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ON A THEOREM BY VAN VLECK REGARDING

STURM SEQUENCES

Alkiviadis G. Akritas, Gennadi I. Malaschonok, Panagiotis S. Vigklas

Abstract. In 1900 E. B. Van Vleck proposed a very efficient method to

compute the Sturm sequence of a polynomial p (x) ∈ Z [x] by triangularizing

one of Sylvester’s matrices1 of p (x) and its derivative p′ (x). That method

works fine only for the case of complete sequences provided no pivots take

place. In 1917, A. J. Pell2 and R. L. Gordon pointed out this “weakness” in

Van Vleck’s theorem, rectified it but did not extend his method, so that it

also works in the cases of: (a) complete Sturm sequences with pivot, and (b)
incomplete Sturm sequences.

Despite its importance, the Pell-Gordon Theorem for polynomials inQ [x] has been totally forgotten and, to our knowledge, it is referenced by

us for the first time in the literature.

In this paper we go over Van Vleck’s theorem and method, modify slightly

the formula of the Pell-Gordon Theorem and present a general triangulariza-

tion method, called the VanVleck-Pell-Gordon method, that correctly com-

putes in Z [x] polynomial Sturm sequences, both complete and incomplete.

ACM Computing Classification System (1998): F.2.1, G.1.5, I.1.2.
Key words: Polynomials, real roots, Sturm sequences, Sylvester’s matrices, matrix triangu-

larization.
1If n = deg (p), the dimension of the little known matrix we are talking about is 2n × 2n, as

opposed to the widely known and used matrix of dimension (2n − 1) × (2n − 1) .
2See the link http://en.wikipedia.org/wiki/Anna_Johnson_Pell_Wheeler for a biography

of Anna Johnson Pell Wheeler.
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Both methods, Van Vleck’s and the extended one, have been imple-

mented in the freely available computer algebra system Xcas and are avail-

able for use.

1. Introduction. The Sturm sequence of a polynomial p (x) ∈ Z [x] or
p (x) ∈ Q [x], of degree n > 2, is the sequence of functions f0 (x) , f1 (x) , . . . , fk (x),
k 6 n, where f0 (x) = p (x), f1 (x) = p′ (x), and, for 2 6 j 6 k, fj (x) is the neg-
ative remainder obtained on dividing fj−2 (x) by fj−1 (x).

In other words, the Sturm sequence of p (x) results from negating the
remainders obtained in the process of finding the greatest common divisor of
p (x) and p′ (x) using the Euclidean algorithm.

If k = n, the Sturm sequence is called complete, whereas if k < n, it is
called incomplete.

We see that obtaining polynomial remainders is the major operation in
computing Sturm sequences. The most widely known and commonly used meth-
ods to compute these remainders is to use either polynomial pseudo-divisions
(explained below) in Z [x] or regular polynomial divisions in Q [x].

For example, the Sturm sequence in Z [x] of p(x) = x3 + 3x2 − 7x + 7 is
obtained by the function sturm of Xcas3

> sturm( x^3 + 3x^2 - 7x + 7 )[1]

[[1, 3,−7, 7], [3, 6,−7], [60,−84],−2912]

where to obtain the first remainder, 60x − 84, we had

to premultiply the divident times 32, that is, times the leading coefficient of the
divisor raised to the power deg (p) − deg

(

p′
)

+ 1.

In Q [x] the sequence is obtained using the function sturm of Sympy (an-
other freely available computer algebra system)

Python] import sympy

Python] x = sympy.var(’x’)

Python] sympy.sturm( x**3 + 3*x**2 - 7*x + 7 )

[x**3 + 3*x**2 - 7*x + 7, 3*x**2 + 6*x - 7, 20*x/3 - 28/3, -182/25]

In 1840 Sylvester discovered sylvester1, the most widely known and
used form of the two matrices that bear his name, and used it to compute inZ [x] the resultant of two polynomials p(x), q(x) along with the coefficients of

3
TeXmacs was used as interface thoughout this paper.
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the polynomial remainders obtained by applying Euclid’s algorithm on p(x), q(x)
[12]. The coefficients of the polynomial remainders obtained as determinants
of submatrices, subresultants, of sylvester1 are the smallest possible without
introducing rationals and without computing (integer) greatest common divisors.

In 1853 Sylvester discovered the little known matrix sylvester2 and used
it to compute in Z [x] the coefficients of the polynomial remainders obtained
by applying Sturm’s algorithm on p(x), p′(x) [13], [4].4 Again, the coefficients
of the modified5 “Euclidean” polynomial remainders obtained as determinants
of submatrices, modified subresultants, of sylvester2 are the smallest possible
without introducing rationals and without computing (integer) greatest common
divisors.

Sylvester’s result of 1853 is valid only for complete Sturm sequences,6

while the case of incomplete Sturm sequences remained open, since the signs of
the coefficients could not be correctly computed. An analogous observation was
also made by Van Vleck in 1900 and is stated as Theorem 1 in this paper.

Additionally, for complete Sturm sequences in Z [x], Van Vleck presented
in 1900 a theorem, Theorem 2 in this paper, and a computational method for com-
puting the coefficients of the polynomial remainders by triangularizing Sylvester’s
matrix sylvester2 of p (x) and p′ (x). In his method VanVleck cleverly takes
advantage of the special form of sylvester2 and successively triangularizes ma-
trices of only 3 rows, thus making his method extremely fast and suitable even
for computations done by hand [14].

However, Van Vleck’s method computes the correct sign of the coefficients
only for complete Sturm sequences, when no pivot occurs in the triangularization
process. In all other cases the sign of the coefficients may not be correct. This
was observed by Pell and Gordon ([11], p. 193) and they presented a theorem,
Theorem 3 in this paper, to correctly compute the sign of the coefficients of the
Sturm remainders in all cases.

To our knowledge, the Pell-Gordon paper was completely ignored and has
not been cited in the literature before us.

In their work, Pell and Gordon compute in Q [x] the coefficients of the
polynomials in complete or incomplete Sturm sequences as modified subresul-
tants of sylvester2 divided by appropriate powers of the leading coefficients of

4As stated in Van Vleck’s paper ([14], p. 2), Jacobi was the first to express, in 1835, the coef-
ficients of the polynomial remainders in a Sturm sequence as minors of a common determinant.
Eighteen years later, not being aware of Jacobi’s work, Sylvester obtained the same result [13].

5As stated in the opening paragraph, the polynomial remainders in Sturm’s algorithm are
the ones obtained from Euclid’s algorithm appropriately modified.

6Just as his 1840 result is valid only for complete Euclidean sequences.



392 Alkiviadis G. Akritas, Gennadi I. Malaschonok, Panagiotis S. Vigklas

the remainders; a complete example demonstrating their theorem can be found
elsewhere [7]. However, they did not generalize Van Vleck’s triangularization
method to work for incomplete sequences.

In 1988, not being aware of the 1917 paper by Pell and Gordon, Akritas
extended Van Vleck’s method for generalized polynomial remainder sequences
[2]. He used the Dodgson7-Bareiss integer-preserving triangularization method
but was not able to compute the exact signs of the polynomials in incomplete
sequences [9, 8]. An attempt to resolve this issue was undertaken in 1994 by
Akritas, E. K. Akritas and Malaschonok but the “sign problem” remained elusive
[5] — despite the fact that improvements were made regarding the computational
implementation [6].

In this paper we solve the “sign problem” and present a generalized trian-
gularization method, the VanVleck-Pell-Gordon method, which exactly computes
the sign of the polynomials in Sturm sequences, both complete and incomplete.
Our breakthrough is due to the theorem by Pell and Gordon ([11], pp. 190, 193),
and it came after Vigklas discovered their work in the scientific data bases.

The rest of the paper is organised as follows:

In Section 2 we review the theoretical background of Van Vleck’s method,
discuss various aspects of the triangularization method and provide a detailed
example, the same one that is used in Van Vleck’s paper.

Our implementation in Xcas can be found at the link http://inf-server.

inf.uth.gr/~akritas/publications/VanVleck_Triang_CompleteSeq.

