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CONSTRUCTION OF OPTIMAL LINEAR CODES

BY GEOMETRIC PUNCTURING∗

Tatsuya Maruta

Dedicated to the memory of S.M. Dodunekov (1945–2012)

Abstract. Geometric puncturing is a method to construct new codes
from a given [n, k, d]q code by deleting the coordinates corresponding to
some geometric object in PG(k − 1, q). We construct [gq(4, d), 4, d]q and
[gq(4, d)+1, 4, d]q codes for some d by geometric puncturing, where gq(k, d) =
∑k−1

i=0

⌈

d/qi
⌉

. These determine the exact value of nq(4, d) for q3−2q2−q+1 ≤
d ≤ q3 − 2q2 − (q + 1)/2 for odd prime power q ≥ 7; q3 − 2q2 − q + 1 ≤ d ≤
q3 − 2q2 − q/2 for q = 2h, h ≥ 3 and for 2q3 − 5q2 + 1 ≤ d ≤ 2q3 − 5q2 + 3q
for prime power q ≥ 7, where nq(k, d) is the minimum length n for which an
[n, k, d]q code exists.

1. Introduction. We denote by F
n
q the vector space of n-tuples over

Fq, the field of q elements. A q-ary linear code C of length n and dimension k (an
[n, k]q code) is a k-dimensional subspace of F

n
q . An [n, k, d]q code C is an [n, k]q
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code with minimum weight d. The weight of a vector x ∈ F
n
q , denoted by wt(x), is

the number of nonzero coordinate positions in x. So, d = min{wt(c) > 0 | c ∈ C}.
A fundamental problem in coding theory is to find nq(k, d), the minimum

length n for which an [n, k, d]q code exists. The exact values of nq(4, d) have been
determined for all d for q ≤ 5 except the cases (q, d) = (5, 81), (5, 82), (5, 161),
(5, 162). See [11] for the updated tables of nq(k, d) for some small q and k. We
tackle the problem to find nq(4, d) for q ≥ 7, see [9] for the known results on
nq(4, d). The Griesmer bound (see [7]) gives a lower bound on nq(k, d):

nq(k, d) ≥ gq(k, d) :=
k−1
∑

i=0

⌈

d

qi

⌉

,

where ⌈x⌉ denotes the smallest integer greater than or equal to x. An [n, k, d]q
code C is called Griesmer if it attains the Griesmer bound, i.e. n = gq(k, d).

Geometric puncturing is a method to construct new codes from a given
[n, k, d]q code by deleting the coordinates corresponding to some geometric object
in PG(k − 1, q), which is a generalization of the well-known idea to construct
Griesmer codes from a given simplex code Sk,q (or some copies of Sk,q) by deleting
the coordinates corresponding to some subspaces of PG(k − 1, q), see Section 2.
We prove the following results by geometric puncturing.

Theorem 1.1. There exist [gq(4, d) + 1, 4, d]q codes for d = q3 − 2q2 −
(q + 1)/2 for odd q ≥ 7 and for d = q3 − 2q2 − q/2 for even q ≥ 8.

Theorem 1.2. There exist [gq(4, d), 4, d]q codes for d = 2q3 − 5q2 +
q, 2q3 − 5q2 + 2q and 2q3 − 5q2 + 3q for q ≥ 7.

Theorem 1.3. There exist [gq(4, d) + 1, 4, d]q codes for d = 2q3 − 5q2 −
(s − 3)q for 3 ≤ s ≤ q − 1, q ≥ 7.

As for Theorem 1.1, we pose the following conjecture, which is known to
be true for q = 3, 4, 5.

Conjecture. nq(4, d) = gq(4, d) + 1 for q3 − 2q2 − q + 1 ≤ d ≤ q3 − 2q2

for q ≥ 7.

Recall that the existence of an [n, k, d]q code implies the existence of an
[n− 1, k, d− 1]q code. The residual codes of [gq(4, d), 4, d]q codes for the values of
d, q in Theorem 1.1 have parameters [q2 − q − 1, 3, q2 − 2q]q, which do not exist.
Thus nq(4, d) ≥ gq(4, d) + 1 for q3 − 2q2 − q + 1 ≤ d ≤ q3 − 2q2 for q ≥ 3. Hence,
Theorems 1.1, 1.2 and 1.3 yield the following.

