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A DISTANCE-BASED METHOD FOR ATTRIBUTE

REDUCTION IN INCOMPLETE DECISION SYSTEMS∗

Janos Demetrovics, Vu Duc Thi, Nguyen Long Giang

Abstract. There are limitations in recent research undertaken on at-

tribute reduction in incomplete decision systems. In this paper, we propose

a distance-based method for attribute reduction in an incomplete decision

system. In addition, we prove theoretically that our method is more effective

than some other methods.

1. Introduction. Attribute reduction is one of the most important
problems in data preprocessing, in knowledge discovery and data mining. At-
tribute reduction based on rough sets is the process of finding a minimal attribute
set, known as reduct, which preserves some necessary information of decision sys-
tems. There have been many methods to find reducts of complete decision systems
[17], such as positive region methods, discernibility matrix methods, information
entropy methods, granular computing methods. In reality, decision systems often
contain missing values in the domain values of attributes and these decision sys-
tems are called incomplete decision systems. Derived from the idea of rough set
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theory [11], Marzena Kryszkiewicz [5] defines a tolerance relation based on the
equivalent relation and proposes tolerance rough set. Recently, much research has
been undertaken on measures and methods to find reducts in incomplete decision
systems [1, 3, 4, 7, 8, 9, 12, 13, 20]. Though distance has been a popular measure
applied to solve some problems in data mining [16, 18, 19], there is limited reseach
on attribute reduction in rough set theory. Yuhua Qian et al. [14, 15] propose dis-
tances between coverings in incomplete decision systems. Long Giang Nguyen [10]
proposes a distance-based method to find reduct of a complete decision system.

In this paper, we propose a distance-based method for attribute reduction
in incomplete decision systems. We first generalize Liang entropy [6] in incomplete
decision systems. Based on generalized Liang entropy, we establish a distance
between attributes and study some properties of the distance. As a result, we use
the proposed distance to formally define a reduct and the importance of attribute,
and later construct a heuristic algorithm to find the best reduct.

This paper consists of six sections. The concept of tolerance rough set in
incomplete systems is introduced in Section 2. The generalized Liang entropy and
its propeties are proposed in Section 3. Section 4 establishes a distance between
two attributes based on the generalized Liang entropy and studies some properties
of the distance. Section 5 proposes a distance-based method and example to find
the best reduct. Section 6 presents our conclusions.

2. Basic concepts.

In this section, we summarize the basic concepts of tolerance rough sets
in incomplete decision systems [5].

Let U be a set of objects and Attrbe a set of attributes. Then IS =
(U,Attr) is called an information system. A decision system is an information
system DS = (U,Attr ∪ {d}) where Attr is a conditional attribute and d is a
decision attribute. An incomplete decision system is a decision system where
there exists an attribute a ∈ Attr so that acontains a missing value. Further on,
a missing value is denoted as ‘∗’. Table 1 is an example of an incomplete decision
system.

Attributes Price, Mileage, Size and Max-speed are called conditional at-
tributes and Decision is the decision attribute. We denote the decision at-
tribute Decision as d, and the conditional attributes Price, Mileage, Size and
Max-speed as a1, . . . , a4 in order. Consequently, Table 1 is an incomplete de-
cision system IDS = (U,Attr ∪ {d}) where U = {x1, x2, x3, x4, x5, x6} and
Attr = {a1, a2, a3, a4}.
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Table 1. An example of an incomplete decision system

Car Price Mileage Size Max-speed Decision

x1 High High Full Low Good

x2 Low ∗ Full Low Good

x3 ∗ ∗ Compact High Poor

x4 High ∗ Full High Good

x5 ∗ ∗ Full High Excellent

x6 Low High Full ∗ Good

For any attribute set A ⊆ Attr, a tolerance relation TLR(A) is defined
on U × U for any x, y ∈ U as follows:

(x, y) ∈ TLR(A)rightarrow∀a∈Attr(a(x) = a(y) ∨ a(x) = ∗ ∨ a(y) = ∗).

It is clear that TLR(A) = ∩a∈ATLR({a}). The tolerance relation
TLR(A) determines a covering of U which is denoted by K(A) or U/TLR(A).
Then, K(A) = U/TLR(A) = {TA(x)|x ∈ U} where TA(x) = {y ∈ U |(x, y) ∈
TLR(A)}. TA(x) is called a tolerance class. It shows that TA(x) 6= ∅ for any
x ∈ U and ∪x∈UTA(x) = U . The set of all K(A) where A ⊆ Attr is denoted
as COV (U). For coverings in COV (U), ω = {TAttr(x) = {x}|x ∈ U} is called
the discrete covering and δ = {TAttr(x) = {U}|x ∈ U} is called the indiscrete

covering. A partial relation is defined on COV (U) as follows:

Definition 2.1 [9]. Given an incomplete decision system IDS =
(U,Attr ∪ {d}) and two attribute sets A, B ⊆ Attr,

1) U/TLR(A) = U/TLR(B) if and only if ∀x ∈ U , TA(x) = TB(x).
2) U/TLR(A) � U/TLR(B) if and only if ∀x ∈ U , TA(x) ⊆ TB(x).

Property 2.1 [9]. Given an incomplete decision system IDS =
(U,Attr ∪ {d}) and two attribute sets A, B ⊆ Attr, the following properties hold:

1) If A ⊆ B ⊆ Attr then U/TLR(B) � U/TLR(A).
2) If A, B ⊆ Attr then TA∪B(x) = TA(x) ∩ TB(x) for any x ∈ U .