In Section 3 we state the Pell-Gordon Theorem ([11], pp. 190, 193) along
with a modification of it and we incorporate the latter into Van Vleck’s trian-
gularization method as follows: To obtain the correct sign of each polynomial
remainder in the Sturm sequence — whether complete or incomplete — and to
force its coefficients to become modified subresultants — i.e., to reduce them —
the leading coefficient of each remainder is computed a second time as a modified
subresultant of Sylvester’s matrix. An example is also presented to clarify our
procedure.

Our implementation in Xcas can be found at the link http://inf-server.

inf.uth.gr/~akritas/publications/VanVleck_Pell_Gordon.

Finally, in Section 4 we present our conclusions.

7Charles Ludwidge Dodgson (1832–1898) is the same person widely known for his writing
Alice in Wonderland under the pseudonym Lewis Carroll.
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2. Van Vleck’s Theorem and the Triangularization Method

for Complete Sturm Sequences in Z [x]. For our discussion we need to
introduce the notion of the resultant (and subresultants) of two polynomials; these
polynomials will be p (x) and its derivative q (x) = p′ (x), — both in Z [x].

2.1. Polynomial Remainders with Matrix Triangularization. Van
Vleck’s method is based on the fact that polynomial remainders can be computed
by triangularizing a special matrix. If the divident is p(x) = anxn + . . . + a0, of
degree n, and the divisor is q(x) = Amxm + . . . + A0, of degree m,m < n, then
the dimension of the matrix M to be triangularized is (n − m + 2)× (n + 1) and
its rows are listed below:

M = [[Am, . . . , A0, 0, . . . , 0] , [0, Am, . . . , 0, . . . , 0] , . . . ,

[0, . . . , 0, Am, . . . , A0] , [an, . . . , a0]].

In M , the first n−m+1 rows consist of the coefficients of q (x), — shifted sequen-
tially to the right, — and the last row consists of the coefficients of p (x). After
triangularization, the last row, [an, . . . , a0], is transformed to the row [0, . . . , 0,
rk, . . . , r0] containing the coefficients of the remainder.

In the Sturm sequences we are interested in computing the polynomial
remainders negated. To obtain the negated remainders we can either negate the
remainder computed above or we can triangularize the matrix M after swapping
its last two rows; that is, the negated remainder is obtained by triangularizing
the following matrix:

M = [[Am, . . . , A0, 0, . . . , 0] , [0, Am, . . . , 0, . . . , 0] , . . . ,

[an, . . . , a0] , [0, . . . , 0, Am, . . . , A0]].

After triangularization of the above matrix its last row contains the coefficients
of the remainder negated. This last approach of computing negated remainders
is used by VanVleck in his triangularization method.

Example 1. Let p(x) = x3+3x2−7x+7 and q (x) = p′ (x) = 3x2+6x−7.
To compute, in Z [x], the remainder on dividing p (x) by q (x) we triangularize
the matrix

M = [[3, 6,−7, 0] , [0, 3, 6,−7] , [1, 3,−7, 7]] .

In Xcas the triangularization is easily performed with the help of the function
pivot(M,j,j,-j), where M [j, j] is the pivot element and −j indicates that the
rows above M [j] do not change. In our example, two pivots are executed and
the polynomial remainder is read off the last row of M2; that is, the remainder
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is r (x) = −60x + 84. (Note that in Xcas colon followed by semicolon, supresses
the printing of output.)

> M := [ [3,6,-7,0], [0,3,6,-7], [1,3,-7,7] ]:;

> M1 := pivot( M, 0, 0 ):;

> M2 := pivot( M1, 1, 1, -1 );





3 6 −7 0
0 3 6 −7
0 0 −60 84





The same result can be obtained with pseudo-division, the process by
which — in order to force the quotient and remainder to be in Z [x]8— we premul-
tiply p (x), times the leading coefficient of q(x) raised to the power degree (p) −
degree (q) + 1. Sympy has the function prem that does this for us:

Python] sympy.prem( x**3 + 3*x**2 - 7*x + 7, 3*x**2 + 6*x - 7)

-60*x + 84

By contrast, in Xcas we have to use the function rem in which case we
premultiply the divident ourselves:

> rem( 3^2 * ( [1, 3, -7, 7] ), [3, 6, -7], x)

poly1[−60, 84]

To compute the remainder negated, we triangularize the matrix M after swapping
its last two rows.

> M := [ [3, 6, -7, 0], [1, 3, -7, 7], [0, 3, 6, -7]]:;

> M1 := pivot( M, 0, 0):;

> M2 := pivot( M1, 1, 1, -1);





3 6 −7 0
0 3 −14 21
0 0 60 −84





8If in Sympy we divide p(x) = x
3 + 3x

2
− 7x + 7 by q (x) = 3x

2 + 6x − 7 in Z [x] using the
function, rem, to do the usual polynomial division, then the remainder we obtain is p(x). Indeed,
Python] sympy.rem( x**3 + 3*x**2 - 7*x + 7, 3*x**2 + 6*x - 7, domain = sympy.ZZ )

x**3 + 3*x**2 - 7*x + 7
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As we see, the result is −r (x) = 60x − 84, which is also obtained with
polynomial pseudo-division.

Python] -sympy.prem( x**3 + 3*x**2 - 7*x + 7, 3*x**2 + 6*x - 7 )

60*x - 84

2.2. Polynomial Resultants and Sylvester’s Matrices. The resul-
tant, res(p, q), of two polynomials p (x) and q(x) is defined as the product of
all the differences between the roots of the polynomials.9 That is, if p(x) =
a0(x − r1) · (x − r2) · · · (x − rn) and q(x) = b0(x − s1) · (x − s2) · · · (x − sm) then

res (p, q) = am
0 · bn

0

n
∏

j=1

m
∏

k=1

(rj − sk)

By grouping together factors, we may also rewrite the resultant as

res (p, q) = am
0

n
∏

j=1

q (rj)

or

res (p, q) = (−1)m·n bn
0

m
∏

k=1

p (sk) .

A well known result states that the vanishing of the resultant of two polynomials
is the necessary and sufficient condition for the two polynomials to have a common
root.

Example 2. The resultant of the polynomials p(x) = (x − a) · (x − b) ·
(x − c) and q (x) = (x − d) · (x − f) is the product (a−d) · (a−f) · (b−d) · (b−f) ·
(c − d) · (c − f), which can be computed by the corresponding function in Xcas.
Note that to simplify the resulting expression we have to factor it:

> factor( resultant( (x-a)*(x-b)*(x-c), (x-d)*(x-f), x ) )

(−c + f) · (d − c) · (b − f) · (b − d) · (a − f) · (a − d)

Closely related to the resultant are the so-called Sylvester ’s matrices
sylvester1, of dimension (m + n) × (m + n), and sylvester2, of dimension
2 · max(m,n) × 2 · max(m,n).

9Note that res(p, q) = (−1)deg(p)·deg(q) res (q, p).
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In Xcas, the matrix sylvester1 is constructed by the built-in function
sylvester, and its determinant defines the resultant of two polynomials.10 On the
other hand, the matrix sylvester2 is constructed by our own function
sylvester2,11 and its determinant may differ in sign from the resultant — as
is the case for the two polynomials of the above example. Indeed, the determi-
nant of sylvester1 is identical to the resultant of the two polynomials,

> factor( det( sylvester1( (x-a)*(x-b)*(x-c), (x-d)*(x-f), x) ) )

(−c + f) · (d − c) · (b − f) · (b − d) · (a − f) · (a − d)

whereas the determinant of sylvester2 has a different sign

> factor( det( sylvester2( (x-a)*(x-b)*(x-c), (x-d)*(x-f), x) ) )

(c − f) · (d − c) · (b − f) · (b − d) · (a − f) · (a − d)

Assuming n = degree (p) > degree (q) = m, we next describe the two Sylvester

matrices.

Sylvester’s matrix sylvester1 consists of two groups of rows, the first one
with m rows and the second one with n. Concatenation of the two groups yields
matrix sylvester1.

