
Serdica J. Computing 7 (2013), No 1, 35–72

JSONYA/FN: FUNCTIONAL COMPUTATION IN JSON

Miloslav Sredkov

Abstract. Functional programming has a lot to offer to the developers of
global Internet-centric applications, but is often applicable only to a small
part of the system or requires major architectural changes. The data model
used for functional computation is often simply considered a consequence of
the chosen programming style, although inappropriate choice of such model
can make integration with imperative parts much harder. In this paper we do
the opposite: we start from a data model based on JSON and then derive the
functional approach from it. We outline the identified principles and present
Jsonya/fn — a low-level functional language that is defined in and operates
with the selected data model. We use several Jsonya/fn implementations
and the architecture of a recently developed application to show that our
approach can improve interoperability and can achieve additional reuse of
representations and operations at relatively low cost.

1. Introduction. The growing need for global Internet-centric applica-
tions pushes software engineering tools and techniques to their limits and drives

ACM Computing Classification System (1998): D.3.2, D.3.4.
Key words: JSON, data models, functional programming, intermediate languages, interop-

erabilityy.

36 Miloslav Sredkov

the adoption of radically different approaches and technologies. While the util-
isation of functional programming in commercial software development used to
be small, these recent trends opened gaps which are more and more often filled
by functional languages or by techniques originating from the functional world.
The application of functional programming in the context of such large systems
is without any doubt interesting, but we focus on a narrower, but still funda-
mental question: what data representation model should be used for functional
computation in the context of global Internet applications?

Even though essential, this question is often neglected, as its answer is
considered a mere implication of the data structures or the type system of the
chosen programming language. Doing so, however, can hinder integration with
imperative technologies, as the data models used by functional languages are
usually fundamentally different than those of the imperative ones. As a result,
unless the whole system is built with functional tools, the borders between the
imperative and functional parts will most likely be problematic.

In contrast, we directly attack the data model problem as we consider
it crucial for the complexity of the resulting system. We analyse whether a
data model based on JSON [8], a data-interchange language with fast growing
popularity, can provide smoother integration compared to the alternatives. We
show that this solution provides various valuable properties and can reduce the
discrepancy in complex applications at a reasonable implementation cost.

These global apps often need to spawn multiple platforms, to use a variety
of communication channels and synchronisation methods to support distributed
computation or to work in disconnected (offline) mode. At the same time, most
programmers are not skilled enough in functional programming, so any attempt
to answer these challenges in a functional way is threatened by the possibility to
become obsolete before gaining sufficient community. Because of this, successful
initiatives to bring technologies from the functional world to the industry are
usually limited to a particular aspect of the system.

While the focus of such solutions makes them efficient for the specific
problem, they still need to be combined with imperative technologies. The lat-
ter are usually general-purpose programming languages, which are capable of,
although less efficiently, solving the problem in question on their own. This can
cause the benefits of the functional approach to diminish compared to the over-
head of the need to learn, integrate, maintain or distribute yet another tool.

Some tools, however, emerge to solve a wider problem such as scalability.
Many even go further, aiming to make all parts of the Internet applications
programmable in a single functional language. Unfortunately, such ambitious

Jsonya/fn: Functional Computation in JSON 37

technologies suffer from other problems. First, these instruments usually require
massive implementation effort to be built and maintained, but more importantly,
unless they provide special interoperability features, which can often pollute their
otherwise clean languages, they become all-or-nothing solutions.

In heterogeneous systems, a particular source of discrepancy is the data
representation model used by the different programming languages or technolo-
gies. Complex software applications already suffer enough from the ways stan-
dard tools represent data — the same information is often stored in multiple
representations such as XML documents, objects in an object-oriented language,
and records in a relational database. The conversions between these forms may
consume significant development effort.

Such a situation will certainly not improve if a part of the system is
implemented in a functional language which uses e.g. S-expressions — unless the
part is relatively isolated, mapping between S-expression and some of the other
representations will be required. This observation led us to the following idea: if
the functional tool to be integrated should not introduce additional discrepancy,
then it must use one of the data representation models already supported by the
system.

Because JSON is convincingly gaining momentum as a widely used data-
interchange format, if it proves suitable for functional computation, then it could
provide foundations for functional tools that integrate more smoothly.

To explore the suitability of JSON, we first identified the general prop-
erties of a potential solution and incorporated them into the approach named
Jsonya. It defines how functional computation can be applied in a heteroge-
neous system, includes a suitable JSON-based data model (published in another
paper [41]), and outlines the required properties of the functional computation
itself. Following the approach we defined Jsonya/fn, a simple, low-level, ho-
moiconic (i.e. both represented in and operating with the same data model) pure
functional programming language. The most challenging part was finding a sim-
ple yet powerful evaluation algorithm, which provides maximum benefits at low
implementation cost. To test the feasibility of our approach, we created several
different implementations in Java and JavaScript, and used the architecture of a
recently developed large global application to explore what effect our approach
and language would have on the development of similar systems.

The experimental implementations showed that Jsonya/fn is relatively
easy to implement in a way that features homoiconicity, automatic order of ini-
tialisation, and automatic structural and computational memoisation. Some of
the important features are that computations are consistent regardless of the place

38 Miloslav Sredkov

of execution, and that homoiconicity also applies to environments and closures,
which are represented as regular Jsonya values. Such properties may be useful
in various contexts in global applications, including distribution of computation.
While the lack of high-level languages translating to Jsonya/fn currently prevents
Jsonya from being applied in industrial setting, our results suggest that it has
good prospects for achieving this, and more importantly, that further exploration
of JSON-based functional computation is likely to be a good investment.

To the best of our knowledge this is the first systematic attempt to explore
JSON as a foundation for functional computation. The main contributions of this
paper are the following:

• Exploration of some of the notable attempts to apply functional program-
ming in Internet applications and the data models they use (Section 2).

• Analysis of how JSON can be used as a basis for functional computation
resulting in the Jsonya approach, which identifies the application areas and
the properties of the data model and the computations (Section 3).

• The homoiconic JSON-based low-level functional language Jsonya/fn, which
features automatic memoisation of computations and structures, closures
and environments with self-sufficient representations as regular values, and
automatic order of computations (Section 4).

• Assessment of the feasibility of fully implementing Jsonya by adding a high-
level language translating to Jsonya/fn based on multiple implementations
and analysis of a real-world application (Section 5).

2. Related Data Models. In this section we look at various data
models used to apply functional programming in the context of global applica-
tions. By data model, also often called information model or metamodel, we refer
to the means provided by the environment, e.g. a programming language, to rep-
resent or model information. This terminology has been defined more thoroughly
in the context of Model-driven engineering [16], but for the needs of our paper
the informal definition will suffice.

Data models are often neglected in favour of other aspects, such as syntax
and processing details, and considered to follow intuitively from the latter. When
certain ambiguities occur, e.g. whether the order in which the fields of a Java
class are declared is important, it is often easy to resolve them by establishing a
convention. In a wider context, however, such negligence can have a more negative
effect. For example XML, for which data interchange is one of the main goals,

Jsonya/fn: Functional Computation in JSON 39

is agreed upon only at the syntax level and has multiple different interpretations
(metamodels) [45] in use.

Functional programming approaches have always been attempted against
the challenges of the industrial software development. The difficulties with global
applications, however, led to some significant advances in the application of func-
tional instruments. Because of this, functional programming has gained a rep-
utation for being able to solve certain problems better than the traditional ap-
proaches.

To give a background, we identified some attempts to provide the means
for one or more of the following:

• server-side request handling for the generation of dynamic web pages or
web service responses;

• code reuse between parts of the system of different nature;

• simpler communication between system parts, e.g. without the object-
relational impedance mismatch problem;

• scalability, e.g. via distributed computing.

The list of approaches and attempts is far from complete but we believe it gives
a wide enough overview of the used data models.

2.1. Algebraic Data Types. Probably the majority of the contempo-
rary functional tools use data models based on the algebraic data types. In them,
a set of primitive data types is provided together with means to define new types
in terms of constructors wrapping zero or more arguments. This approach allows
languages to provide many useful features, including pattern matching, static
type checking, and Hindley-Milner [22, 34, 9] type inference.

Dynamic Web Page Generation. Because a large part of server-
side programming consists of the generation of HTML or XML-based content,
modelling them as algrabraic data types is important. As “there is a natural fit
between the XML document domain and Haskell tree datatypes” [44], multiple
researchers have provided solutions for HTML and XML modelling successfully
utilising static checking to guarantee some form of validity [25, 43]. Similar
results have been achieved for other languages too, including Standad ML [13]
and Curry [19]. Instruments which provide higher-level abstractions for HTML
interface have also been presented [20, 39].

To further facilitate server-side programming, various utilities can be
added; Haskell is an example of a functional language with a remarkably rich web

40 Miloslav Sredkov

programming toolkit1. Such instruments can vary from simple libraries helping
with CGI interaction to complete frameworks featuring integrated web servers,
data persistence, templating and more. Haskell’s type system has influenced their
design in the same way it has influenced any other software library; while these
tools exhibit some very interesting properties, their relevance to Haskell’s data
model is beyond the scope of this paper.

