CONSTRUCTION OF OPTIMAL LINEAR CODES BY GEOMETRIC PUNCTURING*

Tatsuya Maruta

Dedicated to the memory of S.M. Dodunekov (1945-2012)

Abstract

Geometric puncturing is a method to construct new codes from a given $[n, k, d]_{q}$ code by deleting the coordinates corresponding to some geometric object in $\mathrm{PG}(k-1, q)$. We construct $\left[g_{q}(4, d), 4, d\right]_{q}$ and $\left[g_{q}(4, d)+1,4, d\right]_{q}$ codes for some d by geometric puncturing, where $g_{q}(k, d)=$ $\sum_{i=0_{3}}^{k-1}\left[d / q^{i}\right]$. These determine the exact value of $n_{q}(4, d)$ for $q^{3}-2 q^{2}-q+1 \leq$ $d \leq q^{3}-2 q^{2}-(q+1) / 2$ for odd prime power $q \geq 7 ; q^{3}-2 q^{2}-q+1 \leq d \leq$ $q^{3}-2 q^{2}-q / 2$ for $q=2^{h}, h \geq 3$ and for $2 q^{3}-5 q^{2}+1 \leq d \leq 2 q^{3}-5 q^{2}+3 q$ for prime power $q \geq 7$, where $n_{q}(k, d)$ is the minimum length n for which an $[n, k, d]_{q}$ code exists.

1. Introduction. We denote by \mathbb{F}_{q}^{n} the vector space of n-tuples over \mathbb{F}_{q}, the field of q elements. A q-ary linear code \mathcal{C} of length n and dimension k (an $[n, k]_{q}$ code) is a k-dimensional subspace of \mathbb{F}_{q}^{n}. An $[n, k, d]_{q}$ code \mathcal{C} is an $[n, k]_{q}$

Key words: optimal linear codes, finite fields, projective geometry.
*This research was partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 24540138.
code with minimum weight d. The weight of a vector $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$, denoted by $w t(\boldsymbol{x})$, is the number of nonzero coordinate positions in \boldsymbol{x}. So, $d=\min \{w t(\boldsymbol{c})>0 \mid \boldsymbol{c} \in \mathcal{C}\}$. A fundamental problem in coding theory is to find $n_{q}(k, d)$, the minimum length n for which an $[n, k, d]_{q}$ code exists. The exact values of $n_{q}(4, d)$ have been determined for all d for $q \leq 5$ except the cases $(q, d)=(5,81),(5,82),(5,161)$, $(5,162)$. See [11] for the updated tables of $n_{q}(k, d)$ for some small q and k. We tackle the problem to find $n_{q}(4, d)$ for $q \geq 7$, see [9] for the known results on $n_{q}(4, d)$. The Griesmer bound (see [7]) gives a lower bound on $n_{q}(k, d)$:

$$
n_{q}(k, d) \geq g_{q}(k, d):=\sum_{i=0}^{k-1}\left\lceil\frac{d}{q^{i}}\right\rceil
$$

where $\lceil x\rceil$ denotes the smallest integer greater than or equal to x. An $[n, k, d]_{q}$ code \mathcal{C} is called Griesmer if it attains the Griesmer bound, i.e. $n=g_{q}(k, d)$.

Geometric puncturing is a method to construct new codes from a given $[n, k, d]_{q}$ code by deleting the coordinates corresponding to some geometric object in $\mathrm{PG}(k-1, q)$, which is a generalization of the well-known idea to construct Griesmer codes from a given simplex code $S_{k, q}$ (or some copies of $S_{k, q}$) by deleting the coordinates corresponding to some subspaces of $\mathrm{PG}(k-1, q)$, see Section 2. We prove the following results by geometric puncturing.

Theorem 1.1. There exist $\left[g_{q}(4, d)+1,4, d\right]_{q}$ codes for $d=q^{3}-2 q^{2}-$ $(q+1) / 2$ for odd $q \geq 7$ and for $d=q^{3}-2 q^{2}-q / 2$ for even $q \geq 8$.