Let IDS = (U,Attr∪{d}) be an incomplete decision system. For any A ⊆
Attr and x ∈ U , ∂A(x) = {d(y)|y ∈ TA(x)} is called the generalized decision. If
|∂Attr(x)| = 1 for any x ∈ U then IDS is consistent. Otherwise, it is inconsistent.

One of the most important concepts in tolerance rough sets is reduct.
According to Kryszkiewicz [5], a reduct of an incomplete decision system is a
minimal subset of a conditional attribute set which keeps the generalized decision
unchanged for all objects.
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Definition 2.2 [5]. Given an incomplete decision system IDS =
(U,Attr ∪ {d}), if an attribute set R ⊆ Attr satisfies

(1) ∂R(x) = ∂Attr(x) for any x ∈ U ;

(2) R − {r} is not satisfied (1) for any r ∈ R,

then R is called a reduct of IDS based on generalized decision.

Referring to Table 1, TAttr(x1) = {x1}, TAttr(x2) = {x2, x6}, TAttr(x3) =
{x3}, TAttr(x4) = {x4, x5}, TAttr(x5) = {x5, x4, x6}, TAttr(x6) = {x6, x2, x5},
we have the covering K(Attr) = {{x1}, {x2, x6}, {x3}, {x4, x5}, {x4, x5, x6},
{x2, x5, x6}}.

For R = {a3, a4}, we obtain the covering

K(R) = U/TLR(R) = {TR(x)|x ∈ U}
= {{x1, x2, x6}, {x1, x2, x6}, {x3}, {x4, x5, x6}, {x4, x5, x6}, {x1, x2, x4, x5, x6}}.

For the attribute set Attr, we have ∂Attr(x1) = ∂Attr(x2) = {good},
∂Attr(x3) = {poor}, ∂Attr(x4) = ∂Attr(x5) = ∂Attr(x6) = {good, excellent}. For
the attribute set R, we have ∂R(x1) = ∂R(x2) = {good}, ∂R(x3) = {poor},
∂R(x4) = ∂R(x5) = ∂R(x6) = {good, excellent}. As a result, we obtain ∂R(x) =
∂Attr(x) for any x ∈ U . In addition, ∂{a3}(x) = ∂Attr(x) and ∂{a4}(x) = ∂Attr(x)
is incorrect for any x ∈ U . According to Definition 2.2, R is a reduct based on
generalized decision.

3. Generalized Liang Entropy and Properties.

3.1. Generalized Liang Entropy.

Definition 3.1. Given an incomplete decision system IDS = (U,Attr ∪
{d}) where U = {x1, . . . , x|U |}, A ⊆ Attr and U/TLR(A) = {TA(x1), TA(x2), . . . ,
TA(x|U |)}. We define generalized Liang entropy of P as

IE(A) =

|U |
∑

i=1

1

|U |

(

1 −
|TA(xi)|

|U |

)

,

where |TA(x)| is the cardinality of TA(x). If U/TLR(A) = ω then IE(A) has

the maximum value IE(A) = 1 −
1

|U |
. If U/TLR(A) = δ then IE(A) has the

minimum value IE(A) = 0. Obviously, 0 ≤ IE(A) ≤ 1 −
1

|U |
.

The following Proposition 3.1 proves that Liang entropy E(A) in [6] is a
particular case of our generalized Liang entropy.



A Distance-based Method for Attribute Reduction . . . 359

Proposition 3.1. Given a complete decision system DS = (U, Attr ∪
{d}), A ⊆ Attr, U = {x1, . . . , x|U |} and U/A = {A1, A2, . . . , Am}, then

IE(A) =

|U |
∑

i=1

1

|U |

(

1 −
|TA(xi)|

|U |

)

=

m
∑

i=1

|Ai|

|U |

(

1 −
|Ai|

|U |

)

= E(A),

where E(A) is Liang entropy in [6].

P r o o f. Suppose that Ai = {xi1, xi2, . . . , xipi
} where |Ai| = pi and

m
∑

i=1

pi = |U |.

Ai = TA (xi1) = TA (xi2) = · · · = TA (xipi
) ,

|Ai| = |TA (xi1)| = |TA (xi2)| = · · · = |TA (xipi
)| = pi

|Ai|

|U |

(

1 −
|Ai|

|U |

)

=
1

|U |

(

|Ai| −
|Ai| |Ai|

|U |

)

=
1

|U |

(

1 −
|TA (xi1)|

|U |
+ 1 −

|TA (xi2)|

|U |
+ · · · + 1 −

|TA (xipi
)|

|U |

)

E(A) =
m

∑

i=1

|Ai|

|U |

(

1 −
|Ai|

|U |

)

=
m

∑

i=1

pi
∑

k=1

1

|U |

(

1 −
|TA (xik) |

|U |

)

=

|U |
∑

i=1

1

|U |

(

1 −
|TA (xi) |

|U |

)

= IE(A).