Extending to Multiple Layers. Other tools, however, attempt to go
beyond the processing of form input and the generation of HTML. No matter how
elegantly the information is modelled in the server-side, all this beauty evaporates
when it has to be encoded and sent to a non-functional layer of the system, such
as the database or a JavaScript client. The information needs to be serialised in
a form supported by some protocol (e.g. XML), and neither its representation,
nor the surrounding operations can be reused.

To resolve this, various approaches allow the same functional representa-
tion or manipulations to be used in more than one layer of the system. Happstack2

and Yesod3 are two notable frameworks extending beyond the middle layer. Both
allow the same types to be reused in the database, define convenient means to
process requests and generate responses, and provide some support in the gener-
ation of JavaScript code.

None of the above approaches, however, attempts to treat JavaScript
above the syntactical level. In contrast, ML5 by Murphy et al. [36] is a lan-
guage based on Standard ML which compiles to both bytecode for the server and
JavaScript for the client. Its type system associates each value with a particular
world, and its runtime system handles marshalling and unmarshalling between
the client and the server worlds. Hanus [21] also explores JavaScript generation
from a functional language, allowing constraints specified as Curry functions to
be used for both client- and server-side validation. WebSharper4 also generates
JavaScript from a language with algebraic data types in an attempt to provide
a web framework allowing the creation of both client front ends and server-side
backends using only F#.

Merging All Layers. A more radical way to completely eliminate
the impedance mismatch problem is to unify all layers into a single language.
One such approach is Links [6]. The language compiles to JavaScript for the
client and to SQL for the database. It is statically checked; a notable feature

1
http://www.haskell.org/haskellwiki/Web/Frameworks

2
http://happstack.com/

3
http://www.yesodweb.com/

4
http://websharper.com/home

Jsonya/fn: Functional Computation in JSON 41

is the integration of XML both as a primitive type and at the syntax level.
Ur/Web, an extension on top of Ur [4], also attempts to provide an all-

layer solution, but the focus is more on metaprogramming and practical use of
dependent types. It provides means for construction of queries and transactions
in the context of an SQL database. For the client-side it compiles to JavaScript
and features page generation in a functional reactive programming style. A syn-
tax for XML literals is included in the language. The type system is based on
ML, but a lot more is added on top of it.

Analysis. The solutions based on algebraic data types we reviewed solve
the four problems we defined earlier to a different extent. Their data models
are suitable for processing web requests and building dynamic (e.g. HTML)
responses. Most tools have a means to facilitate the transfer of information to
other parts of the system but reuse of code and representation is achieved by
taking over the whole layer. With the exception of ML5, the listed solutions do
not explicitly address scalability.

2.2. Based on S-expressions. Originating from Lisp, S-expressions are
remarkably powerful for their simplicity. Most often they are used to represent
lists written like (a (b c) d) and are built on top of only two constructs: atoms
and ordered pairs. Lisp-based languages use them for both source code and data
structure representation. Because they can be parsed easily and are much shorter
than alternatives like XML, S-expressions have often been considered suitable
for a data-interchange format. One notable example is the SXML format by
Kiselyov [28], which represents the XML Infoset in the form of S-expressions.
Tools for it, similar to their XML counterparts, such as SXSLT [29] are also
present.

Being able to use the same structure for both source code and in-memory
operations as well as data interchange and persistence opens interesting possibil-
ities in the context of Internet-centric applications. The PLT Scheme server [30]
(now Racket) uses continuations to allow web page navigation flow to be defined
in the same way as in a regular interactive console application. Not surprisingly,
the HTML response is elegantly modelled with S-expressions. For validation
Nørmark [37] provides a robust solution by synthesising mirror functions for each
tag based on a DTD.

Clojure5 is a Lisp-based language compiling to Java Virtual Machine byte-
code, with strong focus on multi-threading. Its S-expressions are enhanced with
additional constructs to also support vectors and maps. Compilers to other tar-

5
http://clojure.org/

42 Miloslav Sredkov

gets such as the .NET CLR6 and JavaScript [32] are available, thus allowing the
same functional computations to be applied to different system parts, including
browser-based clients.

In this category, it is also necessary to mention Curl [24]. It aims to be
a single language covering all aspects of web application development, and in its
recent commercially developed versions supports programming for the server side,
web, desktop and mobile clients. The language is intended to be easy to use for
everything ranging from text formatting to complex business logic. The language
is heavily influenced by Lisp, but has deviated from it to the point where it is
more object-oriented than functional. It is homoiconic and highly extensible via
its powerful macro facility.

The final example in this category is Hop [40], a dialect of Lisp for the
programming of interactive web applications. It allows both the client- and the
server-side, as well as client-server communication to be defined with the same, S-
expression-based syntax. For certain application types, such as interactive pages
that do not need database storage, all system aspects are covered. HTML is
defined as s-expressions, and JavaScript is generated from Hop as needed. Inter-
estingly, Hop actually uses JSON for the communication between the JavaScript
and the server.

The presented examples show that the power and elegance of S-expressions
makes them a suitable data model for wide range of applications; yet, with
few exceptions, their popularity in mainstream Internet programming is limited.
Whether the programmers are scared of the brackets or there is some other reason
for this is beyond our competence; we can only conclude that being simple and
powerful does not guarantee wide acceptance.

2.3. XML-based. XML is the most popular format for data interchange,
with a remarkably rich set of supporting technologies. It can be parsed and
generated from a wide variety of languages, and is used as the basis of numerous
file formats and protocols.

XML (or more precisely, some of its data models) is used as a basis for
functional computations in two ways. The fist one is to define a programming
language in XML-based syntax, thus achieving a homoiconic language which is
both written in, and operating with XML. XSLT 1.0 [5] and XSLT 2.0 [27] are
the most popular such languages. Focused on transforming XML documents they
are often incorporated in larger systems for the generation of XHTML web pages
or server side transformations. XSLT 1.0 is implemented by a variety of XML
toolsets, including all popular web browsers.

6
https://github.com/richhickey/clojure-clr

Jsonya/fn: Functional Computation in JSON 43

The syntax of XSLT is however, not entirely defined by XML constructs.
XSLT incorporates XPath expressions, which are simply included as strings. A
complete XML-only implementation of these expression would dramatically in-
crease the size of the programs.

Because of this, the majority of the functional tools dedicated to XML
manipulation use custom syntax. There is a whole family of typed languages
which use XML as values and DTD or other schema technology as types. Exam-
ples of this family are XMλ [33], XDuce [23], CDuce [2], and OCamlDuce [15].
The W3C recommendation XQuery [3] also uses custom non-XML syntax to ex-
press computations, but is dynamically typed and targets to be a query language
implemented in various environments.

Another interesting example is MashMaker [14], which allows the creation
of web mashups via a functional language that can be textually or graphically
edited. The language has some specific features such as storing data and code
in a single tree, and allowing extensions to that tree to be defined. The data
representation however is not exactly XML, but a slightly modified data model
based on it.

XML is a very powerful basis for a data model and can be used to represent
various kinds of information. It has, however, two limitations: its verbosity for
certain applications, such as expressing computations, and its dissimilarity to
the data models of most programming languages, which introduce overhead and
make it to be perceived as too heavy.

2.4. Other. Many authors, including the creator of JavaScript [11],
consider JavaScript to be a functional programming language. For that reason,
frameworks encouraging functional programming techniques in JavaScript are
not uncommon. In a similar fashion the document-oriented databases CouchDB7

and MongoDB8, whose data models are based on JSON, use JavaScript for the
definition of Map/Reduce views. In both databases JavaScript functions are not
decomposed in any way, but simply represented as strings containing their source
code.

Other notable examples are the dynamically typed languages Erlang and
Oz. The first enjoys popularity because its Actor Model approach to multithread-
ing makes it suitable for certain scalable application. QHTML [12] is an attempt
to take advantage of the multiple programming paradigms supported by the sec-
ond, allowing the programmer to define both the server side and the client side
in Oz, treating HTML documents like traditional GUI elements.

7
http://couchdb.apache.org/

8
http://www.mongodb.org/

44 Miloslav Sredkov

A seemingly more developed solution is Opa, a platform allowing web
applications to be written in a single functional language advertised as concise,
secure, scalable, easy-to-deploy and open source9. It allows client, server and
database code to all be written in a type-safe manner. Instead of constructive
values the language provides list, record and sum types with convenient manipu-
lation and pattern matching syntax. Additional valuable features are syntax for
HTML generation and support for distribution of server instances.

All of these approaches attempt to solve various problems for the de-
velopment of Internet applications. None of them, however, allows for gradual
application of functional computation in a large system. Either the whole sys-
tem is attacked at once, which makes taking advantage of existing technologies
harder, or the solution is focused on a specific part of the system.