Theorem 1.2. There exist $\left[g_{q}(4, d), 4, d\right]_{q}$ codes for $d=2 q^{3}-5 q^{2}+$ $q, 2 q^{3}-5 q^{2}+2 q$ and $2 q^{3}-5 q^{2}+3 q$ for $q \geq 7$.

Theorem 1.3. There exist $\left[g_{q}(4, d)+1,4, d\right]_{q}$ codes for $d=2 q^{3}-5 q^{2}-$ $(s-3) q$ for $3 \leq s \leq q-1, q \geq 7$.

As for Theorem 1.1, we pose the following conjecture, which is known to be true for $q=3,4,5$.

Conjecture. $n_{q}(4, d)=g_{q}(4, d)+1$ for $q^{3}-2 q^{2}-q+1 \leq d \leq q^{3}-2 q^{2}$ for $q \geq 7$.

Recall that the existence of an $[n, k, d]_{q}$ code implies the existence of an $[n-1, k, d-1]_{q}$ code. The residual codes of $\left[g_{q}(4, d), 4, d\right]_{q}$ codes for the values of d, q in Theorem 1.1 have parameters $\left[q^{2}-q-1,3, q^{2}-2 q\right]_{q}$, which do not exist. Thus $n_{q}(4, d) \geq g_{q}(4, d)+1$ for $q^{3}-2 q^{2}-q+1 \leq d \leq q^{3}-2 q^{2}$ for $q \geq 3$. Hence, Theorems 1.1, 1.2 and 1.3 yield the following.

Corollary 1.4. (1) $n_{q}(4, d)=g_{q}(4, d)+1$ for

- $q^{3}-2 q^{2}-q+1 \leq d \leq q^{3}-2 q^{2}-(q+1) / 2$ for odd $q \geq 7$;
- $q^{3}-2 q^{2}-q+1 \leq d \leq q^{3}-2 q^{2}-q / 2$ for even $q \geq 8$.
(2) $n_{q}(4, d)=g_{q}(4, d)$ for $2 q^{3}-5 q^{2}+1 \leq d \leq 2 q^{3}-5 q^{2}+3 q$ for $q \geq 7$.
(3) $n_{q}(4, d) \leq g_{q}(4, d)+1$ for $2 q^{3}-6 q^{2}+3 q+1 \leq d \leq 2 q^{3}-5 q^{2}$ for $q \geq 7$.

Remark. As for the part (3) of Corollary 1.4, we conjecture that $n_{q}(4, d)=g_{q}(4, d)+1$ holds for $2 q^{3}-6 q^{2}+3 q+1 \leq d \leq 2 q^{3}-5 q^{2}$ for $q \geq 7$. Actually, this is true for $d=2 q^{3}-5 q^{2}, 2 q^{3}-5 q^{2}-1,2 q^{3}-5 q^{2}-2$ for $q=8$ [8].
2. Geometric puncturing for linear codes. We denote by $\operatorname{PG}(r, q)$ the projective geometry of dimension r over \mathbb{F}_{q}. A j-dimensional projective subspace of $\mathrm{PG}(r, q)$ is called a j-flat. The 0 -flats, 1 -flats, 2 -flats and $(r-1)$-flats are called points, lines, planes and hyperplanes respectively. We denote by \mathcal{F}_{j} the set of j-flats of $\mathrm{PG}(r, q)$ and by θ_{j} the number of points in a j-flat, i.e. $\theta_{j}=\left(q^{j+1}-1\right) /(q-1)$.

Let \mathcal{C} be an $[n, k, d]_{q}$ code with generator matrix G having no coordinate which is identically zero. The columns of G can be considered as a multiset of n points in $\Sigma=\operatorname{PG}(k-1, q)$ denoted by \bar{G}. We see linear codes from this geometrical point of view. An i-point is a point of Σ which has multiplicity i in \bar{G}. Denote by γ_{0} the maximum multiplicity of a point from Σ in \bar{G} and let C_{i} be the set of i-points in $\Sigma, 0 \leq i \leq \gamma_{0}$. For any subset S of Σ we define the multiplicity of S with respect to \bar{G}, denoted by $m(S)$ or $m_{\bar{G}}(S)$, as

$$
m(S)=\sum_{i=1}^{\gamma_{0}} i \cdot\left|S \cap C_{i}\right|,
$$

where $|T|$ denotes the number of elements in a set T. When the code is projective, i.e. when $\gamma_{0}=1$, the multiset \bar{G} forms an n-set in Σ and the above $m(S)$ is equal to $|\bar{G} \cap S|$. A line l with $t=m(l)$ is called a t-line. A t-plane and so on are defined similarly. Then we obtain the partition $\Sigma=\bigcup_{i=0}^{\gamma_{0}} C_{i}$ such that

$$
n=m(\Sigma), n-d=\max \left\{m(\pi) \mid \pi \in \mathcal{F}_{k-2}\right\} .
$$

