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GENERALIZED DISCERNIBILITY FUNCTION BASED

ATTRIBUTE REDUCTION IN INCOMPLETE DECISION

SYSTEMS

Vu Van Dinh, Nguyen Long Giang, Vu Duc Thi

Abstract. A rough set approach for attribute reduction is an important
research subject in data mining and machine learning. However, most at-
tribute reduction methods are performed on a complete decision system
table. In this paper, we propose methods for attribute reduction in static
incomplete decision systems and dynamic incomplete decision systems with
dynamically-increasing and decreasing conditional attributes. Our methods
use generalized discernibility matrix and function in tolerance-based rough
sets.

1. Introduction. Rough set theory was introduced by Zdzislaw Pawlak
[9]. In practical problems, there are many cases where decision tables contain
missing values for at least one conditional attribute in the value set of that at-
tribute and these decision tables are called incomplete decision tables. To extract
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decision rules directly from incomplete decision tables, Marzena Kryszkiewicz [4]
has extended the equivalent relation in classical rough set theory to tolerance
relation and proposed tolerance rough set. Using this tolerance rough set, many
researchers have proposed different concepts of reduct based on different measures
and proposed attribute reduction methods in incomplete decision tables: reduct
based on generalized decision [4], reduct based on positive region [14], reduct based
on information quantity [2], reduct based on metric [5, 6], distribution reduct, as-
signment reduct [10, 13], reduct based on discernibility matrix [7], reduct based on
tolerance matrix [3].

Based on the idea of discernibility matrix and discernibility function in
traditional rough set theory as proposed by Skowron [8], in this paper we introduce
generalized discernibility matrix and function. Using generalized discernibility
function, we propose attribute reduction methods in two cases: static incomplete
decision tables and dynamic incomplete decision

The structure of this paper is as follows. Section 2 presents some basic
concepts in tolerance rough set and some concepts of reduct in incomplete decision
tables. Section 3 presents attribute reduction methods in incomplete decision
tables based on generalized discernibility function. Section 4 presents attribute
reduction methods in incomplete decision tables in additional cases and removes
the attribute set. The conclusion and future research are presented in the last
section.

2. Basic concepts. In this section, we present some basic concepts
about tolerance rough set which have been proposed by Marzena Kryszkiewicz [4]
and some concepts about reducts of incomplete decision tables.

An information system is a pair IS = (U,A), where the set U denotes
the universe of objects and A is the set of attributes, i.e., mappings of the form
a : U → Va. Va is called the value set of attribute a. If Va contains a missing
value for at least one attribute a ∈ A, then IS is called an incomplete information
system, otherwise it is complete. Further on, we will denote the missing value
by ∗. An incomplete decision table (IDS) is an incomplete information system
IDS = (U,A ∪ {d}) where d, d /∈ A and ∗ /∈ Vd, is a distinguished attribute called
decision attribute, and the elements of A are called conditional attributes.

Let IIS = (U,A) be an incomplete information system. For any attribute
set P ⊆ A. We define a binary relation on U as follows:

SIM (P )

=
{

(u, v) ∈ U × U
∣

∣∀a ∈ P, f (u, a) = f (v, a) ∨ f (u, a) = ′∗′ ∨f (v, a) = ′∗′
}

.
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SIM (P ) is a tolerance relation on U . It can be easily shown that SIM (P )
= ∩a∈P SIM ({a}). Let U/SIM (P ) denote the family sets {SP (u) |u ∈ U } where
SP (u) = {v ∈ U |(u, v) ∈ SIM (P )} is the maximal set of objects which are pos-
sibly indistinguishable by P with u. A member SP (u)in U/SIM (P ) is called a
tolerance class or a granule of information. It is clear that the tolerance classes
in U/SIM (P ) do not constitute a partition of U in general. They constitute a
covering of U , i.e., SP (u) 6= ∅ for every u ∈ U , and ∪u∈USP (u) = U .

For any B ⊆ A, X ⊆ U , B-lower approximation ofX is the set BX =
{u ∈ U |SB (u) ⊆ X } = {u ∈ X |SB (u) ⊆ X }, B-upper approximation of X is
the set BX = {u ∈ U |SB (u) ∩ X 6= ∅} = ∪{SB (u) |u ∈ U }, B-boundary region
of X is the set BNP (X) = PX − PX. For such approximation set, B-positive
region with respect to {d} is defined as

POSB ({d}) =
⋃

X∈U/{d}

(BX).