Consequently, we have E (A) = IE (A). The proposition is proved. �

Definotion 3.2. Given an incomplete decision system IDS = (U,Attr ∪
{d}), where U =

{

x1, . . . , x|U |

}

and A,B ⊆ Attr. We define generalized Liang

entropy of A ∪ B as

IE(A ∪ B) =

|U |
∑

i=1

1

|U |

(

1 −
|TA∪B(xi)|

|U |

)

=

|U |
∑

i=1

1

|U |

(

1 −
|TA(xi) ∩ TB(xi)|

|U |

)

.
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3.2. Conditional Generalized Liang Entropy.

Definition 3.3. Given an incomplete decision system IDS = (U,Attr ∪
{d}), where U = {x1, . . . , x|U |}, two attribute sets A, B ⊆ Attr and two coverings

U/TLR(A) = {TA(x1), . . . , TA(x|U |)} and U/TLR(B) = {TB(x1), . . . , TB(x|U |)}.
We define conditional generalized Liang entropy of B about A as

IE(B |A) =
1

|U |

|U |
∑

i=1

(

|TA(xi)| − |TB(xi) ∩ TA(xi)|

|U |

)

.

The following Proposition 3.2 proves that conditional Liang entropy
E(B|A) in [6] is a particular case of our conditional generalized Liang entropy
IE(B|A).

Proposition 3.2. Given a complete decision system DS = (U, Attr ∪
{d}), where U = {x1, . . . , x|U |}, two attribute sets A, B ⊆ Attr and two partitions

U/A = {A1, A2, . . . , Am} and U/B = {B1, B2, . . . , Bn}, then

IE(B|A) =
1

|U |

|U |
∑

i=1

(

|TA(xi)| − |TB(xi) ∩ TA(xi)|

|U |

)

=
n

∑

i=1

m
∑

j=1

|Bi ∩ Aj |

|U |

∣

∣

∣
Bc

i − Ac
j

∣

∣

∣

|U |
= E(B|A),

where Bc
i = U − Bi, Ac

j = U − Aj and E(B|A) is the conditional Liang entropy

in [6].

P r o o f. Suppose that Bi ∩ Aj = {xi1, xi2, . . . , xisj
}, here |Bi ∩ Aj | = pj

and |Bi| = qi. We have
m

∑

j=1

pj = qi and
n

∑

i=1

qi = |U | . Then

Bi ∩ Aj = TB (xi1) ∩ TA (xi1) = TB (xi2) ∩ TA (xi2) = · · · = TB

(

xipj

)

∩ TA

(

xipj

)

,

|Bi ∩ Aj | = |TB (xi1) ∩ TA (xi1)| = |TB (xi2) ∩ TA (xi2)| = · · ·

=
∣

∣TB

(

xipj

)

∩ TA

(

xipj

)∣

∣ = pj,

|Bi ∩ Aj |
∣

∣Bc
i − Ac

j

∣

∣ = |Bi ∩ Aj | |B
c
i ∩ Aj | = |Bi ∩ Aj | |Aj − (Bi ∩ Aj)|

= |TA (xi1) − (TB (xi1) ∩ TA (xi1))| + · · · +
∣

∣TA (xisi
) −

(

TB

(

xipj

)

∩ TA

(

xipj

))
∣

∣

=

pj
∑

k=1

|TA (xik) − (TB (xik) ∩ TA (xik))| =

pj
∑

k=1

|TA (xik)| − |TB (xik) ∩ TA (xik)|.
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Hence
m

∑

j=1

|Bi ∩ Aj |
∣

∣Bc
i − Ac

j

∣

∣ =

m
∑

j=1

pj
∑

k=1

|TA (xik)| − |TB (xik) ∩ TA (xik)|

=

qi
∑

k=1

|TA (xik)| − |TB (xik) ∩ TA (xik)| ,

n
∑

i=1

m
∑

j=1

|Bi ∩ Aj |
∣

∣Bc
i − Ac

j

∣

∣ =
n

∑

i=1

qi
∑

k=1

|TA (xik)| − |TB (xik) ∩ TA (xik)|

=

|U |
∑

i=1

|TA (xi)| − |TB (xi) ∩ TA (xi)| ,

IE(B |A) =
1

|U |

|U |
∑

i=1

(

|TA(xi)| − |TB(xi) ∩ TA(xi)|

|U |

)

=

n
∑

i=1

m
∑

j=1

|Bi ∩ Aj |

|U |

∣

∣

∣
Bc

i − Ac
j

∣

∣

∣

|U |
= E(B |A).

Consequently, IE(B|A) = E(B|A). The proposition is proved. �

3.3 Some Properties of Generalized Liang Entropy.

Proposition 3.3. Given an incomplete decision system IDS = (U,Attr∪
{d}), where U = {x1, . . . , x|U |} and A, B, C ⊆ Attr, the following properties hold:

a) If U/TLR(A) �;U/TLR(B) then IE(A) ≥ IE(B).

IE(A) = IE(B) if and only if U/TLR(A) = U/TLR(B).

b) If U/TLR(A) � U/TLR(B) then IE(A ∪ B) = IE(A).

c) IE(A ∪ B) ≥ IE(A), IE(A ∪ B) ≥ IE(B).

d) IE(A ∪ B) = IE(A) + IE(B|A) = IE(A) + IE(A|B).

e) 0 ≤ IE(B|A) ≤ 1−1/|U |.IE(B|A) = 0 if and only if U/TLR(A) � U/TLR(B).
IE(B|A) = 1 − 1/|U | if and only if U/TLR(A) = δ and U/TLR(B) = ω.

f) If U/TLR(A) � U/TLR(B) then IE(C|B) ≥ IE(C|A).

g) If U/TLR(A) � U/TLR(B) then IE(A|C) ≥ IE(B|C).

