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VARIABLE NEIGHBORHOOD SEARCH FOR SOLVING
THE CAPACITATED SINGLE ALLOCATION HUB

LOCATION PROBLEM∗

Miroslav Marić

Abstract. In this paper a Variable Neighborhood Search (VNS) algo-
rithm for solving the Capacitated Single Allocation Hub Location Problem
(CSAHLP) is presented. CSAHLP consists of two subproblems; the first is
choosing a set of hubs from all nodes in a network, while the other com-
prises finding the optimal allocation of non-hubs to hubs when a set of hubs
is already known. The VNS algorithm was used for the first subproblem,
while the CPLEX solver was used for the second. Computational results
demonstrate that the proposed algorithm has reached optimal solutions on
all 20 test instances for which optimal solutions are known, and this in short
computational time.

1. Introduction. The capacitated Single Allocation Hub Location
Problem (CSAHLP) is a well known flow network optimization problem, widely
studied in the literature. It consists of two parts: in a given network, hubs must
be established at certain nodes. Which nodes become hubs is the location part

ACM Computing Classification System (1998): G.1.6.
Key words: CSAHLP, VNS, CPLEX, Metaheuristic, Mathematical optimization.

*The paper is partly supported by the Serbian Ministry of Science within Project No. 174010.



344 Miroslav Marić

of the problem. The second part is the allocation part: each non-hub node nh
must be allocated to one of the established hubs h; all flow from and to the node
nh will be routed through the hub h. Single allocation means that each node is
allocated to precisely one hub. Hubs are allocated to themselves. Each hub has
a predetermined capacity, meaning that the total flow of all non-hubs allocated
to a hub must not surpass the hub’s capacity. The reason for establishing hubs
is that the cost of transferring flow between hubs is lower than if the flow went
directly between non-hubs. However, establishing a hub incurs a certain cost.
The objective of this optimization problem is to minimize the cost of establishing
hubs and the cost of total flow in the network.

A good literature review on CSAHLP is given in [1]. The test problem
instances used herein are the same as in [9].

2. Mathematical Model.

2.1. Full model. The model used herein was first introduced in this form
in [2]. A fully connected network I, |I| = n and two associated matrices W and C
are given. Each element of the flow matrix W , Wij represents the amount of flow
from the node i, i ∈ I (origin) to j, j ∈ I (destination) and Wij ≥ 0 is assumed.
There is no assumption about the symmetry of this matrix. The transportation
costs per unit of flow are given by the matrix C. In general, the value Cij , i, j ∈ I
is an abstract value and Cij ≥ 0 holds. However, in practical applications this
value is often a function of the physical distance between nodes i and j. Having
this in mind, for a given node l, if node k, k 6= l is such that the value Clk is lower
than Clm for any other node m, we will say that k is closest to l.

For each node k ∈ I two values are given. Gk represents the capacity of
node k, i.e., the total amount of flow that can go through this node if a hub is
established at this location. On the other hand, fk is the fixed cost of establishing
a hub at node k. These are all input parameters of the CSAHLP model.

CSAHLP uses a formulation in which direct flow between non-hubs is
not allowed. Each non-hub is allocated to one hub and hubs are allocated to
themselves. Therefore, for i, j ∈ I, the total flow between i and j consists of three
parts: collection from i to its hub k, k ∈ I, transfer from the hub k to the hub
l, l ∈ I to which j is allocated, and finally the delivery from l to j. Each of these
segments incurs a different weighted cost, which is given by the parameters χ,α
and δ respectively. Finally, the total cost per unit of flow between i and j via
hubs k and l is equal to χCik +αCkl + δClj . Establishing hubs is meaningful only
if the cost of transfer is lower than the cost of collection and delivery. Therefore,
χ,α and δ is assumed.
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Since all collection and delivery from and to the node i goes via the same
hub k (single allocation), it is useful to define two new values for each node i. Oi

defines the total out flow from i: Oi =
∑

j∈I

Wij. Similarly, Dj represents the total

flow destined for j: Dj =
∑

i∈I

Wij.

To build a mathematical model, we need binary decision variables which
will indicate which nodes are hubs and also to which hub each non-hub, allocated.
To accomplish this, a set of binary variables Zij , i, j ∈ I is introduced. First,
Zkk = 1⇔ k ∈ I is a hub. Second, Zij = 1⇔ i is allocated to j. Finally, a set of
continuous variables Y i

kl, i, k, l ∈ I represents the total amount of flow from node
i, collected by the hub k and transferred to the hub l.