Let IDS = (U,A ∪ {d}) be an incomplete decision table. For any B ⊆ A
and u ∈ U , ∂B(u) = {fd (v) |v ∈ SB(u)} is called the generalized decision in IDS.
If |∂C(u)| = 1 for any u ∈ U then IDS is consistent, otherwise it is inconsistent.
According to the definition of positive region, IDS is consistent if and only if
POSA({d}) = U , otherwise it is inconsistent.

It has been shown that one of the crucial concepts in rough set theory is
reduct or decision reduct. In general, reducts are minimal subsets (with respect
to the set inclusion relation) of attributes which contain a necessary portion of
information about the set of all attributes. In the sequel, we present some concepts
about reducts of incomplete decision tables which are related to this paper.

According to Kryszkiewicz [4], a reduct of an incomplete decision table is
a minimal subset of the conditional attribute set which preserves the generalized
decision for all objects. The reduct is defined as follows:

Definition 1 [4]. Let IDS = (U,A ∪ {d}) be an incomplete decision
table. If R ⊆ A satisfies:

(1) ∂R (u) = ∂A (u) for any u ∈ U ,
(2) ∀r ∈ R, R′ = R − {r} is not satisfied (1),

then R is called a reduct of IDS based on generalized decision.

Example 1. Let IDS = (U,A ∪ {d}) be an incomplete decision table
where U = {u1, u2, u3, u4, u5}, A = {a1, a2, a3} as Table 1 with a1 (Price), a2

(Colours), a3 (Size), a4 (Resolution).
With u1 ∈ U we have that Sa1

(u1) = {u1, u3, u4, u5}, Sa2
(u1) = {u1, u2,

u3, u5}, Sa3
(u1) = {u1, u2, u4, u5, u6}, Sa4

(u1) = {u1, u2, u4, u6}.
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Table 1. An example incomplete decision table

Television Price Colour Size Resolution Quality(d)

u1 High Black Large Low Good

u2 Low ∗ Large Low Good

u3 ∗ ∗ Small High Bad

u4 High Brown Large Low Good

u5 ∗ ∗ Large High Excellent

u6 Low Brown Large ∗ Good

Hence, SA(u1) = Sa1
(u1) ∩ Sa2

(u1) ∩ Sa3
(u1) ∩ Sa4

(u1) = {u1}.

Similar, SA (u2) = {u2, u6}, SA (u3) = {u3}, SA (u4) = {u4}, SA (u5) =
{u5, u6}, SA (u6) = {u2, u5, u6} .

Consequently, ∂A (u1) = ∂A (u2) = ∂A (u4) = {Good}, ∂A (u3) = {Bad},
∂A (u5) = ∂A (u6) = {Good,Excellent}. So IDS is inconsistent.

3. Attribute reduction in incomplete decision tables based

on generalized discernibility function. Attribute reduction in decision
systems is the process of selecting the smallest subset of the attribute set condi-
tions that preserve the classification information of decision tables. In traditional
rough set theory, Skowron [8] has introduced discernibility matrix and discerni-
bility function to find reduct. Based on this approach, we propose generalized
discernibility matrix and generalized discernibility function to find reduct of in-
complete decision systems.

Definition 2. Let IDS = (U,A ∪ {d}) be an incomplete decision table
where R ⊆ A and |U | = n. Generalized discernibility matrix on the attribute set
R is MR = (mij)n×n , element mij is defined as

(1) mij = 1 d (uj) /∈ ∂R (ui) ,

(2) mij = 0 d (uj) ∈ ∂R (ui) .

Note. If R = φ then mi j = 0. In general, MR is not a symmetric matrix
because there exists ui, uj ∈ U such that d (uj) /∈ ∂R (ui) and d (ui) ∈ ∂R (uj).

Example 2. From Example 1, generalized discernibility matrix on the
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attribute set R is

MA =

















0 0 1 0 1 0
0 0 1 0 1 0
1 1 0 1 1 1
0 0 1 0 1 0
0 0 1 0 0 0
0 0 1 0 0 0

















.

Definition 3. Let X = (xi j)m×n and Y = (yi j)m×n. Relations ” � ”
and ” � ” are defined as:

(1) X � Y if and only if xij ≤ yij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n,
(2) X � Y if and only if xij ≥ yij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Proposition 1. Let IDS = (U,A ∪ {d}) be an incomplete decision table
and P,Q ⊆ A. If P ⊆ Q then MP � MQ.