Such a partition of Σ is called an $(n, n-d)$-arc of Σ. Conversely an $(n, n-d)$-arc of Σ gives an $[n, k, d]_{q}$ code in the natural manner. Especially when $\Sigma=C_{s}$ with $s \in \mathbb{N}, \mathcal{C}$ is an $\left[s \theta_{k-1}, k, s q^{k-1}\right]_{q}$ code, which is called an s-fold simplex code over \mathbb{F}_{q}.
For an m-flat Π in Σ we define

$$
\gamma_{j}(\Pi)=\max \left\{m(\Delta) \mid \Delta \subset \Pi, \Delta \in \mathcal{F}_{j}\right\}, 0 \leq j \leq m .
$$

We denote simply by γ_{j} instead of $\gamma_{j}(\Sigma)$. It holds that $\gamma_{k-2}=n-d, \gamma_{k-1}=n$. When \mathcal{C} is Griesmer, the values γ_{j} 's are uniquely determined [10] as follows.

$$
\begin{equation*}
\gamma_{j}=\sum_{u=0}^{j}\left\lceil\frac{d}{q^{k-1-u}}\right\rceil \text { for } 0 \leq j \leq k-1 \tag{2.1}
\end{equation*}
$$

Lemma 2.1. Let \mathcal{C} be an $[n, k, d]_{q}$ code with generator matrix G and let $\cup_{i=0}^{\gamma_{0}} C_{i}$ be the partition of $\Sigma=\operatorname{PG}(k-1, q)$ obtained from \bar{G}. Assume $d>q^{t}$ and that $\cup_{i \geq 1} C_{i}$ contains a t-flat Π. Then deleting Π from \bar{G} gives an $\left[n-\theta_{t}, k, d-q^{t}\right]_{q}$ code \mathcal{C}^{\prime}. When \mathcal{C} is Griesmer, \mathcal{C}^{\prime} is also Griesmer if and only if either $d \equiv 0$ $\left(\bmod q^{t+1}\right)$ or

$$
\begin{equation*}
\frac{d}{q^{t+1}}-\left\lfloor\frac{d}{q^{t+1}}\right\rfloor>\frac{1}{q} . \tag{2.2}
\end{equation*}
$$

Proof. Assume $\cup_{i \geq 1} C_{i}$ contains a t-flat Π. Let $C_{i}^{\prime}=\left(C_{i} \backslash \Pi\right) \cup\left(C_{i+1} \cap \Pi\right)$ for all i and let \mathcal{G} be the corresponding new multiset. Then \mathcal{G} gives an $\left[n^{\prime}=\right.$ $\left.n-\theta_{t}, k^{\prime}, d^{\prime}\right]_{q}$ code. For any hyperplane π of Σ, π meets Π in θ_{t-1} or θ_{t} points. So, $m_{\mathcal{G}}(\pi) \leq n^{\prime}-d^{\prime} \leq n-d-\theta_{t-1}$, giving $d^{\prime} \geq d-q^{t}$. Suppose $k^{\prime} \leq k-1$. Then, there exists a hyperplane π of Σ containing $\left(\cup_{i \geq 1} C_{i}\right) \backslash \Pi$. Since π meets Π in a $(t-1)$-flat, we have $m_{\bar{G}}(\pi)=n^{\prime}+\theta_{t-1}=n-q^{t} \leq n-d$, so $d \leq q^{t}$, a contradiction. Hence $k^{\prime}=k$.
Assume \mathcal{C} is Griesmer and let $s=\left\lceil d / q^{k-1}\right\rceil$. Then d can be uniquely expressed as $d=s q^{k-1}-\left(\sum_{i=0}^{k-2} d_{i} q^{i}\right)$ with integers $d_{i}, 0 \leq d_{i} \leq q-1$, and we have $n=s \theta_{k-1}-\left(\sum_{i=0}^{k-2} d_{i} \theta_{i}\right)$. Hence \mathcal{C}^{\prime} is Griesmer if $d \equiv 0\left(\bmod q^{t+1}\right)$. Assume $d \not \equiv 0\left(\bmod q^{t+1}\right)$. Note that (2.2) holds if and only if $d_{t}<q-1$, for