3. Jsonya. To enable the gradual integration of functional technologies
into the development of global applications, the technologies being introduced
need to be aligned with the current industrial trends. Because of its popularity,
functional programming on top of a JSON is likely to interoperate more easily
with other technologies, even if they use a less interchangeable data model. The
other data-interchange-friendly options, XML and S-expressions, compared to
JSON, stand at the extremes: although XML is still dominant it is much more
complex than JSON, which is advertised as “The Fat-Free Alternative to XML”10,
while S-expressions, although much simpler, remain unknown to most of the
developers outside the functional world.

In this section we analyse JSON as a basis for functional computations
and gradually define our approach by identifying the principles that follow from
the the use of JSON itself in the context of the global applications.

3.1. Motivation and Approach. To better illustrate the ideas behind
the approach, we will describe the main utilisation that motivated it. In large het-
erogeneous software systems, any two communicating software items implemented
in sufficiently different technologies (e.g. different programming languages that
are not link-compatible or easily interoperable by other means) usually suffer
from some of the following:

• the same problem domain information has to be modelled in both software
items;

9
http://opalang.org/

10
http://www.json.org/fatfree.html

Jsonya/fn: Functional Computation in JSON 45

• routines which map between the model and a (third) transferable represen-
tations are needed;

• if the same operations for the modelled information are needed by both
items, then either a remote invocation mechanism must be used, or the
operations must be implemented at both places.

The above problems are addressed by the many contemporary instruments
targeting inter-process communication, mapping between data representations,
translation and generation of source code, etc. Most of these solutions, however,
are not fully automatic, are available only for a limited number of programming
languages, and often introduce additional configuration overhead.

To overcome the mentioned problems, we propose the following approach:

• A (transferable) JSON representation of the information used by both items
is defined.

• The computations needed by both software items are defined in a high-level
language and translated to an intermediate pure functional language on top
of JSON.

• The software items do not build representations of the same problem domain
information; instead they directly use the transferable representation from
a generic JSON object model, or if feasible, from tiny wrappers on top of
it.

• The software items use the functions defined in the intermediate functional
language via a tiny embedded interpreter instead of reimplementing them.

• Communication between items is done by sending and receiving JSON
which encodes information and/or functions.

This approach, is related to the Common Technical Representation ap-
proach, which we published earlier [42]. CTR advocates focusing on textual
representations which are compatible to various data models, widely applicable,
simple and declarative. The current paper may be seen as a CTR instance using
JSON as a representation format and focused on functional programming.

3.2. Data Model. Before focusing on the intermediate language we need
to resolve one problem standing in our way to it — the lack of an established
data model for JSON. Like XML, JSON is defined only at syntax level, but unlike
XML, which suffers from having multiple data models [45], we were not aware
of any popular programming-language-independent JSON data model. For com-
putations to behave consistently regardless of the host technology, in a separate
paper, we presented Jsonya/dm [41] — a strictly defined data model for JSON.

46 Miloslav Sredkov

In this section we are going to summarise it briefly with regard to the needs of
this article.

The definition of JSON states 7 kinds of values: object, array, number,
string, false, null and true (alternatively true and false are assumed to be the
two values of the primitive type boolean). Objects are collections of name–value

pairs, where each name is a string; arrays are ordered lists of values; numbers as
literals of decimal digits having integer and optionally exponential and fractional
parts; strings are defined as quoted literals of unicode characters; false, null and
true are defined by their literal names. Here is an example JSON code containing
all kinds of values:

{

"string": "Some text with a new line\n",

"number": 18.33,

"object": {"a": 1, "b": 2},

"array": [0, 1, [], {}, "item"],

"literals": [true, false, null]

}

The way JSON is defined seems straightforward; it does not appear that a
formal description is necessary. A closer look, however, reveals several uncertain-
ties — it is not always obvious which aspects of the representation are essential
and which are not (e.g. the white space between the values). Here are some of
the more significant ambiguities:

• Object order: is {"a": 1, "b": 2} distinguishable from {"b": 2,

"a": 1}?

• Empty collections: are {} and [] distinguishable?

• Number representation: Are 30, 30.0, and 30.00, or 0 and -0 distin-
guishable? How large can the numbers be?

• Empty values: are false, 0, "" and null distinguishable?

To some readers the answers to these questions may seem obvious, and
the need to ask them exaggerated. However, an analysis of some of the JSON
parsing libraries linked from http://json.org/ showed that for each of these
questions, libraries whose implementors have assumed different answers can be
found. Since such variations are not acceptable for our goal, we pick a stricter
interpretation of JSON for the basis of our data model.

Elements. After parsing, all available information is represented in a
hierarchy of elements of one of the seven kinds which directly correspond to the

Jsonya/fn: Functional Computation in JSON 47

seven kinds of values in JSON. This way the kinds are as close to the syntax
as possible — they are not intended to serve as a complete type system and to
associate semantics with the values (e.g. that true and false are booleans). Since
a JSON file contains exactly one root value, which is either an object or an array,
parsing yields exactly one element of the appropriate kind. These elements are
the fundamental building blocks of information — they are not constructed using
a smaller data primitive, at least not in an observable way.

Order of Object Members. Order of object members is inessential,
e.g. {"a": 1, "b": 2} and {"b": 2, "a": 1} encode the same object. We
pick this interpretation because of performance and complexity considerations
— efficiently implementing a map without ordering is simpler. For persistent
data structures, although not impossible to implement, we were not able to find
suitable ordered associative array implementations providing O(log n) run-time
complexity for searches and modifications.

This unordered interpretation actually threatens the desired computa-
tional consistency. For example the ECMAScript Standard states “The mechan-
ics and order of enumerating the properties (...) is not specified” [10, p. 92], but
the JavaScript implementations of some popular web browsers iterate the fields
in the order in which they were assigned. Thus, a developer unaware that this
behaviour is implementation specific may accidentally write unportable code.

To enforce consistent computations we need to either disallow ordered
iteration of object members, or specify a concrete order of traversal. While the
former seems interesting, it is too exotic for our needs: to process data, special
(unordered) techniques may be needed: e.g. commutative functions and special
versions of the fundamental higher-order functions.

As the majority of the efficient persistent associative array implementa-
tions are based on sorted structures, such as balanced binary trees or skip lists,
we pick the lexicographical order of the names (keys) as the only way in which
object members can be enumerated11.

Numbers. Number elements represent values which can be written as
finite decimal numbers. Two number elements are indistinguishable if and only if
they encode the same number. Therefore 30, 30.0 and 3e1 are indistinguishable

from each other, and approximate or special values are not supported (e.g.
1

3
or +∞). There are no limits on the precision or range of the numbers, they

11Actually, we need to be even more specific as the way different languages compare strings
is affected by the representation they use. Most notably, languages using UTF8 or UCS4 may
give different results than languages using UTF16 for strings with character outside of the Basic
Multilingual Plane.

48 Miloslav Sredkov

can be as large as the memory constrains of the particular environment allow.
This rather radical choice was seen as the only way to ensure both consis-

tent computation and practical applicability. Binary floating point numbers are
very efficient when a hardware implementation is available, but are hard to reason
about and different implementation may provide slightly different results [35]. On
the other hand, for many practical applications, e.g. monetary values, decimal
numbers are essential [7].

We do not impose any limit on the numbers; particular environments
may fail to execute an operation if a number is too large for them, but should not
silently approximate or truncate the result. When necessary software engineers
can negotiate limits for some problem domain values in order to ensure that all
modules are capable of processing them.

Other Choices. We do not allow objects to have multiple members with
the same name and consider such JSON code illegal. The kind of each element
is observable, so elements of different kinds are always distinguishable from one
another, thus {}, [], "", 0, null and false are all distinct values.

Elements do not have observable identity, only values, i.e. there is no way
to detect whether two elements are the same or not other than by their observable
properties. This implies that all elements are immutable and forces computations
to be pure.

Observable Properties. To summarise, elements have the following
observable properties, and no other:

• for each element, its kind (one of object, array, decimal, string, false, null

or true);

• for object elements, a lexicographically sorted list of the names (keys) of its
members;

• for object elements, by given string, the value of the member with that
name;

• for array elements, the number of items they have (their size);

• for array elements, by given zero-based index, the value of the item at that
index;

• for number elements, the decimal number they represent;

• for string elements, the text (sequence of unicode characters) they represent.

It turns out, that these 7 properties provide all the necessary information
for computations, and in fact can be used to design an appropriate set of primitive

Jsonya/fn: Functional Computation in JSON 49

selector functions. They also suggest that the building blocks for our functional
computations are rather high-level compared to other functional languages.

3.3. Design Considerations. Before we define the language itself, we
are going to outline some of its important characteristics. To more easily ensure
computational consistency and make reasoning easier, all functions should be
pure. To allow programs to be easily communicated through various communi-
cation channels, the language should be homoiconic, i.e. the primary represen-
tations of the programs should also be in Jsonya/dm.