Corollary 1.4. (1) nq(4, d) = gq(4, d) + 1 for
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• q3 − 2q2 − q + 1 ≤ d ≤ q3 − 2q2 − (q + 1)/2 for odd q ≥ 7;

• q3 − 2q2 − q + 1 ≤ d ≤ q3 − 2q2 − q/2 for even q ≥ 8.

(2) nq(4, d) = gq(4, d) for 2q3 − 5q2 + 1 ≤ d ≤ 2q3 − 5q2 + 3q for q ≥ 7.
(3) nq(4, d) ≤ gq(4, d) + 1 for 2q3 − 6q2 + 3q + 1 ≤ d ≤ 2q3 − 5q2 for q ≥ 7.

Remark. As for the part (3) of Corollary 1.4, we conjecture that
nq(4, d) = gq(4, d) + 1 holds for 2q3 − 6q2 + 3q + 1 ≤ d ≤ 2q3 − 5q2 for q ≥ 7.
Actually, this is true for d = 2q3 − 5q2, 2q3 − 5q2 − 1, 2q3 − 5q2 − 2 for q = 8 [8].

2. Geometric puncturing for linear codes. We denote by PG(r, q)
the projective geometry of dimension r over Fq. A j-dimensional projective sub-
space of PG(r, q) is called a j-flat. The 0-flats, 1-flats, 2-flats and (r − 1)-flats
are called points, lines, planes and hyperplanes respectively. We denote by Fj

the set of j-flats of PG(r, q) and by θj the number of points in a j-flat, i.e.
θj = (qj+1 − 1)/(q − 1).

Let C be an [n, k, d]q code with generator matrix G having no coordinate
which is identically zero. The columns of G can be considered as a multiset
of n points in Σ = PG(k − 1, q) denoted by G. We see linear codes from this
geometrical point of view. An i-point is a point of Σ which has multiplicity i in
G. Denote by γ0 the maximum multiplicity of a point from Σ in G and let Ci

be the set of i-points in Σ, 0 ≤ i ≤ γ0. For any subset S of Σ we define the

multiplicity of S with respect to G, denoted by m(S) or mG(S), as

m(S) =

γ0
∑

i=1

i·|S∩Ci|,

where |T | denotes the number of elements in a set T . When the code is projective,
i.e. when γ0 = 1, the multiset G forms an n-set in Σ and the above m(S) is equal
to |G ∩ S|. A line l with t = m(l) is called a t-line. A t-plane and so on are
defined similarly. Then we obtain the partition Σ =

⋃γ0

i=0
Ci such that

n = m(Σ), n − d = max{m(π) | π ∈ Fk−2}.

Such a partition of Σ is called an (n, n−d)-arc of Σ. Conversely an (n, n−d)-arc
of Σ gives an [n, k, d]q code in the natural manner. Especially when Σ = Cs with
s ∈ N, C is an [sθk−1, k, sqk−1]q code, which is called an s-fold simplex code over

Fq.
For an m-flat Π in Σ we define

γj(Π) = max{m(∆) | ∆ ⊂ Π, ∆ ∈ Fj}, 0 ≤ j ≤ m.
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We denote simply by γj instead of γj(Σ). It holds that γk−2 = n − d, γk−1 = n.
When C is Griesmer, the values γj ’s are uniquely determined [10] as follows.

γj =

j
∑

u=0

⌈ d

qk−1−u

⌉

for 0 ≤ j ≤ k − 1.(2.1)

Lemma 2.1. Let C be an [n, k, d]q code with generator matrix G and let

∪γ0

i=0
Ci be the partition of Σ = PG(k−1, q) obtained from G. Assume d > qt and

that ∪i≥1Ci contains a t-flat Π. Then deleting Π from G gives an [n−θt, k, d−qt]q
code C′. When C is Griesmer, C′ is also Griesmer if and only if either d ≡ 0
(mod qt+1) or

d

qt+1
−

⌊

d

qt+1

⌋

>
1

q
.(2.2)

P r o o f. Assume ∪i≥1Ci contains a t-flat Π. Let C ′
i = (Ci \Π)∪(Ci+1∩Π)

for all i and let G be the corresponding new multiset. Then G gives an [n′ =
n − θt, k

