Serdica J. Computing 7 (2013), No 1, 73-80

Serdica Journal of Computing

Bulgarian Academy of Sciences Institute of Mathematics and Informatics

CONSTRUCTION OF OPTIMAL LINEAR CODES BY GEOMETRIC PUNCTURING*

Tatsuya Maruta

Dedicated to the memory of S.M. Dodunekov (1945–2012)

ABSTRACT. Geometric puncturing is a method to construct new codes from a given $[n, k, d]_q$ code by deleting the coordinates corresponding to some geometric object in $\operatorname{PG}(k-1,q)$. We construct $[g_q(4,d),4,d]_q$ and $[g_q(4,d)+1,4,d]_q$ codes for some d by geometric puncturing, where $g_q(k,d) =$ $\sum_{i=0}^{k-1} \left\lceil d/q^i \right\rceil$. These determine the exact value of $n_q(4,d)$ for $q^3 - 2q^2 - q + 1 \leq d \leq q^3 - 2q^2 - (q+1)/2$ for odd prime power $q \geq 7$; $q^3 - 2q^2 - q + 1 \leq d \leq q^3 - 2q^2 - q/2$ for $q = 2^h$, $h \geq 3$ and for $2q^3 - 5q^2 + 1 \leq d \leq 2q^3 - 5q^2 + 3q$ for prime power $q \geq 7$, where $n_q(k,d)$ is the minimum length n for which an $[n, k, d]_q$ code exists.

1. Introduction. We denote by \mathbb{F}_q^n the vector space of *n*-tuples over \mathbb{F}_q , the field of *q* elements. A *q*-ary linear code *C* of length *n* and dimension *k* (an $[n,k]_q$ code) is a *k*-dimensional subspace of \mathbb{F}_q^n . An $[n,k,d]_q$ code *C* is an $[n,k]_q$

ACM Computing Classification System (1998): E.4.

Key words: optimal linear codes, finite fields, projective geometry.

^{*}This research was partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.

code with minimum weight d. The weight of a vector $\boldsymbol{x} \in \mathbb{F}_q^n$, denoted by $wt(\boldsymbol{x})$, is the number of nonzero coordinate positions in \boldsymbol{x} . So, $d = \min\{wt(\boldsymbol{c}) > 0 \mid \boldsymbol{c} \in \mathcal{C}\}$.

A fundamental problem in coding theory is to find $n_q(k, d)$, the minimum length n for which an $[n, k, d]_q$ code exists. The exact values of $n_q(4, d)$ have been determined for all d for $q \leq 5$ except the cases (q, d) = (5, 81), (5, 82), (5, 161),(5, 162). See [11] for the updated tables of $n_q(k, d)$ for some small q and k. We tackle the problem to find $n_q(4, d)$ for $q \geq 7$, see [9] for the known results on $n_q(4, d)$. The Griesmer bound (see [7]) gives a lower bound on $n_q(k, d)$:

$$n_q(k,d) \ge g_q(k,d) := \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil,$$

where $\lceil x \rceil$ denotes the smallest integer greater than or equal to x. An $[n, k, d]_q$ code C is called *Griesmer* if it attains the Griesmer bound, i.e. $n = g_q(k, d)$.

Geometric puncturing is a method to construct new codes from a given $[n, k, d]_q$ code by deleting the coordinates corresponding to some geometric object in PG(k - 1, q), which is a generalization of the well-known idea to construct Griesmer codes from a given simplex code $S_{k,q}$ (or some copies of $S_{k,q}$) by deleting the coordinates corresponding to some subspaces of PG(k - 1, q), see Section 2. We prove the following results by geometric puncturing.

Theorem 1.1. There exist $[g_q(4, d) + 1, 4, d]_q$ codes for $d = q^3 - 2q^2 - (q+1)/2$ for odd $q \ge 7$ and for $d = q^3 - 2q^2 - q/2$ for even $q \ge 8$.

Theorem 1.2. There exist $[g_q(4,d), 4, d]_q$ codes for $d = 2q^3 - 5q^2 + q, 2q^3 - 5q^2 + 2q$ and $2q^3 - 5q^2 + 3q$ for $q \ge 7$.

Theorem 1.3. There exist $[g_q(4,d) + 1, 4, d]_q$ codes for $d = 2q^3 - 5q^2 - (s-3)q$ for $3 \le s \le q-1, q \ge 7$.

