2.3.2. Method and serivce prototypes. Instance methods in Python
are simply functions that are attributes of a class instance. We define service
prototype as a class that contains function prototypes as attributes instead of
regular methods. Each service prototype is attached to a named service, for
example a service prototype with the align method defined above can be registered
for the multiple-alignment service. This service can have multiple providers
which are required to accept calls to align with the same signature.

In other words, a collection (or a class) of method prototypes is called
a service, and any class that accepts calls with the signatures defined by these
prototypes is called a provider. In this they are very similar to the concept of
interface and class in languages such as Java. Unlike interfaces, these service
descriptions are not used for any explicit type checking or software validation,
but for providing a user interface to create links between the different services, as
well as to discover service providers by their type.

When a class is registered as a provider for the multiple-alignment ser-
vice, its methods are not checked if they match the prototypes (which with the
Python’s ability to dynamically create custom methods is counter-productive),
and the service is not flagged as an interface the class implements. On the con-
trary, the provider is inserted into the service and will be used as a default provider
if it has the highest priority among other providers, and the service is exposed to
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the user as the highest-level interface to the provider’s methods, which is allowed
to remain unexposed.

It should be noted that the majority of the used hierarchical operations,
including typing, type conversions, service discovery and provider discovery, do
not depend on the linear ordering of the classes in the hierarchy. For anything
that does, the C3 linearisation [1] of the hierarchy will be used, as it is used for
the Python method resolution order. Presently, this only happens for the imple-
mentation of the providers and data types, and for assigning service priorities.
If any extensions to the workflow system itself happen to depend on this, they
will likewise be using an order based on the same algorithm, however the class
extensions defined here are not prone to such ordering, so such extensions to the
typing system would need significant further work.

3. Workflow. The core part of this paper and the respective software
package is the workflow description. The workflow is described as a collection of
dataset definitions. The dataset definitions can refer to an explicit data input
that is stored on the disk, or to an implicit dataset that is a result of an operation
performed over other datasets. Each operation can include complex functionality,
comprising mapping an operation over a sequence of datasets or reducing an
operation of two datasets over a sequence of datasets.

Like the operation descriptions, the workflows are described in the YAML
[2] object notation language. And like operations, any loaded workflow has pa-
rameters and methods corresponding to the datasets stored inside with their own
prototypes. They provide a service and can be called from other workflows.

The following types of datasets are recognized.

3.1. Target datasets.

3.3.1. Input dataset. A input dataset (or input value for simple data-
types) is available before the execution of the workflow, either in a file, internet
URL or the execution of another workflow, or it is specified by the user. It is a
parameter of the workflow.

The following YAML code defines a source input named source and has a
type of BioSequences. Since it is not optional, it doesn’t need a default value to
be specified, and key doesn’t need to be specified because it matches the dataset
name.

source: {category: input, optional: false, type: biosequences,

key: source}
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3.1.2. Implicit operation dataset. A implicit operation dataset is a
dataset that does not exists when the execution of the workflow starts (except for
caching), but is generated from other datasets within it (implicit or input) using
a single method from a given service.

It specifies the method that needs to be called, and its arguments as
either references to other datasets using the special YAML type !ref, or by using
explicit values supported by YAML. The following examples will use alignment−
multiple : align from (6) to align the dataset input and thus produce the dataset
aligned, and will also provide a clustered dependent of aligned that is passed
through clustering.

aligned:

category: operation

method: alignment-multiple:align

arguments: {sequences: !ref source, quality: 0}

clustered:

category: operation

method: clustering:cluster

arguments: {sequences: !ref aligned,

threshold: !optional-input threshold}

The aligned datasets has a type BioSequences, while the clustered

one has a type Sequence[BioSequences], because it contains multiple clusters of
sequences. Note that the !ref and other input expansions can be applied to the
method as well, allowing for the chosen method or class to be parametrised, but
this can break certain forms of static checking in strict mode, and better tools for
achieving the same goal are under presently consideration.