P r o o f. a) This result obtains directly from Definition 3.1 and Defini-
tion 2.1.

b) This result obtains directly from Definition 3.1, Definition 3.2, Defini-
tion 2.1 and Property 2.1.
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c) This result obtains directly from a).
d) From Definition 3.1, Definition 3.2 and Definition 3.3, we have

IE(B |A) =
1

|U |

|U |
∑

i=1

|TA(xi)| − |TA(xi) ∩ TB(xi)|

|U |

= 1 −
1

|U |

|U |
∑

i=1

|TA(xi) ∩ TB(xi)|

|U |
− 1 +

1

|U |

|U |
∑

i=1

|TA(xi)|

|U |

=
1

|U |

|U |
∑

i=1

1 −
|TA(xi) ∩ TB(xi)|

|U |
−

1

|U |

|U |
∑

i=1

1 −
|TA(xi)|

|U |
= IE(A ∪ B) − IE (A) .

Consequently, we have IE(A ∪ B) = IE(A) + IE(A|B). By symmetric
property of IE(A ∪ B) we have IE(A ∪ B) = IE(B) + IE(A|B).

e) It is clear that IE(B|A) ≥ 0. From d) we have IE(B|A) = IE(A ∪
B) − IE(A). IE(B|A) = 0 ⇔ IE(A ∪ B) = IE(A). Property 2.1 shows that
U/TLR(A ∪ B) � U/TLR(A). From a) we obtain IE(A ∪ B) = IE(A) ⇔
U/TLR(A ∪ B) = U/TLR(A) ⇔ U/TLR(A) � U/TLR(B). In addition, it
follows from d) and Definition 3.1 that IE(B|A) = IE(A ∪B)− IE(A), IE(A ∪
B) ≤ 1− 1/|U |, IE(A) ≥ 0. So we obtain IE(B|A) ≤ 1− 1/|U |. The conditional
equality is IE(A) = 0 ∧ IE(A ∪ B) = 1 − 1/|U |, that is U/TLR(A) = δ and
U/TLR(A ∪ B) = ω. This is equivalent to U/TLR(A) = δ and U/TLR(B) = ω.

f) Suppose that U/TLR(C) = {TC(x1), TC(x2), . . . , TC(x|U |)}. Since
U/TLR(A) � U/TLR(B), we have TA(xi) ⊆ TB(xi) for ∀xi ∈ U , i = 1 . . . |U |
and

(3.1)

(TB(xi) − TA(xi)) ∩ TC(xi) ⊆ TB(xi) − TA(xi)

⇔ (TB(xi) ∩ TC(xi)) − (TA(xi) ∩ TC(xi)) ⊆ TB(xi) − TA(xi)

⇔ |(TB(xi) ∩ TC(xi)) − (TA(xi) ∩ TC(xi))| ≤ |TB(xi) − TA(xi)|

Since TA(xi) ⊆ TB(xi) we have TA(xi) ∩ TC(xi) ⊆ TB(xi) ∩ TC(xi) and Equation
3.1 is equivalent to

|TB(xi) ∩ TC(xi)| − |TA(xi) ∩ TC(xi)| ≤ |TB(xi)| − |TA(xi)|

⇔ |TB(xi)| − |TB(xi) ∩ TC(xi)| ≥ |TA(xi)| − |TA(xi) ∩ TC(xi)|

⇔
1

|U |

n
∑

i=1

|TB(xi)| − |TB(xi) ∩ TC(xi)|

|U |
≥

1

|U |

n
∑

i=1

|TA(xi)| − |TA(xi) ∩ TC(xi)|

|U |

⇔ IE(C|B) ≥ IE(C|A).
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g) Since U/TLR(A) � U/TLR(B), we have TA(xi) ⊆ TB(xi) for ∀xi ∈ U ,
i = 1 . . . |U |. Suppose that U/TLR(C) = {TC(x1), TC(x2), . . . , TC(x|U |)}, we
obtain

TA(xi) ∩ TC(xi) ⊆ TB(xi) ∩ TC(xi)

⇔ |TA(xi) ∩ TC(xi)| ≤ |TB(xi) ∩ TC(xi)|

⇔ |TC(xi)| − |TA(xi) ∩ TC(xi)| ≥ |TC(xi)| − |TB(xi) ∩ TC(xi)|

⇔
1

|U |

|U |
∑

i=1

|TC(xi)| − |TA(xi) ∩ TC(xi)|

|U |
≥

1

|U |

|U |
∑

i=1

|TC(xi)| − |TB(xi) ∩ TC(xi)|

|U |

⇔ IE(A|C) ≥ IE(B|C).

4. Distance between Coverings and Properties. Let X be the
set of objects. A distance between two objects x, y ∈ X, denoted as d(x, y), is a
measure which satisfies three conditions [2]:

d(x, y) ≥ 0, d(x, y) = 0 ⇔ x = y;(C1)

d(x, y) = d(y, x);(C2)

d(x, y) + d(y, z) ≥ d(x, z) for any z ∈ X.(C3)

In this section, a distance is established between two coverings generated
by two attributes based on the generalized Liang entropy. Some properties of the
distance are also investigated.