As for Theorem 1.1, we pose the following conjecture, which is known to be true for q = 3, 4, 5.

Conjecture. $n_q(4,d) = g_q(4,d) + 1$ for $q^3 - 2q^2 - q + 1 \le d \le q^3 - 2q^2$ for $q \ge 7$.

Recall that the existence of an $[n, k, d]_q$ code implies the existence of an $[n-1, k, d-1]_q$ code. The residual codes of $[g_q(4, d), 4, d]_q$ codes for the values of d, q in Theorem 1.1 have parameters $[q^2 - q - 1, 3, q^2 - 2q]_q$, which do not exist. Thus $n_q(4, d) \ge g_q(4, d) + 1$ for $q^3 - 2q^2 - q + 1 \le d \le q^3 - 2q^2$ for $q \ge 3$. Hence, Theorems 1.1, 1.2 and 1.3 yield the following.

Corollary 1.4. (1) $n_q(4, d) = g_q(4, d) + 1$ for

- $q^3 2q^2 q + 1 \le d \le q^3 2q^2 (q+1)/2$ for odd $q \ge 7$;
- $q^3 2q^2 q + 1 \le d \le q^3 2q^2 q/2$ for even $q \ge 8$.
- $\begin{array}{ll} (2) \ n_q(4,d) = g_q(4,d) \ for \ 2q^3 5q^2 + 1 \leq d \leq 2q^3 5q^2 + 3q \ for \ q \geq 7. \\ (3) \ n_q(4,d) \leq g_q(4,d) + 1 \ for \ 2q^3 6q^2 + 3q + 1 \leq d \leq 2q^3 5q^2 \ for \ q \geq 7. \end{array}$

Remark. As for the part (3) of Corollary 1.4, we conjecture that $n_q(4,d) = g_q(4,d) + 1$ holds for $2q^3 - 6q^2 + 3q + 1 \le d \le 2q^3 - 5q^2$ for $q \ge 7$. Actually, this is true for $d = 2q^3 - 5q^2, 2q^3 - 5q^2 - 1, 2q^3 - 5q^2 - 2$ for q = 8 [8].

2. Geometric puncturing for linear codes. We denote by PG(r,q) the projective geometry of dimension r over \mathbb{F}_q . A *j*-dimensional projective subspace of PG(r,q) is called a *j*-flat. The 0-flats, 1-flats, 2-flats and (r-1)-flats are called *points, lines, planes* and *hyperplanes* respectively. We denote by \mathcal{F}_j the set of *j*-flats of PG(r,q) and by θ_j the number of points in a *j*-flat, i.e. $\theta_j = (q^{j+1}-1)/(q-1)$.

Let C be an $[n, k, d]_q$ code with generator matrix G having no coordinate which is identically zero. The columns of G can be considered as a multiset of n points in $\Sigma = \mathrm{PG}(k - 1, q)$ denoted by \overline{G} . We see linear codes from this geometrical point of view. An *i*-point is a point of Σ which has multiplicity i in \overline{G} . Denote by γ_0 the maximum multiplicity of a point from Σ in \overline{G} and let C_i be the set of *i*-points in Σ , $0 \leq i \leq \gamma_0$. For any subset S of Σ we define the multiplicity of S with respect to \overline{G} , denoted by m(S) or $m_{\overline{G}}(S)$, as

$$m(S) = \sum_{i=1}^{\gamma_0} i \cdot |S \cap C_i|,$$

where |T| denotes the number of elements in a set T. When the code is *projective*, i.e. when $\gamma_0 = 1$, the multiset \overline{G} forms an *n*-set in Σ and the above m(S) is equal to $|\overline{G} \cap S|$. A line l with t = m(l) is called a *t*-line. A *t*-plane and so on are defined similarly. Then we obtain the partition $\Sigma = \bigcup_{i=0}^{\gamma_0} C_i$ such that

$$n = m(\Sigma), \ n - d = \max\{m(\pi) \mid \pi \in \mathcal{F}_{k-2}\}.$$

Such a partition of Σ is called an (n, n-d)-arc of Σ . Conversely an (n, n-d)-arc of Σ gives an $[n, k, d]_q$ code in the natural manner. Especially when $\Sigma = C_s$ with $s \in \mathbb{N}, \mathcal{C}$ is an $[s\theta_{k-1}, k, sq^{k-1}]_q$ code, which is called an *s*-fold simplex code over \mathbb{F}_q .