The input and optional-input extensions can be used to define input
datasets and data values in-place. Usually, only the key name is specified, and the
datatype is inferred from the executed operation, but the full syntax from 3.3.1
can also be used. The datasets and data-values defined in-place are not available
to other operations or to the workflow users as output.

Optional parameters of the underlying operations are automatically ex-
posed as in-place inputs under a key denoting the implicit operation dataset and
its parameter. For example, the clustered.threshold key can be used in the
absense of an explicit in-place input.

3.1.3. Implicit mapped dataset. An implicit mapped dataset is a
dataset that is produced after multiple executions of a method of a given ser-
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vice. The source dataset needs to be a Sequence, ItemStore, or ItemGenerator,
and the resulting dataset can be converted to any of the three depending on the
context. The result is a series containing the results from the application of the
methods, represented inside an ItemGenerator.

Mapped datasets can be constructed using either the map-operation

dataset category, or using the iterate extension to the regular operation dataset
category. The following shows examples how both modes can be utilised to align
the clusters from the previous example.

realigned:

category: map-operation

iterate-over: !ref clustered

method: alignment-multiple:align

arguments: {sequences: !current}

realigned:

category: operation

method: alignment-multiple:align

arguments: {sequences: !iterate:main clustered}

The iterations can be named, and if you include multiple names, multiple
iterations will be executed, if the same name is used it simply refers to the same
iterate (but it needs to come from the same dataset).

3.1.4. Implicit reduced dataset. An implicit reduced dataset, like the
mapped dataset, is generated from the elements in another set after the applica-
tion of a given operation. However, the operation is binary, and it is applied to
the result so far, and the next element in it.

Here is an example that uses group alignment to merge all datasets from
the aligned clusters in the previous example to construct one big aligned dataset.

merged:

category: reduce-operation

iterate-over: !ref realigned

method: alignment-group:align

arguments: {sequences1: !left, sequences2: !right}

merged:

category: operation

method: alignment-group:align
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arguments: {sequences1: !reduce-left:main clustered,

sequences2: !reduce-right:main clustered}

Like mapped dataset, this can also use the reduce-operation category
as well as the implicit reduce-left and reduce-right extensions for the regular
operation.

[threshold: �oat]

clustering

cluster

alignment-multiple

align

alignment-group

align

source: BioSequences

aligned clustered realigned merged

quickalign

Fig. 1. Example “quickalign” workflow

If all the examples from above are merged into a workflow named
quickalign as shown on Figure 1, the merged dataset can be accessed as a service
method and has the following prototype.

(7) quickalign : merged(input : BioSequencesLike) → BioSequences

3.2. Workflow dependency resolution. Upon requesting a dataset, a
dependency graph is constructed. The neighbours of our datasets are the datasets
required to construct it with the defined operatons. The directed graph is searched
for loops. As loops define cyclic dependencies, they would make the workflow
unresolvable and the program will produce an error. If the workflow dataset
is resolvable, all operations along the descendants of the requested dataset are
executed. At every point where there is a type mismatch, one of the following
things happens.

1. If a convertor is available, it is implicitly inserted into the dependency graph,
unless implicit conversation has been disabled.

2. If the workflow is running in non-strict mode, a warning is produced and the
operation is directly provided with the incompatible input, allowing it to
produce its own error. All parts of the workflow that wouldn’t generate an
error are executed, and should caching of intermediate results be enabled,
those intermediate results will be already ready for future executions.
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3. If the workflow is running in strict mode, an error is generated before any
portion of the workflow has been executed.

Note 1. Format conversion between different file formats is not handled
by the convertors described here, as the data storage classes provide the neces-
sary tools to request the data in the needed format. The convertors are used in
cases where the data is not explicitly available, for example if it is provided by a
database reference, or if a file providing several types of data is available but does
not have an explicit data format. It is also used for any conversions required for
the complex workflow operations such as map and reduce that need iterate over
sequences of data.