′, d′]q code. For any hyperplane π of Σ, π meets Π in θt−1 or θt points.
So, mG(π) ≤ n′ − d′ ≤ n − d − θt−1, giving d′ ≥ d − qt. Suppose k′ ≤ k − 1.
Then, there exists a hyperplane π of Σ containing (∪i≥1Ci) \ Π. Since π meets
Π in a (t − 1)-flat, we have mG(π) = n′ + θt−1 = n − qt ≤ n − d, so d ≤ qt, a
contradiction. Hence k′ = k.
Assume C is Griesmer and let s = ⌈d/qk−1⌉. Then d can be uniquely expressed
as d = sqk−1 − (

∑k−2

i=0
diq

i) with integers di, 0 ≤ di ≤ q − 1, and we have

n = sθk−1 − (
∑k−2

i=0
diθi). Hence C′ is Griesmer if d ≡ 0 (mod qt+1). Assume

d 6≡ 0 (mod qt+1). Note that (2.2) holds if and only if dt < q − 1, for

d

qt+1
−

⌊

d

qt+1

⌋

= 1 −

∑t
i=0

diq
i

qt+1
≤ 1 −

dt

q
.

Since gq(k, d − qt) = n − θt if and only if dt < q − 1, our assertion follows. �

For a given [n, k, d]q code C and the multiset G obtained from a generator
matrix G, we say that puncturing of C by deleting some geometric object from
G is geometric. The geometric puncturing from a given simplex code by deleting
some flats is a well-known method to construct Griesmer codes. For given q, k and
d, write d = sqk−1−

∑t
i=1

qui−1, where s = ⌈d/qk−1⌉, k > u1 ≥ u2 ≥ · · · ≥ ut ≥ 1,
and at most q−1 ui’s take any given value. Let S be an s-fold simplex code with
generator matrix G. If there exist t flats Πi ∈ Fui−1 no s + 1 of which contain a
common point, then one can construct a [gq(k, d), k, d]q code from S by deleting
Π1, . . . ,Πt from G. Such codes are called Griesmer codes of Belov type [5]. The
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necessary and sufficient condition for the existence of Griesmer codes of Belov
type was found by Belov, Logachev and Sandimilov [1] for binary codes and was
generalized to q-ary linear codes by Hill [4] and Dodunekov [2] as follows.

Theorem 2.2 ([4]). There exists a [gq(k, d), k, d]q code of Belov type if

and only if

min{s+1,t}
∑

i=1

ui ≤ sk.

As a consequence of Theorem 2.2, it can be shown that for given k and q, there
exist Griesmer [n, k, d]q codes if d is large enough, see [3], [4]. Lemma 2.1 is useful
to find optimal linear codes even when C is not of Belov type as we see below.

P r o o f o f T h e o r em 1.2. Let H be a hyperbolic quadric in PG(3, q),
q ≥ 7, and let l1 and l2 be two skew lines contained in H. We further take two
skew lines l3 and l4 contained in H meeting l1 and l2 and four points P1, . . . , P4

of H so that l1 ∩ l3 = P1, l1 ∩ l4 = P2, l2 ∩ l3 = P3, l2 ∩ l3 = P4. Let l5
be the line 〈P1, P4〉 and let l6 be the line 〈P2, P3〉, where 〈χ1, χ2, . . . 〉 denotes
the smallest flat containing subsets χ1, χ2, . . . . We set C0 = l1 ∪ l2 ∪ · · · ∪ l6,
C1 = (〈l1, l3〉 ∪ 〈l1, l4〉 ∪ 〈l2, l3〉 ∪ 〈l2, l4〉 ∪H) \C0 and C2 = PG(3, q) \ (C0 ∪ C1).
Then λ0 = 6q − 2, λ1 = 5q2 − 10q + 5, λ2 = q3 − 4q2 + 5q − 2, where λi = |Ci|.
Taking the points of Ci as the columns of a generator matrix i times, we get a
Griesmer [2q3 − 3q2 + 1, 4, 2q3 − 5q2 + 3q]q code, say C. This construction is due
to [8].