For an *m*-flat Π in Σ we define

$$\gamma_j(\Pi) = \max\{m(\Delta) \mid \Delta \subset \Pi, \ \Delta \in \mathcal{F}_j\}, \ 0 \le j \le m.$$

We denote simply by γ_j instead of $\gamma_j(\Sigma)$. It holds that $\gamma_{k-2} = n - d$, $\gamma_{k-1} = n$. When C is Griesmer, the values γ_j 's are uniquely determined [10] as follows.

(2.1)
$$\gamma_j = \sum_{u=0}^{j} \left\lceil \frac{d}{q^{k-1-u}} \right\rceil \text{ for } 0 \le j \le k-1.$$

Lemma 2.1. Let C be an $[n, k, d]_q$ code with generator matrix G and let $\bigcup_{i=0}^{\gamma_0} C_i$ be the partition of $\Sigma = \operatorname{PG}(k-1,q)$ obtained from \overline{G} . Assume $d > q^t$ and that $\bigcup_{i\geq 1} C_i$ contains a t-flat Π . Then deleting Π from \overline{G} gives an $[n-\theta_t, k, d-q^t]_q$ code C'. When C is Griesmer, C' is also Griesmer if and only if either $d \equiv 0 \pmod{q^{t+1}}$ or

(2.2)
$$\frac{d}{q^{t+1}} - \left\lfloor \frac{d}{q^{t+1}} \right\rfloor > \frac{1}{q}.$$

Proof. Assume $\bigcup_{i\geq 1}C_i$ contains a *t*-flat Π . Let $C'_i = (C_i \setminus \Pi) \cup (C_{i+1} \cap \Pi)$ for all *i* and let \mathcal{G} be the corresponding new multiset. Then \mathcal{G} gives an $[n' = n - \theta_t, k', d']_q$ code. For any hyperplane π of Σ , π meets Π in θ_{t-1} or θ_t points. So, $m_{\mathcal{G}}(\pi) \leq n' - d' \leq n - d - \theta_{t-1}$, giving $d' \geq d - q^t$. Suppose $k' \leq k - 1$. Then, there exists a hyperplane π of Σ containing $(\bigcup_{i\geq 1}C_i) \setminus \Pi$. Since π meets Π in a (t-1)-flat, we have $m_{\overline{G}}(\pi) = n' + \theta_{t-1} = n - q^t \leq n - d$, so $d \leq q^t$, a contradiction. Hence k' = k.

Assume C is Griesmer and let $s = \lfloor d/q^{k-1} \rfloor$. Then d can be uniquely expressed as $d = sq^{k-1} - (\sum_{i=0}^{k-2} d_iq^i)$ with integers d_i , $0 \le d_i \le q-1$, and we have $n = s\theta_{k-1} - (\sum_{i=0}^{k-2} d_i\theta_i)$. Hence C' is Griesmer if $d \equiv 0 \pmod{q^{t+1}}$. Assume $d \ne 0 \pmod{q^{t+1}}$. Note that (2.2) holds if and only if $d_t < q-1$, for

$$\frac{d}{q^{t+1}} - \left\lfloor \frac{d}{q^{t+1}} \right\rfloor = 1 - \frac{\sum_{i=0}^{t} d_i q^i}{q^{t+1}} \le 1 - \frac{d_t}{q}.$$

Since $g_q(k, d-q^t) = n - \theta_t$ if and only if $d_t < q-1$, our assertion follows. \Box

For a given $[n, k, d]_q$ code C and the multiset \overline{G} obtained from a generator matrix G, we say that puncturing of C by deleting some geometric object from \overline{G} is geometric. The geometric puncturing from a given simplex code by deleting some flats is a well-known method to construct Griesmer codes. For given q, k and d, write $d = sq^{k-1} - \sum_{i=1}^{t} q^{u_i-1}$, where $s = \lceil d/q^{k-1} \rceil$, $k > u_1 \ge u_2 \ge \cdots \ge u_t \ge 1$, and at most q - 1 u_i 's take any given value. Let S be an s-fold simplex code with generator matrix G. If there exist t flats $\prod_i \in \mathcal{F}_{u_i-1}$ no s + 1 of which contain a common point, then one can construct a $[g_q(k, d), k, d]_q$ code from S by deleting \prod_1, \ldots, \prod_t from \overline{G} . Such codes are called Griesmer codes of Belov type [5]. The necessary and sufficient condition for the existence of Griesmer codes of Belov type was found by Belov, Logachev and Sandimilov [1] for binary codes and was generalized to q-ary linear codes by Hill [4] and Dodunekov [2] as follows.