Since JSON is structured as a tree without any support for references,
sharing data would require some non-trivial high-level solution. In order to avoid
complication, automatic structural sharing (memoisation) would be valuable.
Going further in this direction, it is natural to think about automatic memoi-

sation of computations too; although not so crucial as structural sharing, mem-
oising computations may have a positive impact on performance [18].

The language, should be relatively low level, more like an intermediate
language. Being defined in JSON, additional usability would require the use of
micro languages, which would make automatic processing harder and would still
not make it as elegant as a specially designed syntax (see the difference between
XSLT 2.0 and XQuery [31]). However, because higher-level tools may not be
available soon, the language should still be human-readable/writable.

The language, should be relatively low level, more like an intermediate
language. Being defined in JSON, additional usability would require the use of
micro languages, which would make automatic processing harder and will still
not make it as elegant as a specially designed syntax (see the difference between
XSLT 2.0 and XQuery [31]). However, because higher-level tools may not be
available soon, the language should still be human-readable/writable.

The language should be closer to the lazy evaluation model than to the
strict evaluation model. This decision is significant, as with strict evaluation, the
object members must always be computed in a specified order; since the only
allowed order is the lexicographical one and not the one in which the members
are written, this behaviour will not be very intuitive or useful. However, in lazy
programs errors may be delayed, and exposed only when specific parts of the
results are accessed, thus causing potential consistency problems. To avoid such
complications, lazy-like evaluation should be limited to the internal computations;
invocations from the host language should either succeed by returning a complete
JSON-based result, or fail.

Finally, to not complicate the language, all functions should take exactly

one input parameter and return exactly one element as a result. This approach

50 Miloslav Sredkov

does not limit program expression as multi-argument functions can be simulated
by currying. It is followed by some of the most popular high-level functional
languages such as Haskell and ML, which provide convenient syntax for currying
instead of functions with more than one parameter. Some low-level functional
languages also take the same approach in order to stay closer to formalisms such
as lambda calculus and combinatory logic. Examples include Peyton Jones’s
FLIC [38], the partial evaluator of Gomard and Jones [17] and Joy and Axford’s
GCODE [26]. More importantly, instead of defining multi-argument functions
we can just make the construction of array and object elements more convenient,
and in future consider providing destructuring assignments, similar to the ones
supported by some JavaScript implementations12 13.

4. Jsonya/fn. In this section we define Jsonya/fn, the language which
conforms to the aforementioned approach. While we have defined it rather con-
cretely and with particular applications in mind, it should be considered more as
a proof of concept than as a product ready for industrial use as is.

4.1. Main Idea. Following the outlined approach we created a JSON-
based, untyped language, which is relatively close to the untyped lambda calculus,
but has very different variable binding rules as a consequence of the unorderedness
of the objects. The following snippet shows the very simple increment function:

{

"tag": "object",

"fields": {

"inc": {

"tag": "function",

"summary": "Computes x + 1.",

"input": "x",

"body": {

"tag": "call",

"function": {"tag": "get",

"path": ["sum"]},

"parameter": {

"tag": "array",

"items": [

{"tag": "get", "path": ["x"]},

12
http://wiki.ecmascript.org/doku.php?id=proposals:destructuring assignment

13
https://developer.mozilla.org/en-US/docs/JavaScript/New in JavaScript/1.7

Jsonya/fn: Functional Computation in JSON 51

{"tag": "quote", "value": 1}

]

}

}

},

"inc7": {

"tag": "call",

"function": {"tag": "get",

"path": ["inc"]},

"parameter": {"tag": "quote", "value": 7}

}

}

}

This rather trivial example is actually an object definition. Assuming
that the function sum is defined in the environment, its evaluation will result in
an object like the following:

{

"inc": {

"tag": "closure",

"summary": "Computes x + 1.",

"input": "x",

"body": {...},

"environment": {...}

},

"inc7": 8

}

From this it should be visible that: Jsonya/fn is very verbose; a Jsonya/fn
program actually is a Jsonya element defining another Jsonya element; functions
and closures are regular Jsonya elements, not some kind of special values.

What is not directly shown is that:

• The environment field of the increment closure includes sum, inc and
inc7, and is 68 JSON lines.

• sum is not a built-in function but a regular function which invokes a built-
in; built-in functions are not values but intrinsic elements of the interpreter
referred to by string identifiers.

• The order in which inc and inc7 are listed is irrelevant; single or mutual
recursions do not require special constructs.

52 Miloslav Sredkov

4.2. Verbosity. The code of the increment function may seem too large
even for a low-level language, so one may rightfully ask whether it would be usable
at all. The two main concerns are that programs will be too large to be processed
efficiently and nearly impossible to write and edit by hand. Fortunately, both
issues can be addressed by a more appropriate representation and a translator
between it and Jsonya/fn. Indeed, if we look carefully at the above program, we
will notice that the most overhead in terms of size comes because of the object
representation of names and values. If we substitute the objects with arrays and
remove the comments, we may yield something like:

["object", {

"inc": ["function", "x",

["call",

["get", ["sum"]],

["array",

["get", ["x"]],

["quote", 1]]]],

"inc7": ["call",

["get", ["inc"]],

["quote", 7]]}]

which looks like LISP with some additional syntax noise. This program is much
shorter, while all we did was to substitute the named constructs with positional
ones. We can save even more if we introduce a shorthand to access variables like
"$x" or if we use a custom syntax instead of JSON-based one. Going this way,
however, we deviate from the original target, which is convenient programmatic
processing.

Jsonya/fn represents programs in a way natural for an object-based in-
memory representation. Because this may not suit all purposes, languages for
the specific purposes should be designed when needed, while Jsonya/fn should be
used as a central canonical representation, similarly to the way prescribed in the
CTR approach [42].

4.3. Syntax. A Jsonya/fn program is usually stored in a JSON file
whose root element defines an expression. Jsonya/fn expressions are defined by
object expression construct elements which are built on top of other expressions
or Jsonya/dm values. Each expression construct object has a field tag which
determines its type. There are exactly 8 expression constructs:

• "object" — constructs an object. Contains a member object fields,
which holds the expressions of the resulting members.

Jsonya/fn: Functional Computation in JSON 53

• "array" — constructs an array. Contains a member array items, which
holds the expressions of the resulting members.

• "quote" — quotes a value. Contains a member field value holding the
value to be returned verbatim.

• "get" — gets a value from the environment. Contains a member array
of strings path holding the name of the variable followed by a sequence of
built-in names to be applied to it; see Section 4.4.

• "call" — invokes a function with a given parameter. The fields function
and parameter contain the appropriate expressions.

• "internal" — invokes an internal (built-in). Contains the member string
name and the member expression parameter; see Section 4.4.

• "if"— an if-then-else expression. Contains a member expression condition

which must evaluate to either true or false; based on it the result is the
value of either the then or the else expression.

• "function" — a lambda expression. Contains a member string input

holding the name of the input variable and an expression body; evaluates
to a closure object; see Section 4.5.

An illustration of the syntax based on JSON is given in Figure ??; how-
ever, note that Jsonya/fn is defined on the data model level, so defining it in terms
of textual (JSON-based) syntax is inaccurate and given for illustrative purpose
only14. Most notably, the order of fields is not relevant, and the objects may
contain additional fields.

4.4. Built-ins. In order to keep the data model simple and not pollute
it with special values, we decided that built-in functions should not be first-class
values in it (or values at all). This does not limit the programmer from passing
them indirectly — either by their name or, via a wrapper function which invokes
them — which is more flexible for library implementations, as changing a function
is easier than changing a built-in.

Consistency Among Nodes. The main benefit of not having built-ins
as first class values is that this allows all the information, including the function
definitions, the result of the execution and closures, to be easily interchangeable
as JSON. To achieve full mobility and execution consistency, however, all parties
must observe the following rules:

14Alternatively, we could have used a tool like JSON-schema (http://json-schema.org/)
but such a definition would be less readable and still inexact

54 Miloslav Sredkov

〈expression〉 ::= 〈object〉 | 〈array〉 | 〈quote〉 | 〈get〉 | 〈call〉 | 〈internal〉 | 〈if 〉 | 〈function〉

〈object〉 ::= {"tag": "object", "fields": 〈object of expr.〉 }

〈array〉 ::= {"tag": "array", "items": 〈array of expr.〉 }

〈quote〉 ::= {"tag": "quote", "value": 〈any value〉 }

〈get〉 ::= {tag": "get", "path": 〈array of strings〉 }

〈call〉 ::= {"tag": "call", "function": 〈expression〉 , parameter: 〈expression〉 }

〈internal〉 ::= {"tag": "internal", "name": 〈string〉 }

〈if 〉 ::= {"tag": "if", "condition": 〈expression〉 , "then": 〈expression〉”,
"else": 〈expression〉 }

〈function〉 ::= {"tag": "function", "input": 〈string〉, "body": 〈expression〉 }

Fig. 1. Pseudo-grammar of Jsonya/fn

• All built-ins must behave as pure functions and be unambiguously specified
without allowing result variation.