Now, take a line l contained in H such that l is skew to l3 and l4. Let
l ∩ l1 = Q1, l ∩ l2 = Q2 and let δ1, . . . , δq−1 be the planes through l other than
〈l, l1〉, 〈l, l2〉. Then each δi meets l1 and l2 in the points Q1 and Q2, respectively,
and meets l3, . . . , l6 in some points out of l. Hence, we can take a line mi in δi

with mi ∩ C0 = ∅ for 1 ≤ i ≤ q − 1 such that m1 ∩ l, . . . ,mq−1 ∩ l are distinct
points. Applying Lemma 2.1 by deleting t of the lines m1, . . . ,mq−1, we get a
[n = 2q3 − 3q2 + 1 − tθ1, 4, d = 2q3 − 5q2 + 3q − tq]q code. This code is Griesmer
for t = 1, 2 giving Theorem 1.2 and satisfies n = gq(4, d) + 1 for 3 ≤ t ≤ q − 1
giving Theorem 1.3. �

An f -set F in PG(k − 1, q) is called an (f,m)-minihyper if

m = min{|F ∩ π| | π ∈ Fk−2}.

For example, a t-flat is a (θt, θt−1)-minihyper and a blocking b-set in some plane
is a (b, 1)-minihyper, see [6] for blocking sets in PG(2, q). To prove Theorem 1.1,
we generalize Lemma 2.1 to the following.
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Lemma 2.3. Let C be an [n, k, d]q code with generator matrix G and let

∪γ0

i=0
Ci be the partition of Σ = PG(k − 1, q) obtained from G. Assume ∪i>0Ci

contains an (f,m)-minihyper F such that 〈∪i>0Ci \ F 〉 = Σ. Then deleting F
from G gives an [n − f, k, d + m − f ]q code.

In the proof of Theorem 1.1, we take a blocking set on some plane as F
in Lemma 2.3. This shows that the object to be deleted from the multiset G to
get an optimal code is not necessarily a flat in PG(k − 1, q).

3. Proof of Theorem 1.1. We first assume that q = ph, h ∈ N, with
an odd prime p. A projective triangle of side m in PG(2, q) is a set B of 3(m− 1)
points on some three non-concurrent lines l1, l2, l3 such that l1∩l2, l2∩l3, l1∩l3 ∈ B;
|li ∩ B| = m for i = 1, 2, 3 and that Q1 ∈ l1 ∩ B and Q2 ∈ l2 ∩ B implies
l3 ∩ 〈Q1, Q2〉 ∈ B. Let Qq and Nq be the set of non-zero squares and non-squares
in Fq, respectively. Then, |Qq| = |Nq| = (q−1)/2, and −1 ∈ Qq if q ≡ 1 (mod q)
but −1 ∈ Nq if q ≡ 3 (mod q). In PG(2, q), q odd, there exists a projective
triangle of side (q + 3)/2 which forms a minimal blocking set, see Chap. 13 of
[6]. Such a 3(q + 1)/2-set can be constructed as follows.

Lemma 3.1 ([6]). Let R0 = P(1, 0, 0), R1 = P(0, 1, 0), R2 = P(0, 0, 1) ∈
PG(2, q), and K0 = {(0, 1, a) | a ∈ Qq} ⊂ 〈R1, R2〉, K1 = {(1, 0, b) | b ∈ Qq} ⊂
〈R0, R2〉, K2 = {(c, 1, 0) | c = −ab−1, a, b ∈ Qq} ⊂ 〈R0, R1〉. Then the 3(q+1)/2-
set K = K0 ∪ K1 ∪ K2 ∪ {R0, R1, R2} forms a projective triangle.

Lemma 3.2. There exists an element α ∈ Nq such that α − 1 ∈ Qq.

P r o o f. Let q = ph, h ∈ N, p odd prime. Suppose a − 1 ∈ Nq for all
a ∈ Nq. Then we have

∑

a∈Nq
a =

∑

a∈Nq
(a − 1), giving (q − 1)/2 ≡ 0 (mod p),

a contradiction. �

Lemma 3.3. Let C be the conic {Pt = P(1, u, u2) | u ∈ Fq} ∪ {P =
P(0, 0, 1)} in PG(2, q), q odd. Take α ∈ Nq with α − 1 ∈ Qq and let Q0 =
P(1, 0, α), Q1 = P(1, 1, α), l0 = 〈P,P0〉, l1 = 〈P,P1〉, l = 〈Q0, Q1〉, Q =
P(0, 1, 0) = l ∩ ℓP , where ℓP is the tangent to C at P . Then, there exists a

projective triangle T contained in l0 ∪ l1 ∪ l with P0, P1, Q 6∈ T .