$$
\frac{d}{q^{t+1}}-\left\lfloor\frac{d}{q^{t+1}}\right\rfloor=1-\frac{\sum_{i=0}^{t} d_{i} q^{i}}{q^{t+1}} \leq 1-\frac{d_{t}}{q} .
$$

Since $g_{q}\left(k, d-q^{t}\right)=n-\theta_{t}$ if and only if $d_{t}<q-1$, our assertion follows.
For a given $[n, k, d]_{q}$ code \mathcal{C} and the multiset \bar{G} obtained from a generator matrix G, we say that puncturing of \mathcal{C} by deleting some geometric object from \bar{G} is geometric. The geometric puncturing from a given simplex code by deleting some flats is a well-known method to construct Griesmer codes. For given q, k and d, write $d=s q^{k-1}-\sum_{i=1}^{t} q^{u_{i}-1}$, where $s=\left\lceil d / q^{k-1}\right\rceil, k>u_{1} \geq u_{2} \geq \cdots \geq u_{t} \geq 1$, and at most $q-1 u_{i}$'s take any given value. Let \mathcal{S} be an s-fold simplex code with generator matrix G. If there exist t flats $\Pi_{i} \in \mathcal{F}_{u_{i}-1}$ no $s+1$ of which contain a common point, then one can construct a $\left[g_{q}(k, d), k, d\right]_{q}$ code from \mathcal{S} by deleting Π_{1}, \ldots, Π_{t} from \bar{G}. Such codes are called Griesmer codes of Belov type [5]. The
necessary and sufficient condition for the existence of Griesmer codes of Belov type was found by Belov, Logachev and Sandimilov [1] for binary codes and was generalized to q-ary linear codes by Hill [4] and Dodunekov [2] as follows.

Theorem 2.2 ([4]). There exists a $\left[g_{q}(k, d), k, d\right]_{q}$ code of Belov type if and only if

$$
\sum_{i=1}^{\min \{s+1, t\}} u_{i} \leq s k .
$$

As a consequence of Theorem 2.2, it can be shown that for given k and q, there exist Griesmer $[n, k, d]_{q}$ codes if d is large enough, see [3], [4]. Lemma 2.1 is useful to find optimal linear codes even when \mathcal{C} is not of Belov type as we see below.

Proof of Theorem 1.2. Let \mathcal{H} be a hyperbolic quadric in $\operatorname{PG}(3, q)$, $q \geq 7$, and let l_{1} and l_{2} be two skew lines contained in \mathcal{H}. We further take two skew lines l_{3} and l_{4} contained in \mathcal{H} meeting l_{1} and l_{2} and four points P_{1}, \ldots, P_{4} of \mathcal{H} so that $l_{1} \cap l_{3}=P_{1}, l_{1} \cap l_{4}=P_{2}, l_{2} \cap l_{3}=P_{3}, l_{2} \cap l_{3}=P_{4}$. Let l_{5} be the line $\left\langle P_{1}, P_{4}\right\rangle$ and let l_{6} be the line $\left\langle P_{2}, P_{3}\right\rangle$, where $\left\langle\chi_{1}, \chi_{2}, \ldots\right\rangle$ denotes the smallest flat containing subsets $\chi_{1}, \chi_{2}, \ldots$. We set $C_{0}=l_{1} \cup l_{2} \cup \cdots \cup l_{6}$, $C_{1}=\left(\left\langle l_{1}, l_{3}\right\rangle \cup\left\langle l_{1}, l_{4}\right\rangle \cup\left\langle l_{2}, l_{3}\right\rangle \cup\left\langle l_{2}, l_{4}\right\rangle \cup \mathcal{H}\right) \backslash C_{0}$ and $C_{2}=\mathrm{PG}(3, q) \backslash\left(C_{0} \cup C_{1}\right)$. Then $\lambda_{0}=6 q-2, \lambda_{1}=5 q^{2}-10 q+5, \lambda_{2}=q^{3}-4 q^{2}+5 q-2$, where $\lambda_{i}=\left|C_{i}\right|$. Taking the points of C_{i} as the columns of a generator matrix i times, we get a Griesmer $\left[2 q^{3}-3 q^{2}+1,4,2 q^{3}-5 q^{2}+3 q\right]_{q}$ code, say \mathcal{C}. This construction is due to [8].