Lemma 4.1. Given an incomplete decision system IDS = (U,Attr∪{d})
where U = {x1, . . . , x|U |} and A, B, C ⊆ Attr, the following properties hold:

a) IE(A|C) + IE(B|A ∪ C) = IE(A ∪ B|C);

b) IE(B|A) + IE(A|C) ≥ IE(B|C).

P r o o f. Suppose that

U/TLR(A) = {TA(x1), TA(x2), . . . , TA(x|U |)},

U/TLR(B) = {TB(x1), TB(x2), . . . , TB(x|U |)},

U/TLR(C) = {TC(x1), TC(x2), . . . , TC(x|U |)}.
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a) IE(A|C) + IE(B|A ∪ C) =

=
1

|U |

|U |
∑

i=1

|TC(xi)| − |TA(xi) ∩ TC(xi)| + |TA∪C(xi)| − |TA∪C(xi) ∩ SB(xi)|

|U |

=
1

|U |

|U |
∑

i=1

|TC(xi)| − |TA∪C(xi)| + |TA∪C(xi)| − |TA∪C(xi) ∩ TB(xi)|

|U |

=
1

|U |

|U |
∑

i=1

|TC(xi)| − |TA(xi) ∩ TB(xi) ∩ TC(xi)|

|U |

=
1

|U |

|U |
∑

i=1

|TC(xi)| − |TC(xi) ∩ TA∪B(xi)|

|U |
= IE(A ∪ B|C).

Consequently, we have IE(A|C) + IE(B|A ∪ C) = IE(A ∪ B|C).
b) Using Proposition 3.3, item a), it follows from U/TLR(A ∪ C) �

U/TLR(A), U/TLR(A ∪ B) � U/TLR(B) that IE(B|A) ≥ IE(B|A ∪ C) and
IE(A ∪ B|C) ≥ IE(B|C). Using Lemma 4.1 item a) we have

IE(B|A) + IE(A|C) ≥ IE(B|A ∪ C) + IE(A|C) = IE(A ∪ B|C) ≥ IE(B|C).

Consequently, we have IE(B|A) + IE(A|C) ≥ IE(B|C). �

Theorem 4.1. Given an incomplete decision system IDS = (U,Attr ∪
{d}) and two attributes A, B ⊆ Attr, for any K(A), K(B) ∈ COV (U), the

mapping dE : COV (U) × COV (U) → [0,∞) determined by

dE(K(A),K(B)) = IE(A|B) + IE(B|A)

is a distance between K(A) and K(B).

P r o o f. (C1) According to Proposition 3.3 item e) we have dE(K(A),
K(B)) ≥ 0 for any K(A), K(B) ∈ COV (U), dE(K(A),K(B)) = 0

⇔ (IE(B|A.) = 0) ∧ (IE(A|B.) = 0)

⇔ (U/TLR(A) � U/TLR(B)) ∧ (U/TLR(B) � U/TLR(A)) ⇔ K(A) = K(B).

(C2) According to the definition of the distance dE , we have dE(K(A),
K(B)) = dE(K(B),K(A)) for any K(A), K(B) ∈ COV (U).

(C3) For any K(A), K(B), K(C) ∈ COV (U), from Lemma 4.1 item b)
we have

IE(B|A) + IE(A|C) ≥ IE(B|C)(4.1)



A Distance-based Method for Attribute Reduction . . . 365

IE(C|A) + IE(A|B) ≥ IE(C|B)(4.2)

From Equation (4.1) and Equation (4.2), we obtain

dE(K(B),K(A)) + dE(K(A),K(C)) ≥ dE(K(B),K(C))

From (C1), (C2), (C3) we conclude that dE(K(A),K(B)) is a distance on
COV (U). The theorem is proved. �

Proposition 4.1. Given an incomplete decision system IDS = (U,Attr∪
{d}), where U = {x1, . . . , x|U |} and A ⊆ Attr, then

dE(K(A),K(Attr)) =
1

|U |

|U |
∑

i=1

|TA(xi)| − |TAttr(xi)|

|U |
.

P r o o f. Since A ⊆ Attr we have U/TLR(Attr) � U/TLR(A) (Property
2.1). From Proposition 3.3 item e) we obtain IE(A|Attr) = 0. In addition, it
follows from A ⊆ Attr that TAttr(xi) ⊆ TA(xi) or TA(xi) ∩ TAttr(xi) = TAttr(xi)
for ∀xi ∈ U , i = 1 . . . |U |. Consequently,

dE(K(A),K(Attr)) = IE(A|Attr) + IE(Attr|A) = IE(Attr|A)

=
1

|U |

|U |
∑

i=1

|TA(xi)| − |TA(xi) ∩ TAttr(xi)|

|U |
=

1

|U |

|U |
∑

i=1

|TA(xi)| − |TAttr(xi)|

|U |
.

The proposition is proved. �

Proposition 4.2. Given an incomplete decision system IDS = (U,Attr∪
{d}), if A ⊆ Attr, then dE(K(A),K(A ∪ {d})) ≥ dE(K(Attr),K(Attr ∪ {d})).