Using this notation, CSAHLP is formulated as follows:

(1) min
∑

i∈I

∑

k∈I

CikZik(χOi + δDi) +
∑

i∈I

∑

k∈I

∑

l∈I

αCklY
i
kl +

∑

k∈I

fkZkk

subject to:

(2)
∑

k∈I

Zik = 1 for every i ∈ I

(3) Zik ≤ Zkk for every i, k ∈ I

(4)
∑

l∈I

Y i
kl −

∑

l∈I

Y i
lk = OiZik −

∑

j∈I

WijZjk for every i, k ∈ I

(5)
∑

i∈I

OiZik ≤ GkZkk for every k ∈ I

(6)
∑

l∈I,l 6=k

Y i
kl ≤ OiZik for every i, k ∈ I

(7) Y i
kl ≥ 0 for every i, k, l ∈ I

(8) Zik ∈ {0, 1} for every i, k ∈ I.
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The objective function (1) minimizes the sum of the fixed cost of estab-
lishing hubs and the collection, transfer and delivery costs between all origin and
destination nodes via their corresponding hubs. The constraint set (2) ensures
single allocation of each non-hub. Constraints (3) ensure that each hub must be
allocated to itself and non-hub nodes can be allocated only to hub nodes. The flow
conservation in the network is enforced by the constraint set (4). The constraint
set (5) limits the collection at each hub to its capacity. The constraint set (6) was
introduced in [2] and it ensures that the flow from node i goes only through the
hub k to which it is allocated. The variables Y i

kl are continuous and non-negative
(7), while the variables Zij are binary (8).

2.2. Model for a fixed set of hubs. If the location part of the
CSAHLP is finished, i.e., the set of hubs H ⊆ I is predetermined, the allo-
cation of each non-hub node to a hub still needs to be done. In order to do this,
for some H,H ⊆ I, we build a sub model CSAHLP (H) which will find the op-
timal allocation and obtain the corresponding solution for this fixed set of hubs
H.

For solving CSAHLP (H) the formulation from the previous subsection
can be used as a base and then simplified in an appropriate manner. The main
change is that the Zik and Y i

kl variables take indexes from different sets: for Zik,
i ∈ I\H, k ∈ H and for Y i

kl, i ∈ I\H, k, l ∈ H. All other changes in the model are
a consequence of this change.

We use the same definitions and notation as in the previous subsection
and formulate CSAHLP (H):

min
∑

k∈H

Ckk(χOk + δDk) +
∑

i∈I\H

∑

k∈H

CikZik(χOi + δDi) + α
∑

k∈H

∑

j∈H

CkjWkj

+α
∑

i∈I\H

∑

k∈H

Zik

∑

l∈H

CklWli +
∑

i∈I\H

∑

k∈H

∑

l∈H

αCklY
i
kl +

∑

k∈H

fk

(9)

subject to:

(10)
∑

k∈H

Zik = 1 for every i ∈ I\H

∑

l∈H

Y i
kl −

∑

l∈H

Y i
lk = (Oi −Wii)Zik −Wik −

∑

j∈I\H,j 6=i

WijZjk

for every i ∈ I\H, k ∈ H

(11)

(12) Ok +
∑

i∈I\H

OiZik ≤ Gk for every k ∈ H
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(13)
∑

l∈H,l 6=k

Y i
kl ≤ OiZik for every i ∈ I\H,k ∈ H

(14) Y i
kl ≥ 0 for every i ∈ I\H, k, l ∈ H

(15) Zik ∈ {0, 1} for every i ∈ I\H, k ∈ H.

The objective function (9) contains 6 terms. The first term of the objective
function (1), which represents collection and distribution, is split into two terms,
one for hub nodes and one for non-hubs. The second term from (1) represents
the transfer costs and in the CSAHLP (H) model it is split into three terms:
one for the transfer of the outflow Wkj from hub k to another hub j, one for the
transfer of the outflow Wli from hub l to non-hub i and one for all other transfer
costs, as defined by the variables Y i

kl. Finally, the fixed costs are calculated only
for the elements of the set H. The constraint set (3) becomes obsolete and all
other constraint sets from CSAHLP model are translated into constraints of the
CSAHLP (H) model by modifying the indexes of Z and Y variables.

It is obvious that the number of variables in CSAHLP (H) model is n ·
h2 + n · h, compared to n3 + n2 variables of the CSAHLP , where n = |I| and
h = |H|. If h ≪ n this results in a huge change in the number of variables and
also in the number of constraints.

3. Variable Neighborhood Search. Variable Neighborhood Search
(VNS) is a metaheuristic for solving mathematical optimization problems intro-
duced by Mladenović and Hansen in [8]. The basic idea is a systematic change of
neighborhoods in two phases:

• Local search phase—when a local minimum is determined,

• Shaking phase—when escaping local minimum.