In the first row of the first group (of m rows) are the coefficients of p(x)
with m − 1 trailing zeros. The second row in this group differs from the first
one in that its elements have been rotated to the right by one. A total of m − 1
rotations are needed to construct the first group of rows.

In the first row of the second group (of n rows) are the coefficients of q(x)
with n−1 trailing zeros. The second row in this group differs from the first one in
that its elements have been rotated to the right by one. A total of n−1 rotations
are needed to construct the first group of rows.

Sylvester’s matrix, sylvester2 consists of n pairs of rows. In the first row
of the first pair are the coefficients of p (x) whereas in the second row of the first
pair are the coefficients of q (x); n−m zeros have been prepended to q (x) to also
make it of degree n.

Both rows in the first pair have 2n−(n+1) trailing zeros and both rows of
the last pair have 2n− (n + 1) leading zeros. The second pair of rows differs from

10The assignment sylvester := sylvester1 changes the name of the built-in function to
sylvester1, which will be used in the sequel for clarity.

11It can be found in the link http://inf-server.inf.uth.gr/~akritas/publications/

sylvester2.
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the first one in that the elements of both rows have been rotated to the right by
one. A total of 2n− (n + 1) rotations are needed to construct Sylvester’s matrix.

Example 3. For the two polynomials p(x) = x3 + 3x2 − 7x + 7 and
q (x) = 3x2 + 6x − 7, the Sylvester matrices are:

> S := sylvester1( x^3 + 3x^2 - 7x + 7, 3x^2 + 6x - 7, x )













1 3 −7 7 0
0 1 3 −7 7
3 6 −7 0 0
0 3 6 −7 0
0 0 3 6 −7













and

> S := sylvester2( x^3 + 3x^2 - 7x + 7, 3x^2 + 6x - 7, x )

















1 3 −7 7 0 0
0 3 6 −7 0 0
0 1 3 −7 7 0
0 0 3 6 −7 0
0 0 1 3 −7 7
0 0 0 3 6 −7

















Notice that for this example det(sylvester1) = − det( sylvester2). Indeed,

> det( sylvester1 )

2912

whereas

> det( sylvester2 )

−2912

2.3. Computation of Complete Sturm Sequences in Z [x] using

Sylvester’s Matrix. Sylvester presented a way to exactly compute the coef-
ficients of the polynomial remainders in complete Sturm sequences as modified
subresultants of sylvester2. This was reiterated by Van Vleck in the following
Theorem:
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Theorem 1 (Van Vleck, 1900). Consider the polynomials p (x) = cnxn +
· · ·+ c0 and q (x) = dmxm + · · ·+ d0, in Z [x], with cn 6= 0, dm 6= 0, n > m. Then
the successive polynomials that are formed from the first 2j rows, j = 2, . . . , n, of
Sylvester’s matrix (sylvester2) for p (x) , q (x), constitute a Sturm sequence.

The proof of this theorem can be found in Van Vleck’s paper [14] and
elsewhere ([3], p. 263).

Notice that the theorem makes no reference to the Sturm sequence being
complete, but clearly this is what Van Vleck had in mind. Sylvester himself was
aware of incomplete sequences, but did not attempt to compute the correct sign
of their polynomials. As stated in the next Section, this problem was solved by
Pell and Gordon in 1917 [11].

For a given j, 2 6 j 6 n, the n − j + 1 coefficients of the polynomial
remainder are computed as determinants of n − j + 1 submatrices of the matrix
s formed by the first 2j rows of Sylvester’s matrix S = sylvester2(p,q). All of
these submatrices have the same first 2j − 1 columns, whereas the 2j th column
is successively the (2j − 1 + k) th column of s, where k = 1, . . . , n − j + 1. The
determinants of these 2j × 2j submatrices are the modified subresultants.

Below we demonstrate VanVleck’s theorem with two examples:

• In the first example the polynomials p(x) = x3 + 3x2 − 7x + 7 and q(x) =
p′ (x) = 3x2 + 6x − 7 form a complete Sturm sequence and the coefficients
computed as modified subresultants agree both in sign and value with the
corresponding ones computed with Sturm’s algorithm, i.e., with the function
sturm of Xcas.

• In the second example, the polynomials p(x) = 2x5 − 3x4 − 3 and q(x) =
p′ (x) = 10x4 − 12x3 form an incomplete Sturm sequence in which case:

i. the sequence we compute is somehow “wrong” in the sense that we
compute 2 polynomials of degree 1,

ii. except for the last term of the sequence, det(S), the coefficients com-
puted as modified subresultants agree in value and sign with the corre-
sponding ones computed with Sturm’s algorithm, i.e., with the function
sturm of Xcas,

iii. det(S) does not agree in sign with the last term of the sequence com-
puted with the function sturm. Actually, det(S)/2 = res(p, q) =
11459232, i.e., the determinant of S divided by 2 equals the resultant
of p(x), q(x).
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Example 4 (Complete Sturm Sequence). For the polynomials p(x) =
x3+3x2−7x+7 and q(x) = p′ (x) = 3x2+6x−7 we form S = sylvester2(p,q):

> p := x^3 + 3x^2 - 7x + 7; q := diff( p, x, 1)

x3 + 3 · x2 − 7 · x + 7, 3 · x2 + 6 · x − 7

> S := sylvester2( p, q, x )

















1 3 −7 7 0 0
0 3 6 −7 0 0
0 1 3 −7 7 0
0 0 3 6 −7 0
0 0 1 3 −7 7
0 0 0 3 6 −7

















Following VanVleck’s theorem, for j = 2 we take the submatrix s of S,
consisting of the first 2j = 4 rows of S and, since n = 3, we will compute the
coefficients of the polynomial remainder of degree n − j = 1.

> s := subMat( S, 0, 0, 3, 7 )









1 3 −7 7 0 0
0 3 6 −7 0 0
0 1 3 −7 7 0
0 0 3 6 −7 0









The n − j + 1 = 2 coefficients we are after will be computed as the determi-
nants, the subresultants, of two 2j × 2j submatrices of s. Both these submatrices
have the same first 2j − 1 columns, whereas the 2j th column is successively the
(2j − 1 + k)-th column of s, where k = 1, . . . , n − j + 1.

Since n = 3, j = 2, all four rows of s have at least 2n−(n+1)−j+1 = 1
trailing zero. We now have to compute the two coefficients of the first degree
polynomial as determinants of two 4 × 4 submatrices of s, where the first three
columns stay the same, whereas the fourth one will be, respectively, the fourth
and fifth column of s.

To form the first 4 × 4 submatrix of s, in Xcas we use the function
subMat(M,a,b,c,d), where M[a,b] is the upper left corner and M[c,d] is the
lower right corner of the submatrix we want to define.

So the first coefficient is 60:

> det( subMat( s, 0, 0, 3, 3 ) )

60
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For the second coefficient we have to swap the 4 th and 5 th columns of s before
we form the submatrix; for this we use the function colSwap in Xcas.

So the second coefficient is −84:

> det( subMat( colSwap( s, 3, 4 ), 0, 0, 3, 3 ) )

−84

In other words we now have the first polynomial remainder of the Sturm sequence
and it is 60x − 84.

For j = 3 we see that the degree of the remainder is n − j = 0, and to
compute it we take the determinant of the whole matrix S.

Hence, the constant term is −2912:

> det(S)

−2912

Therefore, the polynomial coefficients computed as subresultants agree both in
sign and value with those computed below with the help of sturm:

> sturm(p)[1]

[[1, 3,−7, 7], [3, 6,−7], [60,−84],−2912]

Note that in this case the determinant of S is not equal to the resultant
of the two polynomials

det(S) 6= res(x3 + 3x2 − 7x + 7, 3x2 + 6x − 7) = 2912.