P r o o f. Take non-zero elements s, t ∈ Fq so that s ∈ Qq, t ∈ Nq for q ≡ 1
(mod q) and that s ∈ Nq, t ∈ Qq for q ≡ 3 (mod q), and let σ be the projectivity
of PG(2, q) given by

σ(P(x, y, z)) = P(sx + ty, ty, αsx + αty + z)

for X = P(x, y, z) ∈ PG(2, q). Then the three points R0, R1, R2 in Lemma 3.1
are transformed by σ to Q0, Q1, P , respectively. For a ∈ Qq, σ(P(0, 1, a)) =
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P(1, 1, α + at−1) 6= P1 since α − 1 ∈ Qq and −at−1 ∈ Nq. For b ∈ Qq,
σ(P(1, 0, b)) = P(1, 0, α + bs−1) 6= P0, for −bs−1 ∈ Qq. For c = −ab−1 with
a, b ∈ Qq, σ(P(c, 1, 0)) = P(cs + t, t, (cs + t)α) 6= Q since ab−1 ∈ Qq and
ts−1 ∈ Nq. Hence, for the projective triangle K in Lemma 3.1, we have σ(K) = T
as desired. �

A projective triad of side m in PG(2, q) is a set B of 3m − 2 points on
some three concurrent lines l1, l2, l3 through a given point P such that P ∈ B;
|li ∩ B| = m for i = 1, 2, 3 and that Q1 ∈ l1 ∩ B and Q2 ∈ l2 ∩ B implies
l3 ∩ 〈Q1, Q2〉 ∈ B.

For q = 2h with h ≥ 3, let tr(x) = x + x2 + · · · + x2h−1

be the trace
function over F2. Let Ti = {a ∈ Fq, tr(a) = i} for i = 0, 1. In PG(2, q), q even,
there exists a projective triad of side (q + 2)/2 which forms a minimal blocking
set [6]. Such a (3q + 2)/2-set can be constructed as follows.

Lemma 3.4 ([6]). For q = 2h, h ≥ 3, let P0 = P(0, 0, 1), P1 =
P(0, 1, 0), P2 = P(1, 0, 0), P3 = P(1, 1, 0) ∈ PG(2, q), and K1 = {(0, 1, a) | a ∈
T0} ⊂ 〈P0, P1〉, K2 = {(1, 0, a) | a ∈ T0} ⊂ 〈P0, P2〉, K3 = {(1, 1, a) | a ∈ T0} ⊂
〈P0, P3〉. Then the (3q + 2)/2-set K = K1 ∪ K2 ∪ K3 ∪ {P0} forms a projective

triad.

Lemma 3.5. Let {Q,Q1, Q2, Q3} be a (4, 2)-arc in PG(2, q) and let

li = 〈Q,Qi〉, i = 1, 2, 3. Then, there exists a projective triad T on l1 ∪ l2 ∪ l3 with

Q1, Q2, Q3 6∈ T .

P r o o f. Let P0, P1, P2, P3,K be as in Lemma 3.4 and take three points
R1 = P(0, 1, s), R2 = P(1, 0, t), R3 = P(1, 1, u) with s, t, u ∈ T1. Then P0, R1,
R2, R3 form a (4, 2)-arc, for s + t ∈ T0 for s, t ∈ T1. Take a projectivity σ so that
σ(P0) = Q and σ({R1, R2, R3}) = {Q1, Q2, Q3}. Then, σ(K) = T is a projective
triad on l1 ∪ l2 ∪ l3 with Q1, Q2, Q3 6∈ T . �

Let H = V(x0x1 + x2x3) be a hyperbolic quadric in Σ = PG(3, q). Take
P (0, 0, 1, 0) ∈ H and π = V(x3) (tangent plane at P ). Putting C0 = (H∪π)\{P}
and C1 = Σ \ C0, we get a Griesmer [q3 − q2 + 1, 4, q3 − 2q2 + q]q code, say C.
Note that K contains no line, for γ1 = q by (2.1). Instead, we take a blocking
set B in the plane δ = V(x0 + x1) through P as F in Lemma 2.3 so that B is a
projective triangle of side (q + 3)/2 for odd q and that B is a projective triad of
side (q + 2)/2 for even q. Since δ ∩C0 consists of a conic, say O, and the tangent
ℓ = δ ∩ π of O at P , we need to take B in δ so that B ∩ (O ∪ ℓ) = ∅, which
is possible from Lemmas 3.3 and 3.5. Applying Lemma 2.3, one get the desired
codes with length gq(4, d) + 1. This completes the proof of Theorem 1.1. �
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