The VNS algorithm is applied to many classes of problems: location theory, cluster
analysis, scheduling, vehicle routing, network design, lot-sizing, artificial intelli-
gence, engineering, pooling problems, biology, phylogeny, reliability, geometry,
telecommunication design, etc. ([6], [7], [5], [3]).

Let us denote by:

• S, the solution space;
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• f : S → R, the objective function;

• X ⊂ S, the feasible set given by the set of constraints over the solution
space.

The problem of mathematical optimization is defined as finding:

min{f(x), x ∈ X}.

Let us denote by:

• Nk, k = 1, . . . , kmax the sequence of a of pre-selected neighborhood struc-
tures;

• Nk(x) the set of solutions in the k th neighborhood of x.

In shaking phase the current solution is moving to random solution in the k-
th neighborhood of the current solution. The shake function is represented by
Algorithm 1.

Algorithm 1 Shake

Input: initialsol, k
Output: newsol

newsol ← random solution in Nk(initialsol)

In the local search phase a local minimum with respect to the neighbor-
hood structure is determined. Two strategies, the first improvement and the best
improvement strategy, are used. In the first improvement strategy the first deter-
mined solution in the given neighborhood which is better than the initial one is
accepted, while in the best improvement strategy the best solution in the given
neighborhood, better than the initial one is accepted. The procedure is repeated
while there are improvements, i.e., until the local minimum is determined.

An example of a local search with the best improvement strategy, for
kmax = 1, is illustrated in Algorithm 2.

The basic VNS algorithm consists of the repetition of two main phases:
shake phase and local search phase, for as long as the criteria for stopping the
algorithm are fulfilled. In Algorithm 3 the basic VNS is illustrated.

As an initial solution for the basic VNS algorithm, a variant of VNS named
Reduced VNS (RVNS) is mainly used. The reduced VNS method is obtained if
a random point is selected from Nk(x) and no local search descent is made. If
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Algorithm 2 Local Search

Input: initialsol

Output: newsol

newsol ← initialsol

improvement← true

while improvement do

improvement← false

tempsol ← best solution in N1(newsol)
if tempsol is better than newsol then

newsol ← tempsol

improvement← true

end if

end while

Algorithm 3 Basic VNS

Input: initialsol, kmax

Output: newsol

newsol ← initialsol

while not stopping condition is met do

for k ← 1 to kmax do

tempsol ← newsol

tempsol ← Shake(tempsol, k)
tempsol ← LocalSearch(tempsol)
if tempsol is better than newsol then

newsol ← tempsol

k ← 1
end if

end for

end while
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Algorithm 4 Reduced VNS

Input: initialsol, kmax

Output: newsol

newsol ← initialsol

while not stopping condition is met do

for k ← 1 to kmax do

tempsol ← newsol

tempsol ← Shake(tempsol, k)
if tempsol is better than newsol then

newsol ← tempsol

k ← 1
end if

end for

end while

the new solution is better than the initial one, the new solution is accepted. In
Algorithm 4 the reduced VNS is illustrated.

4. VNS for CSAHLP. In this paper a combination of RVNS and the
basic VNS algorithm, described in Section 3, is used.

4.1. Solution encoding and neighborhood structures. The solution
of the problem is encoded as an array H of values {0, 1}. The value 1 in the i
th place in the array means that the corresponding hub i ∈ H is allocated. The
value 0 means that the corresponding hub is not allocated. Solution x′ is in the
k th neighborhood of solution x, x′ ∈ Nk(x), if x′ can be obtained from x with
at most k inversions in array H. One inversion is defined as changing the value of
exactly one bit in solution H, from 0 to 1 or 1 to 0.

4.2. Objective function calculation. When an array of allocated hubs
H is obtained by VNS algorithm, the objective function is calculated by solving
the sub-model CSAHLP (H), described in Section 2.2. This will find the optimal
allocation and obtain the corresponding solution for fixed set of hubs. For solving
the sub-model the CPLEX solver is used.

4.3. Initial solution. The initial solution for RVNS is a feasible solution
of the problem obtained by the Monte Carlo algorithm. In the Monte Carlo
algorithm random solutions are generated until a feasible one is found. The
solution obtained by the RVNS algorithm is used as an initial solution for VNS
algorithm.
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5. Computational Results. The proposed algorithm was tested on
20-well known instances from the literature, which include from 10 to 50 potential
hubs. All optimal solutions from the literature are obtained in reasonable time.
VNS is implemented in the C# programming language, while the sub model solver
is implemented in CPLEX, version 12.6. All the tests were carried out under the
Windows 7 operating system, with an Intel core i7 860 processor and 8 GB ram
memory.