Indeed, the signs are opposite

> resultant( x^3 + 3x^2 - 7x + 7, 3x^2 + 6x - 7, x)

2912

Example 5 (Incomplete Sturm Sequence). For the polynomials p(x) =
2x5 − 3x4 − 3 and q(x) = p′ (x) = 10x4 − 12x3 we form S = sylvester2(p,q):

> p := 2x^5 - 3x^4 - 3; q := 10x^4 - 12x^3;

2 · x5 − 3 · x4 − 3, 10 · x4 − 12 · x3

> S := sylvester2( p, q, x )
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































2 −3 0 0 0 −3 0 0 0 0
0 10 −12 0 0 0 0 0 0 0
0 2 −3 0 0 0 −3 0 0 0
0 0 10 −12 0 0 0 0 0 0
0 0 2 −3 0 0 0 −3 0 0
0 0 0 10 −12 0 0 0 0 0
0 0 0 2 −3 0 0 0 −3 0
0 0 0 0 10 −12 0 0 0 0
0 0 0 0 2 −3 0 0 0 −3
0 0 0 0 0 10 −12 0 0 0

































Following VanVleck’s theorem, for j = 2 we take the submatrix s of S, consisting
of the first 2j = 4 rows of S and, since n = 5, we compute the coefficients of the
polynomial remainder of degree n − j = 3.

> s := subMat( S, 0, 0, 3, 9 )









2 −3 0 0 0 −3 0 0 0 0
0 10 −12 0 0 0 0 0 0 0
0 2 −3 0 0 0 −3 0 0 0
0 0 10 −12 0 0 0 0 0 0









The n−j+1 = 4 coefficients we are after will be computed as the determinants of
four 2j × 2j submatrices of s. All of these submatrices have the same first 2j − 1
columns, whereas the 2j-th column is successively the (2j − 1 + k) th column of
s, where k = 1, . . . , n − j + 1.

Since n = 5, j = 2, all four rows of s have at least 2n− (n+1)− j +1 = 3
trailing zeros. The first coefficient is 72:

> det( subMat( s, 0, 0, 3, 3 ) ) / 2

72

The second, third and fourth coefficients are, respectively, 0, 0 and 300:

> det( subMat( colSwap( s, 3, 4 ), 0, 0, 3, 3 ) ) / 2

0

> det( subMat( colSwap( s, 3, 5 ), 0, 0, 3, 3 ) ) / 2

0

> det( subMat( colSwap( s, 3, 6 ), 0, 0, 3, 3 ) ) / 2
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300

Therefore, the first remainder of the Sturm sequence is r1 (x) = 72x3 + 300.
Next, we set j = 3, we take the submatrix s of S, consisting of the first

2j = 6 rows of S and, since n = 5, we will try to compute the coefficients of the
polynomial remainder of degree n − j = 2.

> s := subMat( S, 0, 0, 5, 9 )

















2 −3 0 0 0 −3 0 0 0 0
0 10 −12 0 0 0 0 0 0 0
0 2 −3 0 0 0 −3 0 0 0
0 0 10 −12 0 0 0 0 0 0
0 0 2 −3 0 0 0 −3 0 0
0 0 0 10 −12 0 0 0 0 0

















The n−j+1 = 3 coefficients we are after will be computed as the determinants of
three 2j × 2j submatrices of s. All of these submatrices have the same first 2j − 1
columns, whereas the 2j th column is successively the (2j − 1 + k) th column of
s, where k = 1, . . . , n − j + 1.

Since n = 5, j = 3, all six rows of s have at least 2n− (n+1)− j +1 = 2
trailing zeros. The first coefficient is 0:

> det( subMat( s, 0, 0, 5, 5 ) ) / 2

0

The second, and third coefficients are, respectively, 2160 and −2592:

> det( subMat( colSwap( s, 5, 6 ), 0, 0, 5, 5 ) ) / 2

2160

> det( subMat( colSwap( s, 5, 7 ), 0, 0, 5, 5 ) ) / 2

−2592

Here, instead of a polynomial remainder of degree 2 we obtained one of degree 1;
namely r2 (x) = 2160x− 2592. This indicates that we encountered an incomplete
Sturm sequence.

Next, we set j = 4, we take the submatrix s of S, consisting of the first
2j = 8 rows of S and, since n = 5, we compute again the coefficients of the
polynomial remainder of degree n − j = 1.

> s := subMat( S, 0, 0, 7, 9 )
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























2 −3 0 0 0 −3 0 0 0 0
0 10 −12 0 0 0 0 0 0 0
0 2 −3 0 0 0 −3 0 0 0
0 0 10 −12 0 0 0 0 0 0
0 0 2 −3 0 0 0 −3 0 0
0 0 0 10 −12 0 0 0 0 0
0 0 0 2 −3 0 0 0 −3 0
0 0 0 0 10 −12 0 0 0 0

























The two coefficients are, respectively, −64800 and 77760:

> det( subMat( s, 0, 0, 7, 7 ) ) / 2

−64800

> det( subMat( colSwap( s, 7, 8 ), 0, 0, 7, 7 ) ) / 2

77760

and the (second) first degree remainder is r3 (x) = −64800x + 77760.
Finally, for j = 5 we evaluate the determinant of the whole matrix S to

compute the constant term of the sequence. Its value is 11459232:

> det(S) / 2

11459232

Note that in this case the reduced value of the determinant of S differs in
sign from the last term of the Sturm sequence as computed by the function sturm

— their difference in value is not important:

> sturm( 2x^5 - 3x^4 - 3 )[1]

[[2,−3, 0, 0, 0,−3], [10,−12, 0, 0, 0], [72, 0, 0, 300], [2160,−2592],−1782139760640]

Therefore, we cannot compute the members of an incomplete Sturm se-
quence using modified subresultants.

In this particular example, it so happens that the reduced value of the
determinant of S equals the resultant of the two polynomials

det(S)/2 = res(2x5 − 3x4 − 3, 10x4 − 12x3).

Indeed,

> resultant( 2x^5 - 3x^4 - 3, 10x^4 - 12 x^3, x )

11459232
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It should be noted that — when we compute the coefficients of the remain-
ders in an incomplete sequence using modified subresultants — the appearance
of multiple remainders of the same degree is quite normal; however, of those
remainders with the same degree only the first one is used. As we will see in
the generalized triangularization method, the same phenomenon appears there as
well, in the form of redundant rows.

2.4. Van Vleck’s Triangularization Method for Computing in Z [x]
Complete Sturm Sequences. Computing the coefficients of the polynomial
remainders in a Sturm sequence by evaluating modified subresultants is quite a
tedious process if carried out by hand and quite time consuming if carried out by
computer.

Van Vleck realized that one does not have to compute modified subre-
sultants of Sylvester’s matrix sylvester2 in order to find the coefficients of the
polynomial remainders in the Sturm sequence. It suffices to simply triangularize
sylvester2 using integer preserving transformations, in which case the modified
subresultants (the coefficients) can be read off the triangularized matrix. We have
the following ([14], p. 8):

Theorem 2 (Van Vleck, 1899). Let p(x) and q(x) = p′ (x) be two poly-
nomials of degree n and n − 1 respectively and let S be their Sylvester matrix
sylvester2(p,q). If, using integer preserving transformations, we bring S into
its upper triangular form, T (S), then the even rows of T (S) furnish the coeffi-
cients of the successive polynomial remainders of the Sturm sequence. The coeffi-
cients taken from a given row are multiplied times (−1)k, where k is the number
of negative elements on the principal diagonal above the row under consideration.

Van Vleck takes advantage of the special form of Sylvester’s matrix and
computes T (S) by updating only two rows at a time; to update these two rows
he triangularizes a matrix of only three rows, a fact that makes his procedure
extremely efficient. To keep the coefficients small he removes at each step the
greatest common divisor (content) of the elements in both updated rows, and
uses those reduced coefficients in the next three-row matrix12.

Van Vleck’s computation is justified by the fact that in Sylvester’s matrix
the elements (entries) of any two consecutive rows are the same as those of the
two preceding rows.

Therefore, if in any row the values of the elements are changed by adding
a multiple of the preceding row, exactly the same change can be made in the

12It turns out that computationally this is the fastest way to proceed [10].
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elements of each alternate row thereafter, without altering the value of any modied
subresultant that appears as a coefficient in one of the polynomials of the Sturm
sequence.