P r o o f. Suppose that U = {x1, x2, . . . , x|U |} and A ⊆ Attr. For ∀xi ∈ U ,
i = 1 . . . |U |, it is clear that TAttr(xi) ⊆ TA(xi). So we have

(4.3)

(TA(xi) − TAttr(xi)) ∩ T{d}(xi) ⊆ TA(xi) − TAttr(xi)

⇔ (TA(xi) ∩ T{d}(xi)) − (TAttr(xi) ∩ T{d}(xi)) ⊆ TA(xi) − TAttr(xi)

⇔ |(TA(xi) ∩ T{d}(xi)) − (TAttr(xi) ∩ T{d}(xi))| ≤ |TA(xi) − TAttr(xi)|.

It follows from TAttr(xi) ⊆ TA(xi) that TAttr(xi) ∩ T{d}(xi) ⊆ TA(xi) ∩
T{d}(xi). So Equation 4.3 is equivalent to

(4.4)
|TA(xi) ∩ T{d}(xi)| − |TAttr(xi) ∩ T{d}(xi)| ≤ |TA(xi)| − |TAttr(xi)|

⇔ |TA(xi)| − |TA(xi) ∩ T{d}(xi)| ≥ |TAttr(xi)| − |TAttr(xi) ∩ T{d}(xi)|.
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Since TA(xi)∩T{d}(xi) ⊆ TA(xi), TAttr(xi)∩T{d}(xi) ⊆ TAttr(xi), Equation
4.4 is equivalent to

(4.5)
|TA(xi) ∪ (TA(xi) ∩ T{d}(xi))| − |TA(xi) ∩ (TA(xi) ∩ T{d}(xi))| ≥

|TAttr(xi) ∪ (TAttr(xi) ∩ T{d}(xi))| − |TAttr(xi) ∩ (TAttr(xi) ∩ T{d}(xi))|.

Since TA∪{d}(xi) = TA(xi)∩T{d}(xi), TAttr∪{d}(xi) = TAttr(xi)∩T{d}(xi),
Equation 4.5 is equivalent to

(4.6)
n

∑

i=1

|TA(xi)| − |TA∪{d}(xi)|

|U |2
≥

n
∑

i=1

|TAttr(xi)| − |TAttr∪{d}(xi)|

|U |2
.

From Proposition 4.1 and A ⊂ A ∪ {d}, Attr ⊂ Attr ∪ {d}, Equation
4.6 is equivalent to dE(K(A),K(A ∪ {d})) ≥ dE(K(Attr),K(Attr ∪ {d})). The
proposition is proved. �

5. Distance-based Attribute Reduction Method. Deriving
from results in Section 3 and 4, we propose a distance-based method for attribute
reduction in incomplete decision systems. First, we define a reduct based on the
distance. Second, we define the importance of an attribute based on the distance
as the classification ability of the attribute. As a result, we propose a heuristic
algorithm to find the best reduct by using the importance of an attribute as an
attribute selection criterion.

Definition 5.1. Given an incomplete decision system IDS = (U,Attr ∪
{d}), if an attribute set R ⊆ Attr satisfies

(1) dE(K(R),K(R ∪ {d})) = dE(K(Attr),K(Attr ∪ {d}));

(2) ∀r ∈ R, dE(K(R−{r}), K((R−{r})∪{d})) 6= dE(K(Attr),K(Attr∪{d})),

then R is called a reduct of IDS based on distance.

The following Proposition 5.1 shows the relationship between the reduct

based on generalized decision and the reduct based on distance.

Proposition 5.1. Given an incomplete decision system IDS = (U,Attr∪
{d}) and R ⊆ Attr, if dE(K(R),K(R ∪ {d})) = dE(K(Attr),K(Attr ∪ {d})),
then ∀xi ∈ U , ∂R(xi) = ∂Attr(xi).

P r o o f. Suppose that U = {x1, x2, . . . , x|U |}.
Since dE(K(R),K(R ∪ {d})) = dE(K(Attr),K(Attr ∪ {d})), according to Propo-
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sition 4.1 we have:

(5.1)

1

|U |

|U |
∑

i=1

(

|TR(xi)| − |TR∪{d}(xi)|

|U |

)

=
1

|U |

|U |
∑

i=1

(

|TAttr(xi)| − |TAttr∪{d}(xi)|

|U |

)

⇔ |TR (xi)| −
∣

∣TR∪{d} (xi)
∣

∣ = |TAttr (xi)| −
∣

∣TAttr∪{d} (xi)
∣

∣ for any xi ∈ U.

It is clear that TR∪{d}(xi) ⊆ TR(xi), TAttr∪{d}(xi) ⊆ TAttr(xi), so Equation
5.1 is equivalent to

(5.2) |TR(xi) − TR∪{d}(xi)| = |TAttr(xi) − TAttr∪{d}(xi)| for any xi ∈ U.

Since TAttr(xi) ⊆ TR(xi) we have TAttr(xi)−T{d}(xi) ⊆ TR(xi)−T{d}(xi)

⇔ TAttr(xi) − TAttr(xi) ∩ T{d}(xi) ⊆ TR(xi) − TR(xi) ∩ T{d}(xi)

⇔ TAttr(xi) − TAttr∪{d}(xi) ⊆ TR(xi) − TR∪{d}(xi).

So Equation 5.2 is equivalent to

(5.3) TR(xi) − TR∪{d}(xi) = TAttr(xi) − TAttr∪{d}(xi) for any xi ∈ U.