Example 3. From Example 2, assume that R = {a1, a2, a3}, then

MR =

















0 0 1 0 1 0
0 0 1 0 1 0
1 1 0 1 1 1
0 0 1 0 1 0
0 0 1 0 0 0
0 0 1 0 0 0

















from Example 2 we have MR ≺ MA.

Definition 4. Let IDS = (U,A ∪ {d}) be an incomplete decision table,
R ⊆ A and MR = (mi,j)n×n is generalized discernibility matrix on the attribute
set R. Then generalized discernibility function on the attribute set R, denoted by
DIS (R), is defined as:

DIS (R) =

n
∑

i=1

n
∑

j=1

mij for any 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Example 4. For generalized discernibility matrix MA as Example 2, the
generalized discernibility function is:

DIS (A) = 2 + 2 + 5 + 2 + 1 + 1 = 13.

From Definition 4 and Proposition 1, we have the following Proposition:
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Proposition 2. Let IDS = (U,A ∪ {d}) be an incomplete decision table
and P,Q ⊆ A. If P ⊆ Q then DIS (Q) ≥ DIS (P ).

Proposition 3. Let IDS = (U,A ∪ {d}) be an incomplete decision table,
MA is generalized discernibility matrix and DIS (A) is generalized discernibility
function. Then DIS (R) = DIS(A) if and only if ∂R (u) = ∂A (u) for u ∈ U.

P r o o f. i) Suppose that there exists ui0 ∈ U such that ∂R (ui0) 6= ∂A (ui0).
Let ∂A (ui0) ⊆ ∂R (ui0). Then there exists d (uj0) such that d (uj0) ∈ ∂R (ui0) ∧
d (uj0) /∈ ∂A (ui0). Since d (uj0) /∈ ∂A (ui0) we have

(1) mi0j0 = 1, mi0j0 ∈ MA.

Since

(2) mi0j0 = 0, mi0j0 ∈ MR.

Since R ⊆ A we have MR ≺ MA, From (1) and (2) it follows that DIS (R) 6=
DIS(A), which contradicts DIS (R) = DIS(A). Consequently, the assumption
is not true and we can conclude that if DIS (R) = DIS(A) then ∂R (u) = ∂A (u)
for ∀u ∈ U .

ii) Conversely, suppose that DIS (R) 6= DIS(A). According to Proposi-
tion 1, from R ⊆ A we have MR ≺ MA. Combined with DIS (R) 6= DIS(A), it
follows that MR 6= MA. Then there exist i0 and j0 such that

(3) mi0j0 ∈ MR, mi0j0 = 0

and

(4) mi0j0 ∈ MA, mi0j0 = 1.

Since (4) we have d (uj0) /∈ ∂A (ui0). Since (3) we have d (uj0) ∈ ∂R (ui0). It
follows that ∂R (ui0) 6= ∂A (ui0) ,which contradicts ∂R (u) = ∂A (u) for ∀u ∈ U .
Consequently, the assumption is not true and we can conclude that if ∂R (u) =
∂A (u) for ∀u ∈ U then DIS (R) = DIS(A).

From i) and ii) we can conclude that DIS (R) = DIS(A) if and only if
∂R (u) = ∂A (u) for ∀u ∈ U . �

In the sequel, we present a method to find a reduct of an incomplete deci-
sion system using the generalized discernibility function. As the method of finding
reduct in traditional rough set theory, our method includes steps: definition of
reduct, definition of the importance of attributes and building an heuristic algo-
rithm to find the best reduct based on the importance of attributes. Generalized
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discernibility function is used as selection criterion in an heuristic algorithm to
find the best reduct.

Definition 5. Let IDS = (U,A ∪ {d}) be an incomplete decision table.
If R ⊆ A satisfies

(1) DIS (R) = DIS(A),
(2) ∀R′ ⊂ R, DIS

(

R′
)

6= DIS(A),
then R is called a reduct of IDS based on generalized discernibility function.

Proposition 3 shows that reduct based on generalized discernibility func-
tion is equivalent to reduct based on generalized decision function.

Definition 6. Let IDS = (U,A ∪ {d}) be an incomplete decision table,
R ⊆ A and a ∈ A − R. The importance of the attributes a with respect to the
attribute set R is defined as:

SIGout
R (a) = DIS (R ∪ {a}) − DIS (R)

Definition 7. Let IDS = (U,A ∪ {d}) be an incomplete decision table,
R ⊆ A and a ∈ R.