Now, take a line l contained in \mathcal{H} such that l is skew to l_{3} and l_{4}. Let $l \cap l_{1}=Q_{1}, l \cap l_{2}=Q_{2}$ and let $\delta_{1}, \ldots, \delta_{q-1}$ be the planes through l other than $\left\langle l, l_{1}\right\rangle,\left\langle l, l_{2}\right\rangle$. Then each δ_{i} meets l_{1} and l_{2} in the points Q_{1} and Q_{2}, respectively, and meets l_{3}, \ldots, l_{6} in some points out of l. Hence, we can take a line m_{i} in δ_{i} with $m_{i} \cap C_{0}=\emptyset$ for $1 \leq i \leq q-1$ such that $m_{1} \cap l, \ldots, m_{q-1} \cap l$ are distinct points. Applying Lemma 2.1 by deleting t of the lines m_{1}, \ldots, m_{q-1}, we get a $\left[n=2 q^{3}-3 q^{2}+1-t \theta_{1}, 4, d=2 q^{3}-5 q^{2}+3 q-t q\right]_{q}$ code. This code is Griesmer for $t=1,2$ giving Theorem 1.2 and satisfies $n=g_{q}(4, d)+1$ for $3 \leq t \leq q-1$ giving Theorem 1.3.

An f-set F in $\mathrm{PG}(k-1, q)$ is called an (f, m)-minihyper if
$m=\min \left\{|F \cap \pi| \mid \pi \in \mathcal{F}_{k-2}\right\}$.
For example, a t-flat is a $\left(\theta_{t}, \theta_{t-1}\right)$-minihyper and a blocking b-set in some plane is a ($b, 1$)-minihyper, see [6] for blocking sets in $\operatorname{PG}(2, q)$. To prove Theorem 1.1, we generalize Lemma 2.1 to the following.

Lemma 2.3. Let \mathcal{C} be an $[n, k, d]_{q}$ code with generator matrix G and let $\cup_{i=0}^{\gamma_{0}} C_{i}$ be the partition of $\Sigma=\operatorname{PG}(k-1, q)$ obtained from \bar{G}. Assume $\cup_{i>0} C_{i}$ contains an (f, m)-minihyper F such that $\left\langle\cup_{i>0} C_{i} \backslash F\right\rangle=\Sigma$. Then deleting F from \bar{G} gives an $[n-f, k, d+m-f]_{q}$ code.

In the proof of Theorem 1.1, we take a blocking set on some plane as F in Lemma 2.3. This shows that the object to be deleted from the multiset \bar{G} to get an optimal code is not necessarily a flat in $\operatorname{PG}(k-1, q)$.
3. Proof of Theorem 1.1. We first assume that $q=p^{h}, h \in \mathbb{N}$, with an odd prime p. A projective triangle of side m in $\mathrm{PG}(2, q)$ is a set \mathcal{B} of $3(m-1)$ points on some three non-concurrent lines l_{1}, l_{2}, l_{3} such that $l_{1} \cap l_{2}, l_{2} \cap l_{3}, l_{1} \cap l_{3} \in \mathcal{B}$; $\left|l_{i} \cap \mathcal{B}\right|=m$ for $i=1,2,3$ and that $Q_{1} \in l_{1} \cap \mathcal{B}$ and $Q_{2} \in l_{2} \cap \mathcal{B}$ implies $l_{3} \cap\left\langle Q_{1}, Q_{2}\right\rangle \in \mathcal{B}$. Let \mathcal{Q}_{q} and \mathcal{N}_{q} be the set of non-zero squares and non-squares in \mathbb{F}_{q}, respectively. Then, $\left|\mathcal{Q}_{q}\right|=\left|\mathcal{N}_{q}\right|=(q-1) / 2$, and $-1 \in \mathcal{Q}_{q}$ if $q \equiv 1(\bmod q)$ but $-1 \in \mathcal{N}_{q}$ if $q \equiv 3(\bmod q)$. In $\mathrm{PG}(2, q), q$ odd, there exists a projective triangle of side $(q+3) / 2$ which forms a minimal blocking set, see Chap. 13 of [6]. Such a $3(q+1) / 2$-set can be constructed as follows.