• For each built-in a name (identifier) highly-unlikely to collide globally must
be picked. Web addresses or UUIDs can be used.

• Built-ins cannot change; if the built-in is to be modified, e.g. to fix a bug or
to improve its design, then a new built-in with a different identifier must be
introduced, and the old onemust be removed or documented as deprecated
instead.

Because at this point Jsonya/fn deliberately does not provide means to check
whether a built-in is present or not, if the above rules are observed, then all suc-
cessful executions of a Jsonya/fn programs will produce the same result regardless
of the place of execution.

Selectors. To take advantage of the JSON-based structure, the core
language must provide means to both easily construct composite elements (i.e.
objects and arrays), which is done by the appropriate expressions, and to access
their sub-elements. The latter is achieved with a family of built-ins which we
call selectors. They are designed in accordance with the observable properties
identified in Section 3.2:

• "@kind" — gets the kind of the element. Returns a string with one of
the values "object", "array", "decimal", "string", "false", "true" or
"null".

Jsonya/fn: Functional Computation in JSON 55

• "@keys" — gets the names of the members of an object. Returns a sorted15

array of strings.

• "@size" — gets the number of items of an array element. Returns a single
number.

• ".name" where name is a field name — gets the field with that name from
the object. This is actually a family of built-ins; all names starting with ‘.’
are reserved for this.

• "#index" where index is a decimal representation of a zero-based index of
an array item — gets the item. Also a family of built-ins, names starting
with ‘#’ are reserved for this.

The reason to define the last two selectors as families of built-ins is to
allow means for future static reasoning, without putting additional expression
constructs. Host-language variants of the same selectors, with the addition of
two for the value of a string or a number, are completely sufficient interface for
accessing the information from the host technology.

4.5. Environments and Closures.

It is important to define the entities which play a crucial role in the
interpretation. After evaluation, each function construct results in a closure

with the following structure:

{

"tag": "closure",

"input": input-name,

"body": body-expression,

"environment": environment

}

Input-name and body-expression are simply copied from the given function.
The only new element is the environment.

Environment objects hold the definitions of all variables accessible in a
given evaluation context, i.e. variables which the body-expression can use. En-
vironments are also first class values, explicitly represented as Jsonya elements.
This allows them to be easily passed around (locally or remotely) and facili-
tates metaprogramming. An environment object has a structure similar to the
following:

{

"tag": "environment",

15Our current implementations sort in UTF16 order, but this may be changed in future.

56 Miloslav Sredkov

"parent": parent-environment,

"locals": {

"name1" : expr1,

"name2" : expr2,

...

"namen" : exprn,

}

}

As one would expect, the locals field contains the variables and parent-

environment is an environment from which variables should be looked up if not
present locally, or null. What may surprise some is that the variables are not
stored as values but rather as unevaluated expressions. This provides several
benefits for the interpretation algorithm, while one can still inject values by sim-
ply putting them in quote expressions. Most notably, this allows various lazy-
like evaluation schemes to be implemented without having to break out of the
Jsonya/dm data model (e.g. to provide lazy memory cells).

4.6. Basic Interpreter. Now we are ready to define the basic inter-
pretation algorithm. The following pseudocode defines the eval function, which
takes two elements — the environment into which the expression to be evaluated
and the expressions itself. This function needs to be implemented in the host
programming language that will use Jsonya/fn:

eval(env, exp)
switch exp.tag

case "object":

localEnv = sub-environment of env, with exp.fields as locals

return object containing

k : eval(localEnv, exp.fields[k]) for each field name k

case "array":

return array containing eval(env, exp.items[i])

for each item index i

case "get":

p = exp.path

varEnv = locate the parent of env with p[0]

val = eval(varEnv, varEnv.locals[p[0]])

return val with all internals from p[1..] applied to it

case "call":

closure = eval(env, exp.function);

parameter = eval(env, exp.parameter);

Jsonya/fn: Functional Computation in JSON 57

callEnv = closure.env

with {"tag": "quote", "value": parameter}

added to its locals

return eval(callEnv, closure.body);

case "internal":

parameter = eval(env, exp.parameter);

return internal(exp.name, parameter);

case "if":

condition = eval(env, exp.condition);

if condition

then return eval(env, exp.then);

else return eval(env, exp.else);

case "quote":

return exp.value;

case "function":

return exp patched with

"tag" : "closure",

"environment": env

end

What we do is to recursively evaluate each expression depending on its
kind. Many of the types of expressions are straightforward. The most interesting
ones are the object, function and call expressions.

For the evaluation of the object expressions a new sub-environment which
includes the expressions of all object fields is created. Then this environment is
used for the evaluation of each object.

The function expressions are evaluated trivially. The only important
thing is that the same environment that is given for the evaluation is stored in
the closure.

The call expression is the most interesting one. First it gets the closure
that is to be invoked and constructs a new environment which is based on the
captured one, but with the value of the parameter assigned to the variable whose
name is given by input. Then it evaluates the body of the closure in the created
environment.

With the exception of the data model and the implementations of the
internals (which we assume to be implemented in the function internal), this is
basically what is needed to interpret Jsonya/fn.

4.7. Unorderedness and Laziness. Let us again consider the un-
orderedness of the objects. The presented algorithm can evaluate correctly the

58 Miloslav Sredkov

following Jsonya/fn program:

{

"tag": "object",

"fields": {

"a": {"tag": "get", "path": ["c"]},

"b": {"tag": "quote", "value": 5},

"c": {"tag": "get", "path": ["b"]},

}

}

As expected, the result of it is the object {”a”: 5, ”b”: 5, ”c”: 5}. The
algorithm manages to compute the values in the appropriate order, as a lazy
functional language would do. Based on this, one will expect that order of ini-
tialisation is not something to worry about any more.

The following example however (written in JavaScript-like notation16 to
spare 40 lines of code) shows this is not completely the case:

{

"a": {

"x": 5,

"y": b.z + x //10

},

"b": {

"z": a.x, //5

"t": a.y + z //15

},

}

If we look at the values of the fields x, y, z, and t, they do not have cyclic
dependencies, so if the interpreter is smart enough, their values can be computed
correctly. Unfortunately this does not happen in the above algorithm, as it treats
values as indivisible entities. When y refers to b.z, it would cause the whole b

to be computed, which will need a.x or a.y, which will in turn need a, resulting
in an infinite recursion.

Luckily, this deficiency can be resolved relatively easily. If we focus on
cross-referencing objects, i.e. objects whose members mutually refer to each
other’s, then we can identify the reason for this infinite recursion as the imple-
mentation of the get expression. Even though we may need just a part of an

16It would not work in JavaScript either.

Jsonya/fn: Functional Computation in JSON 59

object it always evaluates the whole object. To resolve this we introduce the
following function which evaluates only part of a value, and we also modify the
"get" case of the eval function to use it:

evalPart(env, exp, path)
if path.length and exp.tag == "object"

and path[0][0] == ’.’ then

localEnv = sub-environment of env, with exp.fields as locals

// evaluate only the important field

key = path[0][1..];

return lazyEval(localEnv, exp.fields[key], path[1..]);

elseif path.lenght and exp.tag == "array"

and path[0][0] == ’#’ then

index = parse path[0][1..];

return lazyEval(env, exp.items[index], path[1..]);

else

return eval(env, exp) with all path elements applied to it ;

end

eval(env, exp)

...

case "get":

p = exp.path;

e = locate the parent of env containing p[0]

return lazyEval(e, e.locals[p[0]], p[1..]);

...

As can be seen, this enhancement is not very complicated, but it solves
the particular problem. However, this solution is also not complete. If a and b

were returned from a function instead of accessed directly from the environment,
evaluation would still recurse infinitely.

It is not hard to step further and resolve this case too. In fact, we can
transfer more cases to the evalPart function and modify some of the eval cases.
In the implementation of the "call" expressions we can enclose the parameter
expression in a closure and inject a call to this closure in the inner environment,
instead of passing the value, thus achieving a call-by-name semantics. We can also
allow, by incorporating some of the internals in the evalPart function, certain
properties of composite element, e.g. @size, to be computed without computing
its members.

At this point, however, we are not confident that going beyond the au-
tomatic order of variable initialisation, e.g. making Jsonya/fn a full call-by-need

60 Miloslav Sredkov

implementations is reasonable as we are targeting consistent fail-fast behaviour.

4.8. Memoisation. Consider the following example of the straightfor-
ward implementation of the Fibonacci function:

{

"tag": "object",

"fields": {

"sum": { calls built-in-numeric-sum },

"less": { calls built-in-numeric-less },

"fibonacci": {

55 lines of code doing roughly the following:

if less [x, 2]

then x

else sum [

fibonacci sum [x. -1],

fibonacci sum [x. -2]

]

},

"fib7": { calls fibonacci 7},

"fib17": { calls fibonacci 17},

}

}

Fibonacci numbers have often been used to illustrate the need of mem-
oisation or the benefits of tail recursion, so it is not hard to notice that this
implementation runs in exponential time. While we certainly need to address its
performance, there are also some other issues, which are less obvious.