In conclusion, Van Vleck presented a very efficient procedure for comput-
ing Sturm sequences in Z [x], and we next demonstrate it with the same example
used by him ([14], pp. 8–9).

Warning 1. Although it is not stated in his paper, Van Vleck also applies
the sign rule — mentioned in his theorem — to the triangularized smaller matrices
of three rows. Namely, the coefficients taken from a given row are multiplied times
(−1)k, where k is the number of negative elements on the principal diagonal above
the row under consideration.

Example 6. To compute the Sturm sequence of p (x) = x6 + x5 − x4 −

x3 + x2 − x + 1 we form the matrix S = sylvester2(p, p′):

> S:=sylvester2(x^6+x^5-x^4-x^3+x^2-x+1, 6x^5+5x^4-4x^3-3x^2+2x-1,x)











































1 1 −1 −1 1 −1 1 0 0 0 0 0
0 6 5 −4 −3 2 −1 0 0 0 0 0
0 1 1 −1 −1 1 −1 1 0 0 0 0
0 0 6 5 −4 −3 2 −1 0 0 0 0
0 0 1 1 −1 −1 1 −1 1 0 0 0
0 0 0 6 5 −4 −3 2 −1 0 0 0
0 0 0 1 1 −1 −1 1 −1 1 0 0
0 0 0 0 6 5 −4 −3 2 −1 0 0
0 0 0 0 1 1 −1 −1 1 −1 1 0
0 0 0 0 0 6 5 −4 −3 2 −1 0
0 0 0 0 0 1 1 −1 −1 1 −1 1
0 0 0 0 0 0 6 5 −4 −3 2 −1











































The first two rows stay the same, since there is no element to be eliminated
in the first column.

In the second column there is one element to be eliminated. So, we form
the 3 × 12 matrix M consisting of the second, third and fourth rows of S .

> M := subMat( S, 1, 0, 3, 11 )





0 6 5 −4 −3 2 −1 0 0 0 0 0
0 1 1 −1 −1 1 −1 1 0 0 0 0
0 0 6 5 −4 −3 2 −1 0 0 0 0




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Using the function pivot of Xcas we obtain, in two steps, matrix M2, the
triangularized version of M .

> M1 := pivot( M, 0, 1 )





0 6 5 −4 −3 2 −1 0 0 0 0 0
0 0 1 −2 −3 4 −5 6 0 0 0 0
0 0 6 5 −4 −3 2 −1 0 0 0 0





> M2 := pivot( M1, 1, 2, -1 )





0 6 5 −4 −3 2 −1 0 0 0 0 0
0 0 1 −2 −3 4 −5 6 0 0 0 0
0 0 0 17 14 −27 32 −37 0 0 0 0





The coefficients in the second and third row of M2 cannot be further
reduced because the gcd of the elements in each row is 1. Moreover, since the
signs of the diagonal elements are all positive nothing will change. Hence, the last
two rows of M2 will replace the third and fourth rows of S .

> S[2] := M2[1]:; S[3] := M2[2]:; S










































1 1 −1 −1 1 −1 1 0 0 0 0 0
0 6 5 −4 −3 2 −1 0 0 0 0 0
0 0 1 −2 −3 4 −5 6 0 0 0 0
0 0 0 17 14 −27 32 −37 0 0 0 0
0 0 1 1 −1 −1 1 −1 1 0 0 0
0 0 0 6 5 −4 −3 2 −1 0 0 0
0 0 0 1 1 −1 −1 1 −1 1 0 0
0 0 0 0 6 5 −4 −3 2 −1 0 0
0 0 0 0 1 1 −1 −1 1 −1 1 0
0 0 0 0 0 6 5 −4 −3 2 −1 0
0 0 0 0 0 1 1 −1 −1 1 −1 1
0 0 0 0 0 0 6 5 −4 −3 2 −1











































The next matrix with three rows is formed by the two newly inserted rows
in S , rotated appropriately when needed, and we repeat the pivoting procedure
described above:

> M = row(S, 3), rotate( row(S, 2), -1), rotate( row(S, 3), -1 )]





0 0 0 17 14 −27 32 −37 0 0 0 0
0 0 0 1 −2 −3 4 −5 6 0 0 0
0 0 0 0 17 14 −27 32 −37 0 0 0







On a Theorem by Van Vleck Regarding Sturm Sequences 407

> M1 := pivot( M, 0, 3 )




0 0 0 17 14 −27 32 −37 0 0 0 0
0 0 0 0 −48 −24 36 −48 102 0 0 0
0 0 0 0 17 14 −27 32 −37 0 0 0





> M2 := pivot( M1, 1, 4, -1 )




0 0 0 17 14 −27 32 −37 0 0 0 0
0 0 0 0 −48 −24 36 −48 102 0 0 0
0 0 0 0 0 −264 684 −720 42 0 0 0





First we remove the content from each one of the second and third rows
of M2

> M2[1] := M2[1] / content( M2[1] )




0 0 0 17 14 −27 32 −37 0 0 0 0
0 0 0 0 −8 −4 6 −8 17 0 0 0
0 0 0 0 0 −264 684 −720 42 0 0 0





> M2[2] := M2[2] / content( M2[2] )




0 0 0 17 14 −27 32 −37 0 0 0 0
0 0 0 0 −8 −4 6 −8 17 0 0 0
0 0 0 0 0 −44 114 −120 7 0 0 0





Next we take care of the signs: The second row of M2 will replace the
fifth row of S as is, since the diagonal element above −8 is positive; however, the
third row of M2 will change sign since there is one negative element in the second
row, on the diagonal.

> S[4] := M2[1]:; S[5] := -M2[2]:; S










































1 1 −1 −1 1 −1 1 0 0 0 0 0
0 6 5 −4 −3 2 −1 0 0 0 0 0
0 0 1 −2 −3 4 −5 6 0 0 0 0
0 0 0 17 14 −27 32 −37 0 0 0 0
0 0 0 0 −8 −4 6 −8 17 0 0 0
0 0 0 0 0 44 −114 120 −7 0 0 0
0 0 0 1 1 −1 −1 1 −1 1 0 0
0 0 0 0 6 5 −4 −3 2 −1 0 0
0 0 0 0 1 1 −1 −1 1 −1 1 0
0 0 0 0 0 6 5 −4 −3 2 −1 0
0 0 0 0 0 1 1 −1 −1 1 −1 1
0 0 0 0 0 0 6 5 −4 −3 2 −1













































408 Alkiviadis G. Akritas, Gennadi I. Malaschonok, Panagiotis S. Vigklas

Again, the next matrix with three rows is formed by the two newly inserted
rows in S , rotated appropriately when needed:

> M := [row(S, 5), rotate( row(S, 4), -1 ), rotate( row(S, 5), -1 )]





0 0 0 0 0 44 −114 120 −7 0 0 0
0 0 0 0 0 −8 −4 6 −8 17 0 0
0 0 0 0 0 0 44 −114 120 −7 0 0





Continuing as indicated above we finally obtain the triangularized Sylvester
matrix T (S), shown below:

> S[6] := [0, 0, 0, 0, 0, 0, -16, 18, -6, 11, 0, 0]:;

> S[7] := [0, 0, 0, 0, 0, 0, 0, -86, 138, 31, 0, 0]:;

> S[8] := [0, 0, 0, 0, 0, 0, 0, 0, -30, -46, 43, 0]:;

> S[9] := [0, 0, 0, 0, 0, 0, 0, 0, 0, 506, -173, 0]:;

> S[10] := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -331, 253]:;

> S[11] := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]:;

> TS := S











































1 1 −1 −1 1 −1 1 0 0 0 0 0
0 6 5 −4 −3 2 −1 0 0 0 0 0
0 0 1 −2 −3 4 −5 6 0 0 0 0
0 0 0 17 14 −27 32 −37 0 0 0 0
0 0 0 0 −8 −4 6 −8 17 0 0 0
0 0 0 0 0 44 −114 120 −7 0 0 0
0 0 0 0 0 0 −16 18 −6 11 0 0
0 0 0 0 0 0 0 −86 138 31 0 0
0 0 0 0 0 0 0 0 −30 −46 43 0
0 0 0 0 0 0 0 0 0 506 −173 0
0 0 0 0 0 0 0 0 0 0 −331 253
0 0 0 0 0 0 0 0 0 0 0 1











































From the even rows of the triangularized matrix we extract the coefficients
of the polynomials in the Sturm sequence, correcting the sign as indicated in
Theorem 2.