4. Extensibility and application.

4.1. Definition of external services. The interchangeability between
workflows and service providers is one way to define custom composite services
that are a combination of already available service. A much higher level of exten-
sibility will be achieved if the definition of arbitrary services is also supported.

The present software implementation of the workflow execution system
provides factories for making services and providers, which are at present only
for specific categories of services, which limits flexibility. An example of a YAML
definition using a specific factory is shown below. It should be noted that this is
not integrated into the workflow description language itself so far.

alignment-multiple-muscle:

factory_name: alignment-multiple-cmdline

commandline: muscle -in {input} -out {output} -quiet {options}

options: {diagonals: !switch -diags,

max_hours: !option:int -maxhours {0:d}}

This template factory system will be retained for its convenience, but it
will be extended to allow arbitrary command-line tools to be used in the definition
of arbitrary services. This will happen either through the introduction of a general
purpose factory, or by providing means to define new factories, but this is subject
to further research.

4.2. The application of the workflow system. The presented system
allows users to define flexible workflows for processing genomics data as well as
other data in bioinformatics. They are configurable through parameters, which al-
lows fine-tuning for specific applications. They can be easily shared between users,
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and the interchangeability between a workflows and operation services makes it
easy to combine them arbitrarily, contributing to their flexibility. The ability to
change service providers through parameters also contributes to this.

The use of a widely supported object notation like YAML facilitates the
development of software to handle these workflows. It is easy to implement pro-
grams that can read, write or edit them, partially or in full. It can be used
to implement a graphical tool for constructing and modifying them, as well as
alternative execution frameworks that can run them.

The ability to add arbitrary processing operations will significantly in-
crease this extensibility and flexibility.

5. Software details. The software developed to implement the work-
flow system presented in this article is written for Python 2.7, using the Twisted
framework [15] to provide for the asynchronous execution of the networking tools,
as well as for future support of distributed computing, remote management of the
execution system, and as dataset and potential workflow exchange.

It consists of a modular library and a couple of execution commandline
scripts. The library has separate modules with the service and provider registry,
including the functions to load services and providers from the YAML operation
descriptions. It provides a basic workflow executor module that builds the de-
pendency tree and processes all the datasets along it. It also includes a YAML
workflow loader that registers the workflows as services and the executor as their
provider. Caching and distributed computing, which would be part of the provider
module, are pending development. The two scripts allow the execution of a work-
flow over a single dataset, or a directory of multiple datasets respectively.

It will be released as free software under the X11 license1 once all the
components presented in this article are all in place and allow the formats and
APIs are reasonably finalised.

The staging software implementation can perform metagenomics data
analysis operations. It supports multiple alignment through MAFFT [7], MUS-
CLE [5], and sequence clustering through CD-HIT [11]. Arbitrary alignment and
clustering tools are also supported. It includes an error detection and correction
algorithm [8, 9] that is developed together with the workflow system.

6. Conclusion. An approach for defining manageable bioinformatics
workflows has been suggested. A software implementation of this approach is

1http://www.xfree86.org/3.3.6/COPYRIGHT2.html#3
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being developed, and its staging version can perform multiple sequence alignment,
clustering and error detection on metagenomics data. The format aims to be
flexible and extensible, as well as to provide manageability by allowing very narrow
fine-tuning of every step in the workflow. The workflow execution system has been
designed with distributed computing, and well as network and web support.

The presented systems gives a tool that aids bioinformaticians, particu-
larly those that perform analysis on metagenomics data. It provides integration
between genomics and bioinformatics processing software packages, and allows
them to be included in complex workflows. The workflow language is susceptible
to visualisation, which allows users to illustrate their workflows in a way accessible
to researchers who are not informaticians. The descriptions can be shared and
can reference one another, allowing researchers to share and combine solutions in
different Bioinformatics problems.
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