One such problem is the size of the resulting program. The resulting
object will have five members: sum, less, fibonacci, fib7 and fib17. While
the last two will simply have the values 13 and 1597, the first three will be
closures. Although all reside in the same environment, each will have a copy
of it, containing the expressions of all five members. In this case, the result in
expanded form17 is 698 lines, compared to the 179 lines of the input. In general,
the size of the result can grow quadratically.

Structural Memoisation. Before focusing on the JSON representation,
we need to first address the in-memory behaviour. A careful examination of the
eval and evalPart functions would reveal that the environments will actually be
shared — when object members are evaluated, the same environment is passed

17Each value on separate line, plus one extra closing line for non-empty objects and arrays.

Jsonya/fn: Functional Computation in JSON 61

to each sibling. Because of this, the result will occupy much less space in memory
than in JSON.

If the same value is computed by different means, e.g. two function calls
return the same value, it will not be shared. As described in Section 3.3, we want
to step further and enforce structural sharing even in this case. To do this, in
the host language we need to do the following:

• A suitable hash function capable of computing hash values of all Jsonya/dm
values must be defined. It must be sophisticated enough to keep the collision
probability (i.e. two distinct Jsonya/dm values with the same hash in the
same system node) negligible.

• The object model needs to be enhanced so that upon the construction of
each Jsonya/dm value its hash value is associated with it.

• A value cache (e.g. a hash map) between hash values and Jsonya/dm
values needs to be allocated and the functions creating Jsonya/dm values
are modified to check the cache and reuse values there.

• Depending on the capabilities of the host technology, a cleanup strategy
such as least-recently-used or random-replacement or weak references can
be employed.

It is not crucial that full structural sharing is achieved; for our needs it is sufficient
if it captures often occurring repetitions. The associated hash value, however, is
also important for another reason — it allows us to compare values of arbitrary
size in constant time.

The same approach and hash function can also be used to reduce the size
of the JSON representation. An alternative, but still JSON-based, format which
includes (e.g. string based) references will make the size of the file representa-
tion similar to the in-memory one. The only drawback is that serialisation and
deserialisation would require additional processing step. In this paper, we omit
the definition of such a format.

Computational Memoisation. With the introduced structural shar-
ing, the memory layout of the values becomes the smallest possible directed
acyclic graph. This, however, is not observable — the values are still treated as
though they were tree-based. In particular, the fact that each of the five closures
from the Fibonacci example will point to the same environment will not save
them from having to perform the same computation with it. If several closures
were using fib17, each of them would compute its value for itself. This behav-
iour may lead to much more obscure performance problems than the computation
time of the Fibonacci number itself.

62 Miloslav Sredkov

One reason for this is that our algorithm effectively does tree reduction
instead of graph reduction, and so the techniques we apply are not appropriate
from a performance standpoint. Fortunately, we can easily resolve this and other
problems by simply memoising the eval and the evalPart functions using the
hash values already defined. As with structural memoisation, a replacement
strategy may be implemented in order to manage memory consumption.

The effects of this memoisation are significant — the evaluator will not
evaluate the same expression in the same environment twice. Because hash values
depend on the whole structure of the Jsonya/dm values, if the same expression
occurs multiple times in the same environment, its computation will be reused.
This way, variables like fib17 will not be computed more than once.

Regarding the computation of the Fibonacci number, the way we evaluate
the "call" expressions is by evaluating their body expression in an environment
containing the passed parameter. Thus, if the same closure is invoked with the
same argument twice, the second invocation will reuse the value of the first. This
in turn means that the Fibonacci example will be automatically memoised.

4.9. Other Properties. So far we have shown the most significant
properties of the language, namely the explicit representation of closures and
environments, the unorderedness of the values and automatic order of evaluation,
the automatic structural and computation memoisation.

Another interesting property is that recursion, both single and mutual,
works without the need of a fixpoint combinator or other special constructs.
This is a side effect of the way we pass environments — effectively each regularly
defined closure contains the function it was defined from.

One limitation that the Jsonya/fn language has is the lack of error recov-
ery. Each failure terminates the program, and can be observed only in the host
language. Although this is done to ensure computational consistency, we hope to
find a better solution in future.

5. Feasibility. Jsonya/fn’s structural and computational memoisation,
automatic order of initialisation and treatment of closures may tackle certain
causes of complexity when an appropriate programming style is used. However,
let us go back to the problem that we claimed to provide a solution for, namely
what data model should be used in order to apply functional computations in
global applications. We argue that JSON-based data model like Jsonya/dm is a
valuable option, and particularly that:

• Jsonya can provide benefits to global Internet applications when integrated
gradually;

Jsonya/fn: Functional Computation in JSON 63

• the costs of the gradual integration of Jsonya in global Internet applications
is outweighed by the benefits.

Because the presented approach currently lacks some necessary tools, we
have to make certain assumptions. Specifically, we assume that an appropri-
ate high-level functional programming language that compiles to Jsonya/fn will
be present in addition to it, and assess the feasibility of utilising the resulting
toolset. We believe that such a language is not hard to develop, but in order not
to speculate, our claim becomes: If a high-level function programming language
that compiles to Jsonya/fn is present, then the resulting toolset can be gradu-
ally integrated into the development of global Internet application with benefits
outweighing the costs.

5.1. Integration Cost. The success of any JSON-focused instrument,
including Jsonya/fn, depends on how easily applicable in various environments
it is. JSON Schema [46] is an example of a tool implemented for variety of
languages, including C, Java, .NET, ActionScript, Haskell, Python, Ruby, PHP
and JavaScript18. Some of the implementations, however, only implement part
of the functionality, yet none of them is shorter than a few hundred lines of code.
More complete implementations such as JSV by Gary Court19 spawn thousands
of lines.

Fully implementing a tool like JSON Schema requires a serious effort. Be-
cause of this, it is important to assess how hard the implementation of Jsonya/fn
for each target platform will be. In addition to required effort, the size of the
implementation is also important, especially if it is to be included in web pages
or mobile applications. To find out, we implemented the described Jsonya/fn
interpreter in Java and JavaScript similarly to the shown pseudo-code:

• The simple version of the interpreter, which did not handle crossreferences,
was implemented in less than 300 lines of code in both languages (including
reasonable number of comments, but in the case of Java without counting
the JSON parser and data model which were provided by Jackson20).

• Implementing the full algorithm, i.e. supporting crossreferences and mem-
oisation, added less than 100 additional lines in both implementations.

However, not everything went smoothly. The main problems we encoun-
tered were:

18According to http://json-schema.org/implementations.html
19https://github.com/garycourt/JSV
20
http://jackson.codehaus.org/

64 Miloslav Sredkov

• The data model of JavaScript was not very convenient because we were not
able to associate the hash values without polluting the Jsonya/dm model.
To work around this, all Jsonya/dm values were wrapped in an additional
object.

• Because JavaScript lacks native support for large decimal numbers, to fully
implement Jsonya/fn, an external library is needed. Because such libraries
are usually thousands of lines of code, in certain cases it may be reasonable
to restrict the supported numeric range instead.

• Because of the statically typed nature of Java, the invocation of Jsonya/fn
functions and the definition of built-ins felt unnatural. To provide conve-
nient, type-safe means for this, we attempted two approaches, which were
successful but complex. The first one used inheritance and was about 1500
lines; the second used dynamic proxies to synthesise objects from annota-
tions and was about 3700 lines.

Based on these results, we may assume that implementing a conforming
Jsonya/fn interpreter is relatively easy. Our minimal implementations are com-
parable in size to the famous Lisp metacircular evaluator as described by Abelson
et al. [1], which is about 400 lines of code. A quick search shows that interpreters
of other simple languages are also in the range of a few hundred lines of code.

In fact, if the aforementioned JSON-schema was implemented in Jsonya/fn
(by using the hypothetical high-level language) it would have to be written only
once, even if it is thousands of lines of code; then even if a Jsonya/fn interpreter
is not available for a certain technology, implementing a minimal conforming in-
terpreter and using the Jsonya/fn implementation would still be cheaper than
implementing the whole schema validation algorithm.

This last example is also a significant motivation for the development of
Jsonya/fn. JSON is young and its toolset is relatively immature. We believe that
our approach can help the situation to be improved.

5.2. Benefits. Finally, we will look at the architecture of a real global
application and define where Jsonya/fn could be applied and how. The software
system, whose name we cannot disclose due to legal reasons, allows users to
create a specific type of content, as well as to access the content created by other
users by browsing or searching it. The content is not statically displayed but
rendered by an appropriate means; browsing and searching is also implemented
via specific visualisations and interactions. Users can provide feedback about the
content of others, as well as to observe what other users do, similarly to other
socially-enabled systems.