Namely, the coefficients of the Sturm sequence are:

• from row 1:
[

1, 1, −1, −1, 1, −1, 1
]

• from row 2:
[

6, 5, −4, −3, 2, −1
]
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• from row 4:
[

17, 14, −27, 32, −37
]

• from row 6:
[

−44, 114, −120, 7
]

⇐signs changed=

• from row 8:
[

−86, 138, 31
]

• from row 10:
[

506, −173
]

• from row 12: −1 ⇐sign changed=

Indeed, using the function sturm of Xcas we see that, whereas the coeffi-
cients may differ in value (as expected, since Van Vleck removes the content from
each polynomial), their signs are identical.

> sturm( x^6 + x^5 - x^4 - x^3 + x^2 - x + 1 )[1]

[[1, 1, - 1, - 1, 1, - 1, 1], [6, 5, - 4, - 3, 2, - 1], [17, 14,

- 27, 32, - 37], [ - 44, 114, - 120, 7], [- 516, 828, 186], [9108,

- 3114], - 127359]

We have implemented Van Vleck’s procedure in Xcas in the function
sturmSeqVanVleck, which can be found at the link http://inf-server.inf.

uth.gr/~akritas/publications/VanVleck_Triang_CompleteSeq.

The implentation of sturmSeqVanVleck is quite straightforward; it follows
Example 6 and uses the following additional functions:

• my_sqrfree2, which converts a polynomial into a product of square free
factors — a necessary condition for computing its Sturm sequence,

• sylvester2, which constructs the appropriate Sylvester matrix of two poly-
nomials,

• row2poly, which converts a matrix row to a polynomial of a specified degree,

• smallMatrixVanVleckRule, which applies Van Vleck’s sign rule to correctly
compute the signs of the coefficients in the triangularized 3-row matrices,
and

• sturmSeqVanVleckRule, which applies Van Vleck’s sign rule to correctly
compute the signs of the coefficients in the final triangularized matrix.

However, instead of removing the content of each polynomial, in sturmSeqVanVleck

we follow Sylvester’s practice for complete sequences and reduce the coefficients
by dividing out the diagonal element “three” rows up [1]. This way the coefficients



410 Alkiviadis G. Akritas, Gennadi I. Malaschonok, Panagiotis S. Vigklas

computed with Van Vleck’s method are modified subresultants and they are the
same as those obtained with the sturm function of Xcas.

3. The Generalized Triangularization Method for Comput-

ing in Z [x] Sturm Sequences of Any Kind. As we saw in Example 5 of
Section 2.3, for incomplete Sturm sequences we cannot compute the exact signs
of the polynomial coefficients using modified subresultants. Therefore, we cannot
easily extend Van Vleck’s triangularization method for complete Sturm sequences
to general Sturm sequences, i.e., sequences that can be either complete or in-
complete. The reason is that, in trying to compute general Sturm sequences by
triangularizing sylvester2 matrices, we faced the following major problems:

• In general, the coefficients computed by the matrix triangularization process
are not modified subresultants and their signs may not be correct.

• We cannot use Theorem 2, Van Vleck’s “sign rule”, since it computes the cor-
rect signs of the polynomial coefficients of only complete Sturm sequences.

To wit, to correctly compute the signs of the polynomial coefficients of a
general Sturm sequence, we clearly have to use another “sign rule” — one that
is valid for both complete and incomplete Sturm sequences. This new rule is
provided by the following theorem by Pell and Gordon [11], which also makes use
of the same matrix sylvester2, used by Van Vleck:

Theorem 3 (Pell-Gordon, 1917). Let

A = a0x
n + a1x

n−1 + · · · + an

and

B = b0x
n + b1x

n−1 + · · · + bn

be two polynomials of the n th degree. Modify the process of finding the highest
common factor of A and B by taking at each stage the negative of the remainder.
Let the i th modified remainder be

R(i) = r
(i)
0 xmi + r

(i)
1 xmi−1 + · · · + r(i)

mi

where (mi+1) is the degree of the preceding remainder, and where the first (pi−1)

coefficients of R(i) are zero, and the pi th coefficient ̺i = r
(i)
pi−1 is different from
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zero. Then for k = 0, 1, . . . ,mi the coefficients r
(i)
k

are given by13

(1) r
(i)
k =

(−1)ui−1 (−1)ui−2 · · · (−1)u1 (−1)vi−1

̺
pi−1+1
i−1 ̺

pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺p1

0

· Det (i, k) ,

where ui−1 = 1 + 2 + · · · + pi−1, vi−1 = p1 + p2 + · · · + pi−1 and

Det (i, k) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 a2 · · · · · · · · a2vi−1 a2vi−1+1+k

b0 b1 b2 · · · · · · · · b2vi−1 b2vi−1+1+k

0 a0 a1 · · · · · · · · a2vi−1−1 a2vi−1+k

0 b0 b1 · · · · · · · · b2vi−1−1 b2vi−1+k

· · · · · · · · · · · · ·

0 0 0 · · · a0 a1 · · · avi−1 avi−1+1+k

0 0 0 · · · b0 b1 · · · bvi−1 bvi−1+1+k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

P r o o f. The proof by induction of this theorem depends on two Lemmas
and can be found in the original paper by Pell and Gordon.

As indicated elsewhere [7], we use a modification of formula (1) to compute
the coefficients of the Sturm sequence. In our case p0 = deg (A) − deg (B) = 1,
since B is the derivative of A and, hence, the modified formula is shown below
with the changes appearing in bold:

(2) r
(i)
k =

(−1)ui−1 (−1)ui−2 · · · (−1)u1 (−1)u0 (−1)vi−1

̺
pi−1+pi−degDiffer

i−1 ̺
pi−2+pi−1

i−2 · · · ̺p1+p2
1 ̺p0+p1

0

·
Det (i, k)

̺
−1

,

where ̺−1 = a0, the leading coefficient of A and degDiffer is the differ-
ence between the expected degree mi and the actual degree of the remainder.

It should be noted that in the general case p0 = deg (A) − deg (B) and

that the division
Det (i, k)

̺−1
is possible if the leading coefficient of A is the only

element in the first column of sylvester2. Moreover, if the leading coefficient of
A is negative we work with the polynomial negated and at the end we reverse the
signs of all polynomials in the sequence. �

To see how equation (2) of Theorem 3 is used in the general triangulariza-
tion process, suppose that we have computed with the latter the i-th polynomial
remainder

(3) s(i) = s
(i)
0 xmi + s

(i)
1 xmi−1 + · · · + s(i)

mi
,

13It is understood in (1) that ̺0 = b0, p0 = 0, and that ai = bi = 0 for i > n.
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where s
(i)
k

∈ Z, 0 ≤ k ≤ mi; in general, the coefficients s
(i)
k

are not modified
subresultants and we are not sure about the correctness of their signs.

To compute the correct sign of s(i) we evaluate equation (2) only for the

leading coefficient r
(i)
j , that is, for k = j where j is the smallest integer for which

Det (i, j)

̺−1
6= 0. Then if sgn(s

(i)
j ) 6= sgn(r

(i)
j ) we set s(i) = −s(i).

Having computed the correct sign of s(i) we can force its coefficients to

equal the corresponding modified subresultants by multiplying s(i) times

∣

∣

∣

∣

∣

Det (i, j)

s
(i)
j · ̺−1

∣

∣

∣

∣

∣

.