The importance of the attributes a with respect to the attribute set R is
defined as:

SIGin
R (a) = DIS (R) − DIS (R − {a})

From Proposition 2 we have SIGout
R (a) ≥ 0 and SIGin

R (a) ≥ 0.
Next, we propose a heuristic algorithm to find the best reduct based on

the importance of the attributes.

Algorithm 1. A heuristic algorithm to find a best reduct using general-
ized discernibility function.

Input: An incomplete decision table IDS = (U,A ∪ {d}).
Output: The best reduct R.

1. R = ∅;

// Add gradually to R attributes that have the greatest importance;

2. While DIS (R) 6= DIS(A) do

3. Begin

4. For each a ∈ A − R calculation SIGout
R (a) = DIS (R ∪ {a}) − DIS (R);

5. Select am ∈ A − R such that SIGout
R (am) = Max

a∈A−R

{

SIGout
R (a)

}

;



382 Vu Van Dinh, Nguyen Long Giang, Vu Duc Thi

6. R = R ∪ {am};

7. End;

//Remove redundant attributes in R, if any;

8. For each a ∈ R

9. If DIS (R − {a}) = DIS (R) then R = R − {a};

10. Return R;

Suppose that k is the number of condition attributes and n is the num-
ber of objects. The time complexity of MA is O

(

kn2
)

; it follows that the time
complexity of DIS (A) is O

(

kn2
)

. At the while loop from line 2 to line 7, the
time complexity of computing all of SIGR (a) is (k + (k − 1) + · · · + 1) ∗ kn2 =
(k ∗ (k − 1) /2) ∗ kn2 = O

(

k3n2
)

. The time complexity of selecting the attribute
with the greatest importance is k + (k − 1) + · · ·+ 1 = k ∗ (k − 1) /2 = O

(

k2
)

, so
the time complexity of the while loop is O

(

k3n2
)

. Similarly, the time complexity
of the for loop is O

(

k2n2
)

. Consequently, the time complexity of Algorithm 1 is
O

(

k3n2
)

.

Example 5. Let IDS = (U,A ∪ {d}) be an incomplete decision table in
Example 1. By using Algorithm 1, initialization R = ∅ and calculating:

SIGout
∅ (a1) = DIS ({a1}) − DIS (∅) = DIS ({a1}) = 0

SIGout
∅ (a2) = DIS ({a2}) − DIS (∅) = DIS ({a2}) = 0

SIGout
φ (a3) = DIS ({a3}) − DIS (φ) = DIS ({a3}) = 10

SIGout
φ (a4) = DIS ({a4}) − DIS (φ) = DIS ({a4}) = 6

Select a3 attribute with the greatest importance and R = {a3}. From
Example 4 we have DIS (A) = 13, so DIS (R) 6= DIS(A). Go to the 2nd loop
and calculate:

SIGout
a3

(a1) = DIS ({a1, a3}) − DIS ({a3}) = 10 − 10 = 0

SIGout
a3

(a2) = DIS ({a2, a3}) − DIS ({a3}) = 10 − 10 = 0

SIGout
a3

(a4) = DIS ({a3, a4}) − DIS ({a3}) = 13 − 10 = 3

Select a4 attribute with the greatest importance and R = {a3, a4}.
We have DIS ({a3, a4}) = DIS(A) = 13, go to the for loop.
Similarly, we have DIS ({a4}) 6= DIS(A) and DIS ({a3}) 6= DIS(A).

Consequently, the algorithm ends and R = {a3, a4} is a best reduct of A.
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4. Attribute reduction in incomplete decision tables when

adding and removing an attribute set.

Proposition 4. Let IDS = (U,A ∪ {d}) be an incomplete decision table.
For P,Q ⊆ A, P ∩ Q = φ and U = {u1, . . . , un}, suppose that SP∪Q (u), SP (u)
and SQ (u) are respectively the tolerance class on P ∪Q, P and Q. Then, we have
SP∪Q (u) = SP (u) ∩ SQ (u).

Example 6. Let IDS = (U,A ∪ {d}) be an incomplete decision table
in Example 1. We add the attribute set {a5, a6} where a5 (energy savings), a6

(Internet).