Lemma 3.1 ([6]). Let $R_{0}=\mathbf{P}(1,0,0), R_{1}=\mathbf{P}(0,1,0), R_{2}=\mathbf{P}(0,0,1) \in$ $\operatorname{PG}(2, q)$, and $K_{0}=\left\{(0,1, a) \mid a \in \mathcal{Q}_{q}\right\} \subset\left\langle R_{1}, R_{2}\right\rangle, K_{1}=\left\{(1,0, b) \mid b \in \mathcal{Q}_{q}\right\} \subset$ $\left\langle R_{0}, R_{2}\right\rangle, K_{2}=\left\{(c, 1,0) \mid c=-a b^{-1}, a, b \in \mathcal{Q}_{q}\right\} \subset\left\langle R_{0}, R_{1}\right\rangle$. Then the $3(q+1) / 2-$ set $K=K_{0} \cup K_{1} \cup K_{2} \cup\left\{R_{0}, R_{1}, R_{2}\right\}$ forms a projective triangle.

Lemma 3.2. There exists an element $\alpha \in \mathcal{N}_{q}$ such that $\alpha-1 \in \mathcal{Q}_{q}$.
Proof. Let $q=p^{h}, h \in \mathbb{N}, p$ odd prime. Suppose $a-1 \in \mathcal{N}_{q}$ for all $a \in \mathcal{N}_{q}$. Then we have $\sum_{a \in \mathcal{N}_{q}} a=\sum_{a \in \mathcal{N}_{q}}(a-1)$, giving $(q-1) / 2 \equiv 0(\bmod p)$, a contradiction.

Lemma 3.3. Let C be the conic $\left\{P_{t}=\mathbf{P}\left(1, u, u^{2}\right) \mid u \in \mathbb{F}_{q}\right\} \cup\{P=$ $\mathbf{P}(0,0,1)\}$ in $P G(2, q), q$ odd. Take $\alpha \in \mathcal{N}_{q}$ with $\alpha-1 \in \mathcal{Q}_{q}$ and let $Q_{0}=$ $\mathbf{P}(1,0, \alpha), Q_{1}=\mathbf{P}(1,1, \alpha), l_{0}=\left\langle P, P_{0}\right\rangle, l_{1}=\left\langle P, P_{1}\right\rangle, l=\left\langle Q_{0}, Q_{1}\right\rangle, Q=$ $\mathbf{P}(0,1,0)=l \cap \ell_{P}$, where ℓ_{P} is the tangent to C at P. Then, there exists a projective triangle T contained in $l_{0} \cup l_{1} \cup l$ with $P_{0}, P_{1}, Q \notin T$.

Proof. Take non-zero elements $s, t \in \mathbb{F}_{q}$ so that $s \in \mathcal{Q}_{q}, t \in \mathcal{N}_{q}$ for $q \equiv 1$ $(\bmod q)$ and that $s \in \mathcal{N}_{q}, t \in \mathcal{Q}_{q}$ for $q \equiv 3(\bmod q)$, and let σ be the projectivity of $\mathrm{PG}(2, q)$ given by

$$
\sigma(\mathbf{P}(x, y, z))=\mathbf{P}(s x+t y, t y, \alpha s x+\alpha t y+z)
$$