In other words, by computing just one determinant, Det (i, j), and forming the
product

(4)

∣

∣

∣

∣

∣

Det (i, j)

s
(i)
j · ̺−1

∣

∣

∣

∣

∣

· s(i)

we obtain the i th Sturmian polynomial remainder, whose k-th coefficient is the
modified subresultant shown below:14

(5)
(−1)ui−1(−1)ui−2 · · · (−1)u1(−1)u0(−1)vi−1

sgn(̺i−1)pi−1+pi−degDiffer sgn(̺i−2)pi−2+pi−1 · · · sgn(̺1)p1+p2 sgn(̺0)p0+p1

·
Det (i, k)

̺
−1

.

This is so, because of the existing ratio equality

(6)

∣

∣

∣

∣

∣

Det (i, j)

s
(i)
j · ̺−1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

Det (i, k)

s
(i)
k · ̺−1

∣

∣

∣

∣

∣

that holds for j < k ≤ mi; recall that s
(i)
j is the leading coefficient of the polyno-

mial remainder s(i), in equation (3), computed by the generalized matrix trian-
gularization method.

From the above it is obvious that for our purposes we only need expression
(5). The overhead in this generalized method is that we have to keep track of
all the variables in Theorem 3 and compute one determinant for each polynomial
remainder. An example will make everything clear.

Example 7. Using the generalized matrix triangularization method we
will compute the incomplete Sturm sequence of the polynomial p(x) = 2x5−3x4−

14Positive leading coefficients will not affect the sign of expression (5) and, hence, they can
be ignored alltogether.
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3, the same one used in Example 5 of Section 2.3, where we failed to successfully
complete the same task using modified subresultants because the sign of the last
term was wrong. We choose this example to save space and energy, since we
have already seen the sylvester2 matrix and have computed all the required
determinants.

We begin by constructing the sylvester2 matrix S, which will remain
unchanged so that we can compute the various modified subresultants; we also
make a copy of it S′, which will be triangularized.

As in Van Vleck’ procedure we form the 3-row matrices M,M1,M2 and
from the last one we obtain a candidate for the first remainder, namely 72x3+300;
moreover, the second and third rows of M2 will replace, respectively, the 3 rd and
4 th row of S′.

> M := subMat( S, 1, 0, 3, 9 )





0 10 −12 0 0 0 0 0 0 0
0 2 −3 0 0 0 −3 0 0 0
0 0 10 −12 0 0 0 0 0 0





> M1 := pivot( M, 0, 1 )





0 10 −12 0 0 0 0 0 0 0
0 0 −6 0 0 0 −30 0 0 0
0 0 10 −12 0 0 0 0 0 0





> M2 := pivot( M1, 1, 2, -1 )





0 10 −12 0 0 0 0 0 0 0
0 0 −6 0 0 0 −30 0 0 0
0 0 0 72 0 0 300 0 0 0





> S’
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































2 −3 0 0 0 −3 0 0 0 0
0 10 −12 0 0 0 0 0 0 0
0 0 −6 0 0 0 −30 0 0 0
0 0 0 72 0 0 300 0 0 0
0 0 2 −3 0 0 0 −3 0 0
0 0 0 10 −12 0 0 0 0 0
0 0 0 2 −3 0 0 0 −3 0
0 0 0 0 10 −12 0 0 0 0
0 0 0 0 2 −3 0 0 0 −3
0 0 0 0 0 10 −12 0 0 0

































To see if we have to correct the sign of the polynomial or to change its
coefficients to modified subresultants we have to evaluate expression (5) which
now becomes

(7)
(−1)u0 (−1)v0

sgn (̺0)
p0+p1−degDiffer1

·
Det (i, k)

̺−1
.

The variables are as follows:

• i = 1, for the first remainder,

• ̺−1 = 2, for the leading coefficient of p(x),

•
Det (1, 0)

̺−1
= 72, as computed in Example 5; this implies that the degree of

the first remainder is 3, that is dr1 = 3,

• degDiffer1 = 0, where in the terminology of Theorem 3, degDiffer1 = m1 −

dr1 = 3 − 3 = 0,

• p0 = 1, the number of leading zeros in the derivative of p(x) if the former is
also considered of degree 5; this is equivalent to p0 = deg(p) − deg(p′) = 1,
the difference in degrees between p(x) and its derivative p′(x) = 10x4−12x3,

• p1 = 1, since p1 = deg(p′) − dr1 = 1,15

• p_List = [p0] = [1]; we need this list so that we can compute variable v,

• u0 = 1, since u0 = 1 + 2 + · · · + p0 = 1 as stated in Theorem 3,

15
Caveat: Even though we need p1 in order to compute expression (7), it should be appended

to p_List in the next round, when i = 2.
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• u_List = [u0] = [1]; each member of the list will be used as an exponent to
−1 as shown in expression 5,

• v0 = 1, since v0 = p0 + p1 + · · · + p0 = 1 as stated in Theorem 3, and

• sgn(̺0) = sgn(10) = 1, for the sign of the leading coefficient of p′(x).16

Replacing the variables in expression (7) with their values we obtain 72,
which exactly matches — both in sign and value — the leading coefficient of the
remainder we computed by matrix triangularization. Hence, the first Sturmian
remainder is r(1) = 72x3 + 300.

To compute the second Sturmian remainder we use rows 3 and 4 of S′ to
form the 3-row matrices M,M1,M2 and from the last one we obtain a candidate
for the second remainder, namely 1800x − 2160. Obviously, the second row of
M2 will replace the 5 th row of S′ but the 3 rd row of M2 will now replace the
7 th row of S′!17 Row 6 in S′ is the reduntant row — equivalent to the extra
polynomial of degree 1 we obtained in Example 5 — and so can be replaced again
by the second row of M2 rotated by one.

> M := [[0,0,0,72,0,0,300,0,0,0],[0,0,0,-6,0,0,0,-30,0,0],

[0,0,0,0,72,0,0,300,0,0]]





0 0 0 72 0 0 300 0 0 0
0 0 0 −6 0 0 0 −30 0 0
0 0 0 0 72 0 0 300 0 0





> M1 := pivot( M, 0, 2 )





0 0 0 72 0 0 300 0 0 0
0 0 0 0 0 0 1800 −2160 0 0
0 0 0 0 72 0 0 300 0 0





> M2 := rowSwap( M1, 1, 2 )





0 0 0 72 0 0 300 0 0 0
0 0 0 0 72 0 0 300 0 0
0 0 0 0 0 0 1800 −2160 0 0





16If the leading coefficient is positive, its sign will not play any role in the evaluation of the
sign of expression (7); hence, it can be left out altogether.

17If we start enumeration with 0, the number of the row in S
′ that will be replaced is indicated

by the number of leading zeros in the 3 rd row of M2.
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> S’

































2 −3 0 0 0 −3 0 0 0 0
0 10 −12 0 0 0 0 0 0 0
0 0 −6 0 0 0 −30 0 0 0
0 0 0 72 0 0 300 0 0 0
0 0 0 0 72 0 0 300 0 0
0 0 0 0 0 72 0 0 300 0
0 0 0 0 0 0 1800 −2160 0 0
0 0 0 0 10 −12 0 0 0 0
0 0 0 0 2 −3 0 0 0 −3
0 0 0 0 0 10 −12 0 0 0

































To see if we have to correct the sign of the polynomial or to change its
coefficients to modified subresultants we have to evaluate again expression (5)
which now becomes

(8)
(−1)u1 (−1)u0 (−1)v1

sgn (̺1)
p1+p2−degDiffer2 sgn (̺0)

p0+p1
·
Det (i, k)

̺−1
.

Below are the new variables and the ones that changed :

• i = 2, for the second remainder,

•
Det (2, 1)

̺−1
= 2160, as computed in Example 5; this implies that the degree

of the second remainder is 1, that is dr2 = 1,

• degDiffer2 = 1, where in the terminology of Theorem 3, degDiffer2 = m2 −

dr2 = 2 − 1 = 1,

• p2 = 2, since p2 = dr1 − dr2 = 3 − 1 = 2,

• p_List = [p0, p1] = [1, 1]; we need this list so that we can compute variable
v,

• u1 = 1, since u1 = 1 + 2 + · · · + p1 = 1 as stated in Theorem 3,

• u_List = [u0, u1] = [1, 1]; each member of the list will be used as an expo-
nent to −1 as shown in expression 5,
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• v1 = 2, since v1 = p0 + p1 + · · · + p1 = 1 + 1 = 2 as stated in Theorem 3,
and

• sgn(̺1) = sgn(72) = 1, for the sign of the leading coefficient of the first
remainder r(1)(x).