Theorem 2.2 ([4]). There exists a $[g_q(k,d), k, d]_q$ code of Belov type if and only if

$$\sum_{i=1}^{\min\{s+1,t\}} u_i \le sk.$$

As a consequence of Theorem 2.2, it can be shown that for given k and q, there exist Griesmer $[n, k, d]_q$ codes if d is large enough, see [3], [4]. Lemma 2.1 is useful to find optimal linear codes even when C is not of Belov type as we see below.

Proof of Theorem 1.2. Let \mathcal{H} be a hyperbolic quadric in $\mathrm{PG}(3,q)$, $q \geq 7$, and let l_1 and l_2 be two skew lines contained in \mathcal{H} . We further take two skew lines l_3 and l_4 contained in \mathcal{H} meeting l_1 and l_2 and four points P_1, \ldots, P_4 of \mathcal{H} so that $l_1 \cap l_3 = P_1$, $l_1 \cap l_4 = P_2$, $l_2 \cap l_3 = P_3$, $l_2 \cap l_3 = P_4$. Let l_5 be the line $\langle P_1, P_4 \rangle$ and let l_6 be the line $\langle P_2, P_3 \rangle$, where $\langle \chi_1, \chi_2, \ldots \rangle$ denotes the smallest flat containing subsets χ_1, χ_2, \ldots . We set $C_0 = l_1 \cup l_2 \cup \cdots \cup l_6$, $C_1 = (\langle l_1, l_3 \rangle \cup \langle l_1, l_4 \rangle \cup \langle l_2, l_3 \rangle \cup \langle l_2, l_4 \rangle \cup \mathcal{H}) \setminus C_0$ and $C_2 = \mathrm{PG}(3,q) \setminus (C_0 \cup C_1)$. Then $\lambda_0 = 6q - 2$, $\lambda_1 = 5q^2 - 10q + 5$, $\lambda_2 = q^3 - 4q^2 + 5q - 2$, where $\lambda_i = |C_i|$. Taking the points of C_i as the columns of a generator matrix i times, we get a Griesmer $[2q^3 - 3q^2 + 1, 4, 2q^3 - 5q^2 + 3q]_q$ code, say \mathcal{C} . This construction is due to [8].

Now, take a line l contained in \mathcal{H} such that l is skew to l_3 and l_4 . Let $l \cap l_1 = Q_1, \ l \cap l_2 = Q_2$ and let $\delta_1, \ldots, \delta_{q-1}$ be the planes through l other than $\langle l, l_1 \rangle, \langle l, l_2 \rangle$. Then each δ_i meets l_1 and l_2 in the points Q_1 and Q_2 , respectively, and meets l_3, \ldots, l_6 in some points out of l. Hence, we can take a line m_i in δ_i with $m_i \cap C_0 = \emptyset$ for $1 \leq i \leq q-1$ such that $m_1 \cap l, \ldots, m_{q-1} \cap l$ are distinct points. Applying Lemma 2.1 by deleting t of the lines m_1, \ldots, m_{q-1} , we get a $[n = 2q^3 - 3q^2 + 1 - t\theta_1, 4, d = 2q^3 - 5q^2 + 3q - tq]_q$ code. This code is Griesmer for t = 1, 2 giving Theorem 1.2 and satisfies $n = g_q(4, d) + 1$ for $3 \leq t \leq q-1$ giving Theorem 1.3. \Box

An f-set F in PG(k-1,q) is called an (f,m)-minihyper if

$$m = \min\{|F \cap \pi| \mid \pi \in \mathcal{F}_{k-2}\}.$$

For example, a *t*-flat is a (θ_t, θ_{t-1}) -minihyper and a blocking *b*-set in some plane is a (b, 1)-minihyper, see [6] for blocking sets in PG(2, q). To prove Theorem 1.1, we generalize Lemma 2.1 to the following.