for $X=\mathbf{P}(x, y, z) \in \mathrm{PG}(2, q)$. Then the three points R_{0}, R_{1}, R_{2} in Lemma 3.1 are transformed by σ to Q_{0}, Q_{1}, P, respectively. For $a \in \mathcal{Q}_{q}, \sigma(\mathbf{P}(0,1, a))=$
$\mathbf{P}\left(1,1, \alpha+a t^{-1}\right) \neq P_{1}$ since $\alpha-1 \in \mathcal{Q}_{q}$ and $-a t^{-1} \in \mathcal{N}_{q}$. For $b \in \mathcal{Q}_{q}$, $\sigma(\mathbf{P}(1,0, b))=\mathbf{P}\left(1,0, \alpha+b s^{-1}\right) \neq P_{0}$, for $-b s^{-1} \in \mathcal{Q}_{q}$. For $c=-a b^{-1}$ with $a, b \in \mathcal{Q}_{q}, \sigma(\mathbf{P}(c, 1,0))=\mathbf{P}(c s+t, t,(c s+t) \alpha) \neq Q$ since $a b^{-1} \in \mathcal{Q}_{q}$ and $t s^{-1} \in \mathcal{N}_{q}$. Hence, for the projective triangle K in Lemma 3.1, we have $\sigma(K)=T$ as desired.

A projective triad of side m in $\operatorname{PG}(2, q)$ is a set \mathcal{B} of $3 m-2$ points on some three concurrent lines l_{1}, l_{2}, l_{3} through a given point P such that $P \in \mathcal{B}$; $\left|l_{i} \cap \mathcal{B}\right|=m$ for $i=1,2,3$ and that $Q_{1} \in l_{1} \cap \mathcal{B}$ and $Q_{2} \in l_{2} \cap \mathcal{B}$ implies $l_{3} \cap\left\langle Q_{1}, Q_{2}\right\rangle \in \mathcal{B}$.

For $q=2^{h}$ with $h \geq 3$, let $\operatorname{tr}(x)=x+x^{2}+\cdots+x^{2^{h-1}}$ be the trace function over \mathbb{F}_{2}. Let $\mathcal{T}_{i}=\left\{a \in \mathbb{F}_{q}, \operatorname{tr}(a)=i\right\}$ for $i=0,1$. In $\operatorname{PG}(2, q), q$ even, there exists a projective triad of side $(q+2) / 2$ which forms a minimal blocking set $[6]$. Such a $(3 q+2) / 2$-set can be constructed as follows.

Lemma 3.4 ([6]). For $q=2^{h}, h \geq 3$, let $P_{0}=\mathbf{P}(0,0,1), P_{1}=$ $\mathbf{P}(0,1,0), P_{2}=\mathbf{P}(1,0,0), P_{3}=\mathbf{P}(1,1,0) \in \mathrm{PG}(2, q)$, and $K_{1}=\{(0,1, a) \mid a \in$ $\left.\mathcal{T}_{0}\right\} \subset\left\langle P_{0}, P_{1}\right\rangle, K_{2}=\left\{(1,0, a) \mid a \in \mathcal{T}_{0}\right\} \subset\left\langle P_{0}, P_{2}\right\rangle, K_{3}=\left\{(1,1, a) \mid a \in \mathcal{T}_{0}\right\} \subset$ $\left\langle P_{0}, P_{3}\right\rangle$. Then the $(3 q+2) / 2$-set $K=K_{1} \cup K_{2} \cup K_{3} \cup\left\{P_{0}\right\}$ forms a projective triad.

Lemma 3.5. Let $\left\{Q, Q_{1}, Q_{2}, Q_{3}\right\}$ be a $(4,2)$-arc in $P G(2, q)$ and let $l_{i}=\left\langle Q, Q_{i}\right\rangle, i=1,2,3$. Then, there exists a projective triad T on $l_{1} \cup l_{2} \cup l_{3}$ with $Q_{1}, Q_{2}, Q_{3} \notin T$.