Replacing the variables in expression (8) with their values we obtain 2160,
which means that the sign of the polynomial 1800x−2160 was correctly computed
by matrix triangularization. However, the values of the coefficients are not mod-
ified subresultants. This is easily rectified by multiplying 1800x − 2160 times
2160/1800. Indeed, we have

> simplify( ( 2160 / 1800 ) * ( 1800x - 2160 ) )

2160 · x − 2592

and checking back with Example 5 we see that −2592 is also a modified subresul-

tant. Therefore, the second Sturmian remainder is r(2) = 2160x − 2592.
To compute the third, and final, remainder in the Sturm sequence we

form matrix M , which now has 4 rows!18 This is one of the new features in this
extended method that we describe. The rows of M can be formed either from rows
of S′ or from the correctly computed remainders. We follow the first approach
and form matrices M,M1,M2,M3. From M3, the triangularized form of matrix
M , we obtain as candidate remainder the constant 2475194112000, which replaces
the last row of S′. The 2 nd and 3 rd rows of M3 replace, respectively, the 8 th
and 9 th row of S′.

> m1:=[0,0,0,0,0,0,1800,-2160,0,0]:;

> m2:=[0,0,0,0,0,0,0,1800,-2160,0]:;

> m3 := [0,0,0,0,0,0,0,0,1800,-2160]:;

> m4 := [0,0,0,0,0,0,72,0,0,300]:;

> M := [m1, m2, m3, m4]









0 0 0 0 0 0 1800 −2160 0 0
0 0 0 0 0 0 0 1800 −2160 0
0 0 0 0 0 0 0 0 1800 −2160
0 0 0 0 0 0 72 0 0 300









> M1 := pivot( M, 0, 6 )

18That is, M becomes a matrix with (3 + degDiffer) rows.
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







0 0 0 0 0 0 1800 −2160 0 0
0 0 0 0 0 0 0 1800 −2160 0
0 0 0 0 0 0 0 0 1800 −2160
0 0 0 0 0 0 0 155520 0 540000









> M2 := pivot( M1, 1, 7, -1 )









0 0 0 0 0 0 1800 −2160 0 0
0 0 0 0 0 0 0 1800 −2160 0
0 0 0 0 0 0 0 0 1800 −2160
0 0 0 0 0 0 0 0 335923200 972000000









> M3 := pivot( M2, 2, 8, -2 )









0 0 0 0 0 0 1800 −2160 0 0
0 0 0 0 0 0 0 1800 −2160 0
0 0 0 0 0 0 0 0 1800 −2160
0 0 0 0 0 0 0 0 0 2475194112000









> S’

































2 −3 0 0 0 −3 0 0 0 0
0 10 −12 0 0 0 0 0 0 0
0 0 −6 0 0 0 −30 0 0 0
0 0 0 72 0 0 300 0 0 0
0 0 0 0 72 0 0 300 0 0
0 0 0 0 0 72 0 0 300 0
0 0 0 0 0 0 1800 −2160 0 0
0 0 0 0 0 0 0 1800 −2160 0
0 0 0 0 0 0 0 0 1800 −2160
0 0 0 0 0 0 0 0 0 2475194112000

































To see if we have to correct the sign of the constant polynomial
2475194112000 or to change it to a modified subresultant we have to evaluate
again expression (5) which now becomes

(9)
(−1)u2 (−1)u1 (−1)u0 (−1)v2

sgn (̺2)
p2+p3−degDiffer3 sgn (̺1)

p1+p2 sgn (̺0)
p0+p1

·
Det (i, k)

̺−1
.

Below are the new variables and the ones that changed :
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• i = 3, for the second remainder,

•
Det (3, 0)

̺−1
= 11459232, as computed in Example 5; this implies that the

degree of the third remainder is 0, that is dr3 = 0,

• degDiffer3 = 0, where in the terminology of Theorem 3, degDiffer3 = m3 −

dr3 = 0 − 0 = 0,

• p3 = 1, since p3 = dr2 − dr3 = 1 − 0 = 1,

• p_List = [p0, p1, p2] = [1, 1, 2]; we need this list so that we can compute
variable v,

• ui−1 = u2 = 3, since u2 = 1 + 2 + · · · + p2 = 3 as stated in Theorem 3,

• u_List = [u0, u1, u2] = [1, 1, 3]; each member of the list will be used as an
exponent to −1 as shown in expression 5,

• vi−1 = v2 = 4, since v2 = p0 + p1 + · · · + p2 = 1 + 1 + 2 = 4 as stated in
Theorem 3, and

• sgn(̺2) = sgn(2160) = 1, for the sign of the leading coefficient of the first
remainder r(2)(x).

Replacing the variables in expression (9) with their values we obtain
−11459232, which means that our constant with correct sign is −2475194112000.
Obviously, this value — computed by matrix triangularization — is not a modi-
fied subresultant. This is easily rectified by multiplying −2475194112000 times
11459232/2475194112000. Indeed, we have

11459232

2475194112000
· (−2475194112000) = −11459232

and the third member of the Sturm sequence is r(3) = −11459232.

Therefore the Sturm sequence of p(x) = 2x5 − 3x4 − 3 is
[

2x5 − 3x4 − 3, 10x4 − 12x3, 72x3 + 300, 2160x − 2592, −11459232
]

,

which agrees with the result obtained with the function sturm of Xcas.19

> sturm( 2x^5 - 3x^4 - 3 )[1]

19The last term of the Sturm sequence in Xcas is not a modified subresultant! However, this
is just a minor detail.
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[[2,−3, 0, 0, 0,−3], [10,−12, 0, 0, 0], [72, 0, 0, 300], [2160,−2592],−1782139760640]

We have implemented version 1 of the generalized matrix triangularization
(VanVleck-Pell-Gordon) procedure in Xcas in the function
sturmSeqVanVleckPellGordon. This function also uses sylvester2, my_sqrfree2
and row2poly as does sturmSeqVanVleck. However, instead of Van Vleck’s “sign
rule”, it uses the functions:

• gaps, which is activated when a pivot takes place in the process of trian-
gularizing the 3-row matrix M . It uses the theorem by Pell and Gordon to
compute the correct sign of the remainder and also to force its coefficients
to become modified subresultants,

• compute_correct_sign, used by gaps only when a pivot took place in a
complete sequences. It also uses the Pell-Gordon theorem to determine the
correct sign of the remainder.

The whole program is at the link http://inf-server.inf.uth.gr/~akritas/

publications/VanVleck_Pell_Gordon.

4. Conclusions. We have presented two matrix triangularization meth-
ods for computing, in Z [x], the Sturm sequence of a polynomial p(x).

The first method is due to Van Vleck and applies only to complete Sturm
sequences. In this method Van Vleck’s own “sign rule” is used to compute the cor-
rect signs of the polynomials in the sequence. To reduce the size of the coefficients
— instead of removing the content as was done by Van Vleck — we use an old
theorem by Sylvester and force the coefficients to become modified subresultants.
This method is extremely fast and — based on the assumption that the Sturm
sequence will be complete — it should be used when there are no missing terms
in the polynomial whose Sturm sequence we want to compute.

The second method — called VanVleck-Pell-Gordon — was developed by us
and applies to both complete and incomplete Sturm sequences. We use Theorem
3 of 1917, by Pell and Gordon, not only to compute the correct sign of the
polynomial remainders, but also to force their coefficients to become modified
subresultants. The extra cost in this method is that we have to compute one
determinant (of increasing dimensions) for each polynomial remainder. However,
this cost turns out to be negligible given the probabilistic algorithm of Xcas for
computing large determinants.
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