Jsonya/fn: Functional Computation in JSON 65

The development of the system started in 2010 and is still ongoing; the
first publicly accessible version was released in early 2011. We were involved in the
development of the system from the beginning of the project to until early 2012.
The system needs to handle up to one million registered users, to be accessible
from all popular desktop web browsers, as well as from Android and iOS devices.
It also needs to have a (relatively simple) administrative interface.

All of these goals were reached. The server side was implemented in
Java on top of the Google App Engine, using the non-relational Datastore and
Blobstore to persist the information. It was accessed via a set of HTTP-based
web services written in Java. Most of them used JSON to process input and
return results, but some used the GWT RPC protocol. The web based front-end
was implemented mostly in Java and translated to JavaScript with GWT. Parts
of the web interface were implemented directly in JavaScript and parts had to
be implemented in Adobe Flash and ActionScript. The mobile front ends were
implemented as native Android and iPhone applications which communicate to
the server with JSON though HTTP. Parts of the Java code from the server were
reused in the Android application.

By using the architecture of the system and our experience during its
development, we identified the following benefits that the availability of a tech-
nology like Jsonya/fn would have have brought:

• The problem domain model would have been reused in all four programming
languages employed. Certain bugs caused by incompatibilities would have
been avoided.

• GWT would very likely not have been used; although it allowed us to reuse
Java code in the client side its limitations were too severe.

• Many computations for the model, including validation logic, would have
been reused through Jsonya/fn, thus avoiding several client/server bugs.

• Certain security bugs caused by unnecessarily sending more information
(whole objects) because of the used JSON serialisation tool would have
been avoided.

• The synchronisation between client and server related to offline operation
would have been implemented more easily, as with Jsonya/fn we would have
been able to design a simpler solution which applies the same modification
operations both locally and remotely.

The above benefits would be available (to a lesser extent) if some of the
system parts were left intact, i.e. implemented without Jsonya/fn.

66 Miloslav Sredkov

The main drawbacks we identified from the application of the hypothetical
toolset were:

• Some of the developers would have had to learn another programming lan-
guage.

• The data model of the database is not compatible with Jsonya; database
operations would still have to be implemented manually.

• Unless a more sophisticated type-safe implementation is applied, interac-
tions between Jsonya/fn and Java or Objective C would feel unnatural.

We believe that despite these drawbacks, the benefits outweigh the costs.
The analysed system, although relatively large, is not unique in having these com-
plexities; other global applications we have worked on also suffered from similar
problems. Of course, to really validate these predictions, a high-level functional
language needs to be implemented on top of Jsonya/fn, and the approach needs
to actually be applied; we hope that in future we will have the opportunity, and
the resources, to do so.

6. Discussion. The automatic memoisation that Jsonya/fn features is
capable of drastically optimising certain programs, but does not come without
its cost — many operations require a cache lookup, which for certain programs
will more often fail than not. Because of this, a well written functional program
evaluated in a strict interpreter may outperform an equivalent Jsonya/fn program
by a constant factor. In exactly what situations the benefits of memoisation will
outweigh the cost requires more evaluation.

While structural sharing may be easily implemented in the interpreter,
thus Jsonya/dm values containing a lot of duplication would consume small
amount of memory when loaded, saving them back to (flat) JSON can cause
their size to explode. To resolve this either a JSON-based file format which em-
ploys automatic sharing need to be developed, or these structures need to be
processed appropriately before serialisation.

Although the syntax of Jsonya/fn is relatively stable, various additions
and modifications have been considered, and may be applied in the future. A
let expression construct, which defines variables in a local scope, could allow
local variables that are not part of the resulting objects to be defined. However,
this can be simulated relatively easily by exploiting the call construct with
a parameter defining the local variables and an anonymous function which
contains the resulting expression. Another option would be to allow a where

Jsonya/fn: Functional Computation in JSON 67

field to be defined to all (or most) constructs, but this does not seem necessary
at this point.

We also presented several properties of the language for which we did not
evaluate thoroughly the benefits or drawbacks. The automatic order of initiali-
sation which was illustrated by resolving the crossreference example was one of
them. Our experience shows, that in the development of large software systems,
the order of initialisation can become very complicated. Taking this burden off
developers’ shoulders would be a valuable addition, but this may vary depending
on the specific technology. Another feature which we did not assess fully was the
potential for code mobility based on the way closures are represented. Automatic
code distribution (and scalability in general) was one of the goals which influ-
enced large part of the design of Jsonya/fn, yet how exactly it can be achieved
remains a topic for future research.

Other important issues that need to be further explored in future are
the efficient implementation of the Jsonya/dm data model, which is the heart of
the whole approach and the main requirement for consistent computations, and
the form of the hypothetical high-level functional language which translates to
Jsonya/fn. Whether it is suitable to translate some of the popular functional
languages, or a new one has to be developed, remains to be seen.

7. Conclusion. The analysis of the popular functional tools applied in
the context of Internet applications shows that the choice of data model is an
important one. JSON-based data model can be used to provide smooth integra-
tion of functional computation in global applications. The JSON-based approach
Jsonya incorporates the data model Jsonya/dm and the intermediate homoiconic
functional language Jsonya/fn, which is represented as and works with Jsonya/dm
values. The language is defined following the main principles of JSON. Built-ins
are handled in such a way that environments and closures are also represented
explicitly as Jsonya/dm values, thus achieving a stronger form of homoiconic-
ity. The described implementation of the language features automatic structural
sharing, computational memoisation and automatic order of evaluation. The as-
sessment of the feasibility of fully implementing the approach shows that it can
be beneficial to large heterogeneous Internet-centric applications.

It is our hope that in the near future Jsonya will reach the point when
it can be used to in the development of large Internet-centric applications, but
more importantly, we hope to have convinced the readers that JSON exhibits very
interesting properties as a foundation for functional programming and deserves
to be explored further.

68 Miloslav Sredkov

REFERE NC ES

[1] Abelson H., G. Sussman, J. Sussman, A. Perlis. Structure and inter-

pretation of computer programs, 2(1985), MIT Press Cambridge, MA.

[2] Benzaken V., G. Castagna, A. Frisch. CDuce: an XML-centric general-
purpose language. SIGPLAN Not., 38 (2003), No 9, 51–63. doi: 10.1145/
944746.944711. http://doi.acm.org/10.1145/944746.944711

[3] Chamberlin D., J. Robie, D. Florescu, S. Boag, J. Siméon, M. F.
Fernández. XQuery 1.0: An XML query language. W3C recommendation,
W3C, Jan. 2007. http://www.w3.org/TR/2007/REC-xquery-20070123/.

[4] Chlipala A. Ur: statically-typed metaprogramming with type-level record
computation. In: Proceedings of the 2010 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’10, New York,
NY, USA, ACM, 2010, 122–133.

http://doi.acm.org/10.1145/1806596.1806612

[5] Clark J. XSL transformations (XSLT) version 1.0. W3C recommendation,
W3C, Nov. 1999. http://www.w3.org/TR/1999/REC-xslt-19991116.

[6] Cooper E., S. Lindley, P. Wadler, J. Yallop. Links: Web program-
ming without tiers. In: Formal Methods for Components and Objects (Eds
F. de Boer, M. Bonsangue, S. Graf, W.-P. de Roever), Lecture Notes in
Computer Science, Vol. 4709, Springer Berlin/Heidelberg, ISBN 978-3-540-
74791-8, 2007, 266–296.

[7] Cowlishaw M. F. Decimal floating-point: Algorism for computers. In: Pro-
ceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH-
16’03), ISBN 0-7695-1894-X, ARITH ’03, IEEE Computer Society, Wash-
ington, DC, USA, 2003, 104–111. http://dl.acm.org/citation.cfm?id=
786450.786615

[8] Crockford D. The application/json Media Type for JavaScript Object
Notation (JSON). RFC 4627 (Informational), 2006. http://www.ietf.org/
rfc/rfc4627.txt

[9] Damas L., R. Milner. Principal type-schemes for functional programs. In:
Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’82, ISBN 0-89791-065-6, ACM, New York,
NY, USA, 1982, 207–212. http://doi.acm.org/10.1145/582153.582176

Jsonya/fn: Functional Computation in JSON 69

[10] ECMA. ECMA-262: ECMAScript Language Specification. 5.1 edition,
June 2011. http://www.ecma-international.org/publications/files/
ECMA-ST/Ecma-262.pdf

[11] Eich B. Javascript at ten years. ACM SIGPLAN Notices, 40 (2005), ACM,
129–129.

[12] El-Ansary S., D. Grolaux, P. Van Roy, M. Rafea. Overcom-
ing the multiplicity of languages and technologies for web-based develop-
ment using a multi-paradigm approach. In: Multiparadigm Programming
in Mozart/Oz (Ed. P. Van Roy), Lecture Notes in Computer Science, Vol.
3389 , Springer Berlin/Heidelberg, ISBN 978-3-540-25079-1, 2005, 113–124.
http://dx.doi.org/10.1007/978-3-540-31845-3 10

[13] Elsman, M., K. Larsen. Typing XHTML web applications in ML.In: Prac-

tical Aspects of Declarative Languages (Ed. B. Jayaraman), Lecture Notes in
Computer Science, Vol. 3057 Springer Berlin/Heidelberg, ISBN 978-3-540-
22253-8, 2004, 224–238.