Lemma 2.3. Let C be an $[n, k, d]_q$ code with generator matrix G and let $\bigcup_{i=0}^{\gamma_0} C_i$ be the partition of $\Sigma = \operatorname{PG}(k-1,q)$ obtained from \overline{G} . Assume $\bigcup_{i>0} C_i$ contains an (f,m)-minihyper F such that $\langle \bigcup_{i>0} C_i \setminus F \rangle = \Sigma$. Then deleting F from \overline{G} gives an $[n-f, k, d+m-f]_q$ code.

In the proof of Theorem 1.1, we take a blocking set on some plane as F in Lemma 2.3. This shows that the object to be deleted from the multiset \overline{G} to get an optimal code is not necessarily a flat in PG(k-1,q).

3. Proof of Theorem 1.1. We first assume that $q = p^h$, $h \in \mathbb{N}$, with an odd prime p. A projective triangle of side m in $\mathrm{PG}(2,q)$ is a set \mathcal{B} of 3(m-1)points on some three non-concurrent lines l_1, l_2, l_3 such that $l_1 \cap l_2, l_2 \cap l_3, l_1 \cap l_3 \in \mathcal{B}$; $|l_i \cap \mathcal{B}| = m$ for i = 1, 2, 3 and that $Q_1 \in l_1 \cap \mathcal{B}$ and $Q_2 \in l_2 \cap \mathcal{B}$ implies $l_3 \cap \langle Q_1, Q_2 \rangle \in \mathcal{B}$. Let \mathcal{Q}_q and \mathcal{N}_q be the set of non-zero squares and non-squares in \mathbb{F}_q , respectively. Then, $|\mathcal{Q}_q| = |\mathcal{N}_q| = (q-1)/2$, and $-1 \in \mathcal{Q}_q$ if $q \equiv 1 \pmod{q}$ but $-1 \in \mathcal{N}_q$ if $q \equiv 3 \pmod{q}$. In $\mathrm{PG}(2,q)$, q odd, there exists a projective triangle of side (q+3)/2 which forms a minimal blocking set, see Chap. 13 of [6]. Such a 3(q+1)/2-set can be constructed as follows.

Lemma 3.1 ([6]). Let $R_0 = \mathbf{P}(1,0,0), R_1 = \mathbf{P}(0,1,0), R_2 = \mathbf{P}(0,0,1) \in \mathbf{PG}(2,q), and K_0 = \{(0,1,a) \mid a \in \mathcal{Q}_q\} \subset \langle R_1, R_2 \rangle, K_1 = \{(1,0,b) \mid b \in \mathcal{Q}_q\} \subset \langle R_0, R_2 \rangle, K_2 = \{(c,1,0) \mid c = -ab^{-1}, a, b \in \mathcal{Q}_q\} \subset \langle R_0, R_1 \rangle.$ Then the 3(q+1)/2-set $K = K_0 \cup K_1 \cup K_2 \cup \{R_0, R_1, R_2\}$ forms a projective triangle.

Lemma 3.2. There exists an element $\alpha \in \mathcal{N}_q$ such that $\alpha - 1 \in \mathcal{Q}_q$.

Proof. Let $q = p^h$, $h \in \mathbb{N}$, p odd prime. Suppose $a - 1 \in \mathcal{N}_q$ for all $a \in \mathcal{N}_q$. Then we have $\sum_{a \in \mathcal{N}_q} a = \sum_{a \in \mathcal{N}_q} (a - 1)$, giving $(q - 1)/2 \equiv 0 \pmod{p}$, a contradiction. \Box

Lemma 3.3. Let C be the conic $\{P_t = \mathbf{P}(1, u, u^2) \mid u \in \mathbb{F}_q\} \cup \{P = \mathbf{P}(0, 0, 1)\}$ in PG(2, q), q odd. Take $\alpha \in \mathcal{N}_q$ with $\alpha - 1 \in \mathcal{Q}_q$ and let $Q_0 = \mathbf{P}(1, 0, \alpha)$, $Q_1 = \mathbf{P}(1, 1, \alpha)$, $l_0 = \langle P, P_0 \rangle$, $l_1 = \langle P, P_1 \rangle$, $l = \langle Q_0, Q_1 \rangle$, $Q = \mathbf{P}(0, 1, 0) = l \cap \ell_P$, where ℓ_P is the tangent to C at P. Then, there exists a projective triangle T contained in $l_0 \cup l_1 \cup l$ with $P_0, P_1, Q \notin T$.