Table 2. An example of an incomplete decision table

Television Price Colours Size Resolution Energy savings Internet Quality(d)

u1 High Black Large Low No No Good

u2 Low ∗ Large Low Yes Yes Good

u3 ∗ ∗ Small High No No Bad

u4 High Brown Large Low ∗ No Good

u5 ∗ ∗ Large High Yes Yes Excellent

u6 Low Brown Large ∗ No No Good

Let P = {a1, a2, a3, a4}, Q = {a5, a6}. From Example 2, generalized
discernibility matrix of IDS on P is:

MP =

















0 0 1 0 1 0
0 0 1 0 1 0
1 1 0 1 1 1
0 0 1 0 1 0
0 0 1 0 0 0
0 0 1 0 0 0

















.

We calculate MP∪Q from Proposition 4. With objects u1 ∈ U we have
Sa5

(u1) = {u1, u3, u4, u6}, Sa6
(u1) = {u1, u3, u4, u6}, so SQ (u1) = {u1, u3, u4, u6}.

Otherwise, SP (u1) = {u1}, so SP∪Q (u1) = SP (u1) ∩ SQ (u1) = {u1}. Similarly,
we calculate SP∪Q (ui) for i = 2, . . . , 6.
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From Definition 2, generalized discernibility matrix of IDS on P ∪ Q is:

MP∪Q =

















0 0 1 0 1 0
0 0 1 0 1 0
1 1 0 1 1 1
0 0 1 0 1 0
1 1 1 1 0 1
0 0 1 0 1 0

















.

Proposition 5. Let IDS = (U,A ∪ {d}) be an incomplete decision table.

For Q ⊂ P ⊆ A and U = {u1, . . . , un}, suppose that MP−Q =
(

mP−Q
ij

)

n×n

and Mp =
(

mP
ij

)

n×n
is generalized discernibility matrix of IDS on P − Q and

P . Then, elements of MP−Q =
(

mP−Q
ij

)

n×n
are calculated based on elements of

Mp =
(

mP
ij

)

n×n
as follow:

(1) mP−Q
ij = 1 if mP

ij = 1 and d (uj) /∈ ∂P−Q (ui),

(2) mP−Q
ij = 0 if mP

ij = 0 or d (uj) ∈ ∂P−Q (ui).

Example 7. Let IDS = (U,A ∪ {d}) be an incomplete decision table in
Example 6, with P = {a1, a2, a3, a4, a5, a6}, Q = {a2, a4}. From Example 6 we
have:

MP =

















0 0 1 0 1 0
0 0 1 0 1 0
1 1 0 1 1 1
0 0 1 0 1 0
0 0 1 0 0 0
0 0 1 0 1 0

















.

We calculate MP−Q from Proposition 5. With the object u2 we have

∂P−Q (u2) = {Good,Excellent}. From Proposition 5, mP−Q
21

= mP−Q
22

= mP−Q
24

=

mP−Q
26

= 0. From d (u5) = Excellent ∈ {Good,Excellent} we have mP−Q
25

= 0.

From d (u3) = Bad /∈ {Good,Excellent} we have mP−Q
23

= 1. Consequently, we
have

MP−Q =

















0 0 1 0 1 0
0 0 1 0 0 0
1 1 0 1 1 1
0 0 1 0 1 0
0 0 1 0 0 0
0 0 1 0 1 0

















.
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Algorithm 2. A heuristic algorithm to find the best reduct when adding
an attribute set

Input: An incomplete decision table IDS = (U,A ∪ {d}), the best reduct
RA and an attribute set P where P ∩ A = φ.

Output: A best reduct RA∪P of the attribute set A ∪ P.

1. R = RA;

2. Calculate MA∪P from Proposition 4; Calculate DIS (A ∪ P );

3. While DIS (R) 6= DIS (A ∪ P ) do

4. Begin

For each a ∈ P −R we calculate SIGout
R (a) = DIS (R ∪ {a})−DIS (R).