[14] Ennals R., D. Gay. User-friendly functional programming for web
mashups. SIGPLAN Not., 42 (2007), No 9, ISSN 0362-1340, 223–234.
http://doi.acm.org/10.1145/1291220.1291187

[15] Frisch. A. OCaml + XDuce. SIGPLAN Not., 41 (2006), No 9, ISSN 0362-
1340, 192–200. http://doi.acm.org/10.1145/1160074.1159829

[16] Gaevi D., D. Djuri, V. Devedi, D. Gaevic, D. Djuric, V. Devedic.
Model driven engineering. In: Model Driven Engineering and Ontology De-
velopment, Lecture Notes in Computer Science, Springer Berlin/Heidelberg,
ISBN 978-3-642-00282-3, 2009, 125–155.

[17] Gomard C. K., N. D. Jones. A partial evaluator for the untyped lambda-
calculus. Journal of Functional Programming, 1, ISSN 1469-7653, 21–69.
http://dx.doi.org/10.1017/S0956796800000058

[18] Hall M., J. Mayfield. Improving the performance of ai software: Payoffs
and pitfalls in using automatic memoization. In: Proceedings of the Sixth
International Symposium on Artificial Intelligence, Megabyte, Sept. 1993,
178–184.

[19] Hanus M. High-level server side web scripting in Curry. In: Practical As-
pects of Declarative Languages (Ed. I. Ramakrishnan), Lecture Notes in
Computer Science, Vol. 1990, Springer Berlin/Heidelberg, ISBN 978-3-540-
41768-2, 2001, 76–92.

70 Miloslav Sredkov

[20] Hanus M. Type-oriented construction of web user interfaces. In: Pro-
ceedings of the 8th ACM SIGPLAN international conference on Principles
and practice of declarative programming, PPDP ’06, ISBN 1-59593-388-3,
ACM, New York, NY, USA, 2006, 27–38. http://doi.acm.org/10.1145/
1140335.1140341

[21] Hanus M. Putting declarative programming into the web: Translating Curry
to JavaScript. In: Proceedings of the 9th ACM SIGPLAN international
conference on Principles and practice of declarative programming, PPDP
’07, ACM, ISBN 978-1-59593-769-8, New York, NY, USA, 2007, 155–166.
http://doi.acm.org/10.1145/1273920.1273942

[22] Hindley R. The principal type-scheme of an object in combinatory logic.
Transactions of the american mathematical society, 146 (1969), 29–60.

[23] Hosoya H., B. C. Pierce. XDuce: A statically typed XML processing
language. ACM Trans. Internet Technol., 3 (2003), No 2, ISSN 1533-5399,
117–148. http://doi.acm.org/10.1145/767193.767195

[24] Hostetter M., D. Kranz, C. Seed, C. Terman, S. Ward. Curl: a
gentle slope language for the web. World Wide Web J., 2 (1997), No 2,
ISSN 1085-2301, 121–134. http://dl.acm.org/citation.cfm?id=275062.
275073

[25] Jones M. P. Type classes with functional dependencies. In: Proceedings
of the 9th European Symposium on Programming Languages and Systems,
ESOP ’00, ISBN 3-540-67262-1, London, UK, 2000, 230–244. http://dl.

acm.org/citation.cfm?id=645394.651909

[26] Joy M., T. Axford. GCODE: a revised standard for a graph representation
for functional programs.SIGPLAN Not., 26 (1991), No 1, ISSN 0362-1340,
133–139. http://doi.acm.org/10.1145/122203.122214.

[27] Kay M. XSL transformations (XSLT) version 2.0. W3C recommendation,
W3C, Jan. 2007. http://www.w3.org/TR/2007/REC-xslt20-20070123/.

[28] Kiselyov O. SXML specification. SIGPLAN Not., 37 (2002), No 6, ISSN
0362-1340, 52–58. http://doi.acm.org/10.1145/571727.571736

[29] Kiselyov O., S. Krishnamurthi. SXSLT: Manipulation language for
XML. In: Practical Aspects of Declarative Languages (Eds V. Dahl and
P. Wadler), Lecture Notes in Computer Science, Vol. 2562, Springer
Berlin/Heidelberg, ISBN 978-3-540-00389-2, 2003, 256–272. http://dx.

doi.org/10.1007/3-540-36388-2 18

Jsonya/fn: Functional Computation in JSON 71

[30] Krishnamurthi, S., P. Hopkins, J. McCarthy, P. Graunke, G. Pet-
tyjohn, M. Felleisen. Implementation and use of the PLT Scheme web
server. Higher-Order and Symbolic Computation, 20 (2007), No 4, 431–460.

[31] Marchal B. Working XML: Comparing XSLT 2.0 and XQuery. IBM
developerWorks, Apr. 2006. http://www.ibm.com/developerworks/xml/

library/x-wxxm34/

[32] McGranaghan M. ClojureScript: Functional programming for JavaScript
platforms. Internet Computing, IEEE, 15 (2011), No 6, 97–102.

[33] Meijer E., M. Shields. XMlambda – a functional language for con-
structing and manipulating XML documents. Technical report, submitted
to USENIX 2000 Technical Conference.

[34] Milner R. A theory of type polymorphism in programming. Journal of

Computer and System Sciences, 17 (1978), No 3, ISSN 0022-0000, 348–
375. doi: 10.1016/0022-0000(78)90014-4 http://www.sciencedirect.com/

science/article/pii/0022000078900144

[35] Monniaux D. The pitfalls of verifying floating-point computations. ACM

Trans. Program. Lang. Syst., 30 (2008), No 12, ISSN 0164-0925, 1–41.

[36] Murphy VII T., K. Crary, R. Harper. Type-safe distributed program-
ming with ML5. In: Trustworthy Global Computing(Eds G. Barthe, C. Four-
net), Lecture Notes in Computer Science, Vol. 4912, Springer Berlin/Hei-
delberg, ISBN 978-3-540-78662-7, 2008, 108–123.

[37] Nørmark K. Web programming in Scheme with LAML. Journal of Func-

tional Programming, 15 (2005), No 1, 53–65.

[38] Peyton Jones S. L. FLIC—a functional language intermediate code. SIG-

PLAN Not., 23 (1988), No 8, ISSN 0362-1340, 30–48. http://doi.acm.org/
10.1145/47907.47910

[39] Plasmeijer R., P. Achten. iData for the world wide web programming in-
terconnected web forms. In:Functional and Logic Programming (Eds Hagiya
M., P. Wadler) , Lecture Notes in Computer Science, Vol. 3945, Springer
Berlin/Heidelberg, ISBN 978-3-540-33438-5, 2006, 242–258.

[40] Serrano M., E. Gallesio, F. Loitsch. Hop, a language for programming
the web 2.0. In: Proceedings of the First Dynamic Languages Symposium,
Oct. 2006.

72 Miloslav Sredkov

[41] Sredkov M. Jsonya/dm: A univocal JSON interpretation. In: Proceedings
of the 8th Central and Eastern European Software Engineering Conference
in Russia (CEE-SECR), 2012, Moscow, Russia (in print).

[42] Sredkov M. Common textual representation of software items. In: Pro-
ceedings of the 6th South East European Doctoral Student Conference: In-
fusing Research and Knowledge in South-East Europe (Eds D. Dranidis,
A. Kapoulas, A. Vivas), Thessaloniki, Greece, Sept. 2011, ISBN 978-960-
9416-04-7, 350–357.

[43] Thiemann P. A typed representation for HTML and XML documents
in Haskell. J. Funct. Program., 12 (2002), ISSN 0956-7968, 435–468.
doi: 10.1017/S0956796802004392. http://dl.acm.org/citation.cfm?id=

968417.968423

[44] Wallace M., C. Runciman. Haskell and XML: generic combinators or
type-based translation? In: Proceedings of the fourth ACM SIGPLAN inter-
national conference on Functional programming, ICFP ’99, ISBN 1-58113-
111-9, ACM, NY, USA, 1999, 148–159. http://doi.acm.org/10.1145/

317636.317794

[45] Wilde E., R. J. Glushko. Document design matters. Commun. ACM, 51
(2008), ISSN 0001-0782, 43–49.

[46] Zyp K. A JSON media type for describing the structure and mean-
ing of JSON documents, Nov. 2010. http://tools.ietf.org/html/

draft-zyp-json-schema-03

Faculty of Mathematics and Informatics
Sofia University
5, James Bourchier Blvd
1164 Sofia, Bulgaria
e-mail: msredkov@fmi.uni-sofia.bg

Received December 14, 2012
Final Accepted April 29, 2013