Proof. Take non-zero elements $s, t \in \mathbb{F}_q$ so that $s \in \mathcal{Q}_q$, $t \in \mathcal{N}_q$ for $q \equiv 1 \pmod{q}$ and that $s \in \mathcal{N}_q$, $t \in \mathcal{Q}_q$ for $q \equiv 3 \pmod{q}$, and let σ be the projectivity of PG(2, q) given by

$$\sigma(\mathbf{P}(x, y, z)) = \mathbf{P}(sx + ty, ty, \alpha sx + \alpha ty + z)$$

for $X = \mathbf{P}(x, y, z) \in \mathrm{PG}(2, q)$. Then the three points R_0, R_1, R_2 in Lemma 3.1 are transformed by σ to Q_0, Q_1, P , respectively. For $a \in \mathcal{Q}_q$, $\sigma(\mathbf{P}(0, 1, a)) =$

79

 $\mathbf{P}(1,1,\alpha + at^{-1}) \neq P_1 \text{ since } \alpha - 1 \in \mathcal{Q}_q \text{ and } -at^{-1} \in \mathcal{N}_q. \text{ For } b \in \mathcal{Q}_q, \\ \sigma(\mathbf{P}(1,0,b)) = \mathbf{P}(1,0,\alpha + bs^{-1}) \neq P_0, \text{ for } -bs^{-1} \in \mathcal{Q}_q. \text{ For } c = -ab^{-1} \text{ with } \\ a,b \in \mathcal{Q}_q, \ \sigma(\mathbf{P}(c,1,0)) = \mathbf{P}(cs + t,t,(cs + t)\alpha) \neq Q \text{ since } ab^{-1} \in \mathcal{Q}_q \text{ and } \\ ts^{-1} \in \mathcal{N}_q. \text{ Hence, for the projective triangle } K \text{ in Lemma 3.1, we have } \sigma(K) = T \\ \text{as desired.} \quad \Box$

A projective triad of side m in PG(2, q) is a set \mathcal{B} of 3m - 2 points on some three concurrent lines l_1, l_2, l_3 through a given point P such that $P \in \mathcal{B}$; $|l_i \cap \mathcal{B}| = m$ for i = 1, 2, 3 and that $Q_1 \in l_1 \cap \mathcal{B}$ and $Q_2 \in l_2 \cap \mathcal{B}$ implies $l_3 \cap \langle Q_1, Q_2 \rangle \in \mathcal{B}$.

For $q = 2^h$ with $h \ge 3$, let $tr(x) = x + x^2 + \cdots + x^{2^{h-1}}$ be the trace function over \mathbb{F}_2 . Let $\mathcal{T}_i = \{a \in \mathbb{F}_q, tr(a) = i\}$ for i = 0, 1. In PG(2, q), q even, there exists a projective triad of side (q+2)/2 which forms a minimal blocking set [6]. Such a (3q+2)/2-set can be constructed as follows.

Lemma 3.4 ([6]). For $q = 2^h$, $h \ge 3$, let $P_0 = \mathbf{P}(0,0,1), P_1 = \mathbf{P}(0,1,0), P_2 = \mathbf{P}(1,0,0), P_3 = \mathbf{P}(1,1,0) \in \mathrm{PG}(2,q)$, and $K_1 = \{(0,1,a) \mid a \in \mathcal{T}_0\} \subset \langle P_0, P_1 \rangle$, $K_2 = \{(1,0,a) \mid a \in \mathcal{T}_0\} \subset \langle P_0, P_2 \rangle$, $K_3 = \{(1,1,a) \mid a \in \mathcal{T}_0\} \subset \langle P_0, P_3 \rangle$. Then the (3q+2)/2-set $K = K_1 \cup K_2 \cup K_3 \cup \{P_0\}$ forms a projective triad.

Lemma 3.5. Let $\{Q, Q_1, Q_2, Q_3\}$ be a (4, 2)-arc in PG(2, q) and let $l_i = \langle Q, Q_i \rangle$, i = 1, 2, 3. Then, there exists a projective triad T on $l_1 \cup l_2 \cup l_3$ with $Q_1, Q_2, Q_3 \notin T$.