In addition, we have

TR(xi) = (TR(xi) ∩ T{d}(xi)) ∪ (TR(xi) − (TR(xi) ∩ T{d}(xi))),

TAttr(xi) = (TAttr(xi) ∩ T{d}(xi)) ∪ (TAttr(xi) − (TAttr(xi) ∩ T{d}(xi))).

Suppose that di = d(xi), Ri = {d(yi)|yi ∈ TR(xi) − (TR(xi) ∩ T{d}(xi))},

Ai = {d(yi)|yi ∈ TAttr(xi) − (TAttr(xi) ∩ T{d}(xi))}. Then we have

∂R(xi) = {d(yi)|yi. ∈ (TR(xi) ∩ T{d}(xi)) ∪ (TR(xi) − (TR(xi) ∩ T{d}(xi)))}

= {di} ∪ Ri

∂Attr(xi) = {d(yi)|yi ∈ (TAttr(xi) ∩ T{d}(xi))

∪(TAttr(xi) − (TAttr(xi) ∩ T{d}(xi)))} = {di} ∪ Ai.

According to Equation 5.3, we obtain Ri = Ai, thus ∂R(xi) = ∂Attr(xi) for any
xi ∈ U . The proposition is proved. �

Proposition 5.1 shows that if RD is a reduct based on metric then there

exists a reduct based on generalized decision R∂ so that R∂ ⊆ RD.
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If IDS is consistent, it follows from the condition ∀xi ∈ U , |∂R(xi)| =
|∂Attr(xi)| = 1 that TR(xi) = TR∪{d}(xi) and TAttr(xi) = TAttr∪{d}(xi) for any
xi ∈ U . Acoording to Proposition 4.1 we have

dE(K(R),K(R ∪ {d})) = dE(K(Attr),K(Attr ∪ {d})) = 0.

Consequently, dE(K(R),K(R ∪ {d})) = dE(K(Attr),K(Attr ∪ {d})) if
and only if ∀xi ∈ U , ∂R(xi) = ∂Attr(xi). This means that reduct based on metric

is equivalent to reduct based on generalized decision.

Definition 5.2. Given an incomplete decision system IDS = (U,Attr ∪
{d}) and A ⊂ Attr, the importance of attribute a ∈ Attr − A is defined as

IMPA(a) = dE(K(A),K(A ∪ {d})) − dE(K(A ∪ {a}),K(A ∪ {a} ∪ {d})).

According to Proposition 4.2 we have IMPA(a) ≥ 0. When a is added into
A, the distance dE(K(A),K(A∪{d})) changes, which impacts on the importance
of the attribute a in the way that the larger the value of IMPA(a) is, the more
important is the attribute a. Using the importance of an attribute as an attribute
selection criterion, we design a heuristic algorithm to find the best reduct.

Algorithm 5.1. The algorithm to find the best reduct of an incomplete
decision system.

Input: An incomplete decision system IDS = (U,Attr ∪ {d}).
Output: The best reduct R.

1. R = ∅;

2. Calculate dE(K(R),K(R ∪ {d})), dE(K(Attr),K(Attr ∪ {d}));

3. While dE(K(R),K(R ∪ {d})) 6= dE(K(Attr),K(Attr ∪ {d})) do

4. Begin

5. For each a ∈ Attr − R

6. Begin

7. Calculate dE(K(R ∪ {a}),K(R ∪ {a} ∪ {d}));

8. Calculate IMPR(a) = dE(K(R),K(R ∪ {d})) − dE(K(R ∪ {a}),

K(R ∪ {a} ∪ {d}));
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9. End;

10. Select am ∈ Attr − R so that IMPR(am) = Max
a∈Attr−R

{IMPR(a)};

11. R = R ∪ {am};

12. Calculate dE(K(R),K(R ∪ {d}));

13. End;

14. For each a ∈ R

15. Begin

16. Calculate dE(K(R − {a}),K(R − {a} ∪ {d}));

17. if dE(K(R − {a}),K(R − {a} ∪ {d})) = dE(K(Attr),K(Attr ∪ {d}))

then R = R − {a};

18. End;

19. Return R;

Let us consider the command lines of Algorithm 5.1. From 3 to 13, the
obtained attribute set R satisfies dE(K(R),K(R∪{d})) = dE(K(Attr),K(Attr∪
{d})). From 14 to 18, R is minimal, that is

∀r ∈ R, dE(K(R − {r}),K((R − {r}) ∪ {d})) 6= dE(K(Attr),K(Attr ∪ {d})).

According to Definition 5.1, R is a reduct. Consequently, Algorithm 5.1
is complete.

Complexity of Algorithm 5.1. First we analyse the complexity of
While Loop from 3 to 13. Since TR(ui) and TR∪{d}(ui) are calculated in the
previous step, we calculate TR∪{a}(ui), TR∪{a}∪{d}(ui) only. The complexity of

calculating TR∪{a}(ui) for ∀ui ∈ U when TR(ui) calculated is O(|U |2). So the
complexity of calculating all IMPR(a) is:

(|Attr| + (|Attr| − 1) + · · · + 1) ∗ |U |2

= (|Attr| ∗ (|Attr| − 1)/2) ∗ |U |2 = O(|Attr|2|U |2).

where the cardinality |Attr| is the number of conditional attributes and |U | is
the number of objects. The complexity of obtaining the attribute with maximum
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importance is |Attr|+(|Attr|− 1)+ · · ·+1 = |Attr| ∗ (|Attr|− 1)/2 = O(|Attr|2).
Hence, the complexity of While Loop is O(|Attr|2|U |2). Second, in a similar
way, the complexity of For Loop from 14 to 18 is O(|Attr|2|U |2). Finally, the
complexity of Algorithm 5.1 is O(|Attr|2|U |2). Consequently, this complexity is
better than the complexity of algorithms in [1, 3, 4, 20].