Proof. Let $P_{0}, P_{1}, P_{2}, P_{3}, K$ be as in Lemma 3.4 and take three points $R_{1}=\mathbf{P}(0,1, s), R_{2}=\mathbf{P}(1,0, t), R_{3}=\mathbf{P}(1,1, u)$ with $s, t, u \in \mathcal{T}_{1}$. Then P_{0}, R_{1}, R_{2}, R_{3} form a (4,2)-arc, for $s+t \in \mathcal{T}_{0}$ for $s, t \in \mathcal{T}_{1}$. Take a projectivity σ so that $\sigma\left(P_{0}\right)=Q$ and $\sigma\left(\left\{R_{1}, R_{2}, R_{3}\right\}\right)=\left\{Q_{1}, Q_{2}, Q_{3}\right\}$. Then, $\sigma(K)=T$ is a projective triad on $l_{1} \cup l_{2} \cup l_{3}$ with $Q_{1}, Q_{2}, Q_{3} \notin T$.

Let $\mathcal{H}=\mathbf{V}\left(x_{0} x_{1}+x_{2} x_{3}\right)$ be a hyperbolic quadric in $\Sigma=\operatorname{PG}(3, q)$. Take $P(0,0,1,0) \in \mathcal{H}$ and $\pi=\mathbf{V}\left(x_{3}\right)$ (tangent plane at $\left.P\right)$. Putting $C_{0}=(\mathcal{H} \cup \pi) \backslash\{P\}$ and $C_{1}=\Sigma \backslash C_{0}$, we get a Griesmer $\left[q^{3}-q^{2}+1,4, q^{3}-2 q^{2}+q\right]_{q}$ code, say \mathcal{C}. Note that K contains no line, for $\gamma_{1}=q$ by (2.1). Instead, we take a blocking set \mathcal{B} in the plane $\delta=\mathbf{V}\left(x_{0}+x_{1}\right)$ through P as \mathcal{F} in Lemma 2.3 so that \mathcal{B} is a projective triangle of side $(q+3) / 2$ for odd q and that \mathcal{B} is a projective triad of side $(q+2) / 2$ for even q. Since $\delta \cap C_{0}$ consists of a conic, say \mathcal{O}, and the tangent $\ell=\delta \cap \pi$ of \mathcal{O} at P, we need to take \mathcal{B} in δ so that $\mathcal{B} \cap(\mathcal{O} \cup \ell)=\emptyset$, which is possible from Lemmas 3.3 and 3.5. Applying Lemma 2.3, one get the desired codes with length $g_{q}(4, d)+1$. This completes the proof of Theorem 1.1.

REFERENCES

[1] Belov B. I., V. N. Logachev, V. P. Sandimirov. Construction of a class of linear binary codes achieving the Varshamov-Griesmer bound. Problems of Info. Transmission, 10 (1974), No 3, 211-217.
[2] Dodunekov S. M. Optimal linear codes. Doctor of Mathematical Sciences Dissertation, Institute of Mathematics, Sofia, 1985.
[3] Hamada N., T. Maruta. An improvement to the achievement of the Griesmer bound. Serdica J. Computing, 4 (2010), 301-320.
[4] Hill R. Optimal linear codes. In: Cryptography and Coding II (Ed. C. Mitchell), Oxford Univ. Press, Oxford, 1992, 75-104.
[5] Hill R., E. Kolev. A survey of recent results on optimal linear codes. In: Combinatorial Designs and their Applications (Eds F. C. Holroyd et al.), Chapman \& Hall/CRC, Res. Notes Math., 403 (1999), 127-152.
[6] Hirschfeld J. W. P. Projective Geometries over Finite Fields. Clarendon Press, 2nd ed., Oxford, 1998.
[7] Huffman W. C., V. Pless. Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge, 2003.
[8] Kanazawa R., T. Maruta. On optimal linear codes over \mathbb{F}_{8}. Electronic J. Combin, 18 (2011), \#P34.
[9] Maruta T. On the minimum length of q-ary linear codes of dimension four. Discrete Math., 208/209 (1999), 427-435.
[10] Maruta T. On the nonexistence of q-ary linear codes of dimension five. Des. Codes Cryptogr., 22 (2001), 165-177.
[11] Maruta T. Griesmer bound for linear codes over finite fields.
http://www.geocities.jp/mars39geo/griesmer.htm.
Department of Mathematics
and Information Sciences
Osaka Prefecture University
Sakai, Osaka 599-8531, Japan
Received February 15, 2013
e-mail: maruta@mi.s.osakafu-u.ac.jp