Proof. Let P_0, P_1, P_2, P_3, K be as in Lemma 3.4 and take three points $R_1 = \mathbf{P}(0, 1, s), R_2 = \mathbf{P}(1, 0, t), R_3 = \mathbf{P}(1, 1, u)$ with $s, t, u \in \mathcal{T}_1$. Then P_0, R_1, R_2, R_3 form a (4,2)-arc, for $s + t \in \mathcal{T}_0$ for $s, t \in \mathcal{T}_1$. Take a projectivity σ so that $\sigma(P_0) = Q$ and $\sigma(\{R_1, R_2, R_3\}) = \{Q_1, Q_2, Q_3\}$. Then, $\sigma(K) = T$ is a projective triad on $l_1 \cup l_2 \cup l_3$ with $Q_1, Q_2, Q_3 \notin T$. \Box

Let $\mathcal{H} = \mathbf{V}(x_0x_1 + x_2x_3)$ be a hyperbolic quadric in $\Sigma = \mathrm{PG}(3, q)$. Take $P(0, 0, 1, 0) \in \mathcal{H}$ and $\pi = \mathbf{V}(x_3)$ (tangent plane at P). Putting $C_0 = (\mathcal{H} \cup \pi) \setminus \{P\}$ and $C_1 = \Sigma \setminus C_0$, we get a Griesmer $[q^3 - q^2 + 1, 4, q^3 - 2q^2 + q]_q$ code, say \mathcal{C} . Note that K contains no line, for $\gamma_1 = q$ by (2.1). Instead, we take a blocking set \mathcal{B} in the plane $\delta = \mathbf{V}(x_0 + x_1)$ through P as \mathcal{F} in Lemma 2.3 so that \mathcal{B} is a projective triangle of side (q + 3)/2 for odd q and that \mathcal{B} is a projective triad of side (q + 2)/2 for even q. Since $\delta \cap C_0$ consists of a conic, say \mathcal{O} , and the tangent $\ell = \delta \cap \pi$ of \mathcal{O} at P, we need to take \mathcal{B} in δ so that $\mathcal{B} \cap (\mathcal{O} \cup \ell) = \emptyset$, which is possible from Lemmas 3.3 and 3.5. Applying Lemma 2.3, one get the desired codes with length $g_q(4, d) + 1$. This completes the proof of Theorem 1.1. \Box

REFERENCES

- BELOV B. I., V. N. LOGACHEV, V. P. SANDIMIROV. Construction of a class of linear binary codes achieving the Varshamov-Griesmer bound. *Problems* of Info. Transmission, 10 (1974), No 3, 211–217.
- [2] DODUNEKOV S. M. Optimal linear codes. Doctor of Mathematical Sciences Dissertation, Institute of Mathematics, Sofia, 1985.
- [3] Hamada N., T. Maruta. An improvement to the achievement of the Griesmer bound. Serdica J. Computing, 4 (2010), 301–320.
- [4] HILL R. Optimal linear codes. In: Cryptography and Coding II (Ed. C. Mitchell), Oxford Univ. Press, Oxford, 1992, 75–104.
- [5] HILL R., E. KOLEV. A survey of recent results on optimal linear codes. In: Combinatorial Designs and their Applications (Eds F. C. Holroyd et al.), Chapman & Hall/CRC, *Res. Notes Math.*, 403 (1999), 127–152.
- [6] HIRSCHFELD J. W. P. Projective Geometries over Finite Fields. Clarendon Press, 2nd ed., Oxford, 1998.
- [7] HUFFMAN W. C., V. PLESS. Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge, 2003.
- [8] KANAZAWA R., T. MARUTA. On optimal linear codes over F₈. Electronic J. Combin, 18 (2011), #P34.
- [9] MARUTA T. On the minimum length of q-ary linear codes of dimension four. Discrete Math., 208/209 (1999), 427–435.
- [10] MARUTA T. On the nonexistence of q-ary linear codes of dimension five. Des. Codes Cryptogr., 22 (2001), 165–177.
- [11] MARUTA T. Griesmer bound for linear codes over finite fields. http://www.geocities.jp/mars39geo/griesmer.htm.

Department of Mathematics and Information Sciences Osaka Prefecture University Sakai, Osaka 599-8531, Japan e-mail: maruta@mi.s.osakafu-u.ac.jp

Received February 15, 2013 Final Accepted April 29, 2013