Value kmax in the RVNS algorithm is set to 2, while kmax in the VNS
algorithm is set to kmax = min(n/5, 10). The stopping condition for the initial
Monte Carlo algorithm is finding a feasible solution or 100 successive iterations
without improvement. The stopping condition for the RVNS algorithm is 100
successive iterations without improvement, while the stopping condition for the
basic VNS algorithm is 50 successive iterations without improvement. If at any
time the program execution time exceeds 20 · n seconds, execution is interrupted
and the best found solution is taken as the result. For each instance the program
runs 20 times on 20 different random seeds.

Table 1 presents the results of this algorithm on 20 test problems. The
columns represent respectively the test instance name, the optimal solution from
the literature, the solution obtained by the VNS algorithm, the time in seconds
needed for the VNS to obtain the solution, the average gap, as percentage, of the
obtained solution from the optimal solution and the standard deviation, also in
percents, of the obtained solution from the optimal solution. The mark opt in the
third column means that the same solution as the optimal has been obtained.

In order to solve larger instances, particularly those with 50 nodes, more
CPU time is needed. For this reason, additional tests were performed by limiting
the execution time to 60 seconds (VNS (60s)). A comparison of these time-limited
tests with both the Simulated Annealing algorithm (SA) from [4] and the VNS
without the 60 seconds limit is presented in Table 2. The comparison is organized
as follows: the first column represents the instance name and it is followed by
both minimal upper gap and average gap in percentages for all three methods
VNS, VNS (60s) and SA, respectively. For every solution sol the upper gap is
defined as

gap =

(

sol

soloptimal

− 1

)

· 100.

The results in Table 2 demonstrate that only the VNS algorithm has found
optimal solutions for all 4 test instances. The SA algorithm from [4] reached
optimal solution on 3 test instances, while the VNS (60s) algorithm obtained
solutions close to the optimal ones, but not optimal. The smallest average gaps
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Table 1. Computational results

Instance Optimal Solution Solution Time [s] agap [%] sigma [%]
hub10LL 224250.05 opt 0.16 0.00 0.00
hub10LT 250992.26 opt 0.42 0.00 0.00
hub10TL 263399.94 opt 0.07 0.00 0.00
hub10TT 263399.94 opt 0.03 0.18 0.76
hub20LL 234690.96 opt 0.91 0.00 0.00
hub20LT 253517.40 opt 0.79 0.00 0.00
hub20TL 271128.18 opt 1.82 0.26 0.78
hub20TT 296035.40 opt 3.16 0.00 0.00
hub25LL 238977.95 opt 6.06 0.00 0.00
hub25LT 276372.50 opt 6.31 0.20 0.27
hub25TL 310317.64 opt 7.62 0.00 0.00
hub25TT 348369.15 opt 10.84 0.21 0.42
hub40LL 241955.71 opt 32.85 0.00 0.00
hub40LT 272218.32 opt 68.13 1.67 2.37
hub40TL 298919.01 opt 38.86 0.00 0.00
hub40TT 354874.10 opt 94.86 2.37 5.45
hub50LL 238520.59 opt 89.79 0.36 0.71
hub50LT 272897.49 opt 171.54 1.83 2.36
hub50TL 319015.77 opt 82.40 0.48 0.75
hub50TT 417440.99 opt 637.74 5.63 5.09

were achieved with the SA algorithm, slightly greater average gaps appeared using
thr VNS algorithm, while reported values of average gap for the VNS algorithm
with 60 seconds limitation were not satisfactory.

6. Conclusion. The VNS algorithm for solving the CSAHLP is pre-
sented herein. In the location part of the problem local search and shaking are
used to explore the neighborhoods of a given solution and find promising new
hub configurations. An exact optimizer (CPLEX) is used for the allocation part

Table 2. Comparison—VNS, VNS (60s), SA

Instance VNS VNS (60s) SA
min gap agap min gap agap min gap agap

hub50LL 0.00 0.36 4.27 50.54 0.00 0.00
hub50LT 0.00 1.83 10.16 48.06 0.00 0.40
hub50TL 0.00 0.48 22.46 82.89 0.00 0.08
hub50TT 0.00 5.63 36.83 83.67 0.71 1.32
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of non-hub nodes to hubs. The results demonstrate that the algorithm is very
efficient in terms of computational time, while reaching optimal solutions on all
test instances. Further research is aimed towards applying the same approach to
other hub location problems, namely, the Uncapacitated Single Allocation Hub
Location problem (USAHLP) and others.
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assignment problem with a variable neighborhood search. Serdica Journal of

Computing, 4 (2010), No 4, 435-446.

[8] Mladenovic N., P. Hansen. Variable neighborhood search. Computers &

Operations Research, 24 (1997), No 11, 1097–1100.



354 Miroslav Marić
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