DIS (R ∪ {a}) is calculated from Proposition 4;

5. Select am ∈ P − R such that SIGout
R (am) = Max

a∈P−R

{

SIGout
R (a)

}

;

6. R = R ∪ {am};

7. End;

8. For each a ∈ R

9. If DIS (R − {a}) = DIS (A ∪ P ) then R = R − {a};

10. Return R;

Suppose that p is the number of attribute of P and n is the number
of objects. From Proposition 4, the time complexity of MR∪{a} when MR is

calculated is O
(

n2
)

. So the time complexity of DIS (R ∪ {a}) when DIS (R) is
calculated is O

(

n2
)

. At the while loop from line 3 to line 7, the time complexity
to compute all of SIGout

R (a) is (p + (p − 1) + · · · + 1)∗n2 = (p ∗ (p − 1) /2)∗n2 =
O

(

p2n2
)

. The time complexity of selecting the properties that are most important
is p + (p − 1) + · · · + 1 = p ∗ (p − 1) /2 = O

(

p2
)

. So the time complexity of the
While loop is O

(

k3n2
)

. Similarly, the time complexity of the For loop is O
(

pn2
)

.
So the time complexity of Algorithm 1 is O

(

p2n2
)

. If we use Algorithm 1 to find

reduct then the time complexity is O
(

(k + p)3 n2

)

. So Algorithm 2 to find a best

reduct when adding an attribute set will reduce the time complexity.
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Example 8. From Example 5, {a3, a4} is the best reduct of incomplete
decision table in example 1. Let IDS = (U,A ∪ {d}) be an incomplete decision
table in Example 6 (Table 2) with A = {a1, a2, a3, a4, a5, a6}, by using Algorithm
2 we have:

With R = {a3, a4}, from example 6 we calculate DIS (A) = 18

SIGout
{a3,a4}

(a5) = DIS ({a3, a4, a5}) − DIS ({a3, a4}) = 18 − 13 = 5,

SIGout
{a3,a4}

(a6) = DIS ({a3, a4, a6}) − DIS ({a3, a4}) = 18 − 13 = 5.

Select the attribute a4 with the greatest importance and R = {a3, a4, a6}.
Since DIS ({a3, a4, a6}) = 18 we have DIS ({a3, a4, a6}) = DIS (A). Go to For
loop, test the attribute set R.

We have DIS ({a3, a6}) = 13, so DIS ({a3, a6}) 6= DIS (A)
We have DIS ({a4, a6}) = 14, so DIS ({a4, a6}) 6= DIS (A)
We have DIS ({a3, a4}) = 13, so DIS ({a3, a4}) 6= DIS (A)
The Algorithm ends and R = {a3, a4, a6} is the best reduct of A.

Algorithm 3. A heuristic algorithm to find the best reduct when remov-
ing the attribute.

Input: IDS = (U,A ∪ {d}) is an incomplete decision table, the best
reduct RA and an attribute set P where P ⊂ A.

Output: The best reduct RA−P of the attribute set A − P.

1. R = RA − P ;

2. Calculate MA−P from Proposition 5; Calculate DIS (A − P );

3. While DIS (R) 6= DIS (A − P ) do

4. Begin

For each a ∈ R Calculate SIGin
R (a) = DIS (R) − DIS (R − {a}) where

DIS (R − {a}) is calculated from Proposition 5;

5. Select am ∈ R such that SIGin
R (am) = Min

a∈R

{

SIGin
R (a)

}

;

6. R = R − {am};

7. End;

8. For each a ∈ R

9. If DIS (R − {a}) = DIS (A − P ) then R = R − {a};
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10. Return R;

Similarly to Algorithm 2, the complexity of Algorithm 3 is O
(

|RA − P |2 n2

)

with |RA − P | is the number of attribute of RA − P .

Example 9. Let IDS = (U,A ∪ {d}) be an incomplete decision table
in Example 6 (Table 2) where R = {a3, a4, a6} is the best reduct. By using
Algorithm 3 to calculate reduct, we have:

For R = {a3, a4, a6} − {a2, a4} = {a3, a6}, from example 7 we have
DIS (A − P ) = 13. From example 8 we haveDIS ({a3, a6}) = 13, so DIS ({a3, a6})
= DIS (A − P ). Go to For loop, test the attribute set R.

Calculate DIS ({a3}) = 10, so DIS ({a3}) 6= DIS (A − P ).

Calculate DIS ({a6}) = 6, so DIS ({a6}) 6= DIS (A − P ).

The algorithm ends and R = {a3, a6} is the best reduct of A − P .

5. Conclusion. Based on the idea of discernibility matrix and function
[8] in traditional rough set theory, in this paper we propose generalized discerni-
bility matrix and function to find reduct in incomplete decision systems. We
have developed attribute reduction algorithms in two cases: adding an attribute
set and deleting an attribute set. The methods significantly reduce the time
complexity. Further research is building increasing algorisms with dynamically
increasing or decreasing set-object in order to find reduct in dynamic incomplete
decision systems.
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