For example, let us consider the incomplete decision system in Table 1.
We have the following coverings:

U/TLR(Attr) = {{x1}, {x2, x6}, {x3}, {x4, x5}, {x4, x5, x6}, {x2, x5, x6}},

U/TLR({a1}) = {{x1, x3, x4, x5}, {x2, x3, x5, x6}, U, {x1, x3, x4, x5}, U,

{x2, x3, x5, x6}},
U/TLR({a2}) = {U,U,U,U,U,U},

U/TLR({a3}) = {{x1, x2, x4, x5, x6}, {x1, x2, x4, x5, x6}, {x3}, {x1, x2, x4, x5, x6},

{x1, x2, x4, x5, x6}, {x1, x2, x4, x5, x6}},

U/TLR({a4}) = {{x1, x2, x6}, {x1, x2, x6}, {x3, x4, x5, x6}, {x3, x4, x5, x6},

{x3, x4, x5, x6}, U},

U/TLR({d}) = {{x1, x2, x4, x6}, {x1, x2, x4, x6}, {x3}, {x1, x2, x4, x6}, {x5},

{x1, x2, x4, x6}}.

We calculate the distance

dE(K(Attr),K(Attr∪{d})) =
1

|U |2

|U |
∑

i=1

(|TAttr(ui)− (TAttr(ui)∩T{d}(ui))|) =
4

36
.

Set R = ∅ and suppose that T∅(x) = U for any x ∈ U . We calculate

T∅(xi) = U for ∀xi ∈ U, i = 1 . . . |U |.

SIG∅ (a1) =
1

|U |2

|U |
∑

i=1

(
∣

∣T∅ (ui) − T{d} (ui)
∣

∣ −
∣

∣T{a1} (ui) − T{a1,d} (ui)
∣

∣

)

= 0,

SIG∅ (a2) =
1

|U |2

|U |
∑

i=1

(
∣

∣T∅ (ui) − T{d} (ui)
∣

∣ −
∣

∣T{a2} (ui) − T{a2,d} (ui)
∣

∣

)

= 0,
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SIG∅ (a3) =
1

|U |2

|U |
∑

i=1

(
∣

∣T∅ (ui) − T{d} (ui)
∣

∣ −
∣

∣T{a3} (ui) − T{a3,d} (ui)
∣

∣

)

=
10

36
,

SIG∅ (a4) =
1

|U |2

|U |
∑

i=1

(
∣

∣T∅ (ui) − T{d} (ui)
∣

∣ −
∣

∣T{a4} (ui) − T{a4,d} (ui)
∣

∣

)

=
8

36
.

We choose a3 which has the most importance and R = {a3}, and calculate
the distance

dE(K({a3}),K({a3, d})) =
1

|U |2

|U |
∑

i=1

(|T{a3}(ui) − (T{a3}(ui) ∩ T{d}(ui))|) =
8

36
.

So we have dE(K({a3}),K({a3, d})) 6= dE(K(Attr),K(Attr ∪ {d})).
We perform the second loop.

SIG{a3}(a1) =
1

|U |2

|U |
∑

i=1

(|T{a3}(ui) − T{a3,d}(ui)| − |T{a1,a3}(ui) − T{a1,a3,d}(ui)|)

=
2

36
,

SIG{a3}(a2) =
1

|U |2

|U |
∑

i=1

(|T{a3}(ui) − T{a3,d}(ui)| − |T{a2,a3}(ui) − T{a2,a3,d}(ui)|)

= 0,

SIG{a3}(a4) =
1

|U |2

|U |
∑

i=1

(|T{a3}(ui) − T{a3,d}(ui)| − |T{a3,a4}(ui) − T{a3,a4,d}(ui)|)

=
4

36
.

We choose a4 which has the most importance and we set R = {a3, a4},
and calculate

dE(K({a3, a4}),K({a3, a4, d})) =
4

36
= dE(K(Attr),K(Attr ∪ {d})).

Hence, we go to For Loop. According to the above calculation, we obtain

dE(K({a3}),K({a3, d})) 6= dE(K(Attr),K(Attr ∪ {d})).
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In addition,

dE(K({a4}),K({a4, d})) =
10

36
6= dE(K(Attr),K(Attr ∪ {d})).

Consequently, the algorithm finishes and R = {a3, a4} is the best reduct of Attr.

6. Conclusions. Attribute reduction is the most important problem
in both classical rough sets and tolerance rough sets. In this paper, a generalized
Liang entropy is proposed based on Liang entropy [6] and some properties of the
generalized Liang entropy are considered. Based on the generalized Liang entropy,
a distance is established between attributes and a distance-based method to find
the best reduct is proposed. To construct this method, we define a reduct based
on the distance, the importance of an attribute based on the distance. We use the
importance of an attribute as heuristic information to design an effective heuristic
algorithm to find the best reduct. We prove theoretically that the complexity of
our algorithm is less than that of the algorithms in [1, 3, 4, 20].
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