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EM ALGORITHM FOR MLE OF A PROBIT MODEL FOR

MULTIPLE ORDINAL OUTCOMES

Denitsa Grigorova, Elitsa Encheva, Ralitza Gueorguieva

Abstract. The correlated probit model is frequently used for multiple
ordered data since it allows to incorporate seamlessly different correlation
structures. The estimation of the probit model parameters based on direct
maximization of the limited information maximum likelihood is a numeri-
cally intensive procedure. We propose an extension of the EM algorithm for
obtaining maximum likelihood estimates for a correlated probit model for
multiple ordinal outcomes. The algorithm is implemented in the free soft-
ware environment for statistical computing and graphics R. We present two
simulation studies to examine the performance of the developed algorithm.
We apply the model to data on 121 women with cervical or endometrial can-
cer. Patients developed normal tissue reactions as a result of post-operative
external beam pelvic radiotherapy. In this work we focused on modeling the
effects of a genetic factor on early skin and early urogenital tissue reactions
and on assessing the strength of association between the two types of reac-
tions. We established that there was an association between skin reactions
and polymorphism XRCC3 codon 241 (C>T) (rs861539) and that skin and
urogenital reactions were positively correlated.
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1. Introduction. Probit models were first introduced by Bliss [7, 8]
and Gaduum [16] for binary data. The main feature of probit models is the
assumption of a latent variable which determines the level of the observed ordinal
response through thresholds. The usefulness of the model is not affected when
the existence of the latent variable does not seem natural.

Aitchison and Silvey [1] proposed a probit model for ordinal data. Ash-
ford and Sowden [6] introduced a multivariate extension of the probit model based
on an underlying multivariate normal distribution. Ochi and Prentice [31] first
introduced a correlated probit model but only for exchangeable binary data. Ex-
tensions of this model were proposed by Hedeker and Gibbons [17], Catalano
[10], Grilli and Rampichini [20], Gueorguieva and Sanacora [23] among others.
Gueorguieva [21] has a detailed overview on correlated probit models. Correlated
probit models are widely used for modeling of multiple categorical variables or
clustered/longitudinal ordinal outcomes for these models have two main advan-
tages. They are easy for interpretation and they allow rich correlation structure
of the latent variables via random effects and/or correlated errors. That allows
to take into account the natural dependence of the measurements on the same
subject or within cluster.

The correlated probit model does not have closed form expression for the
likelihood function. Approximations need to be used in order to obtain estimates
of the unknown parameters. There are several methods of statistical inference
based on numerical, stochastic or analytical approximations. Most popular ap-
pear to be extensions of numerical approximations such as Gauss-Hermite quadra-
ture [15, pp. 306–307] or adaptive Gaussian Quadrature [26]. Another approach
is based on analytical approximations (Breslow and Clayton [9], Wolfinger and
O’Connell [37]) but it has been shown to produce bias in the parameter estimates
especially for binary data or ordinal data with few categories. A third approach
is the Expectation-Maximization (EM) algorithm [13]. An extension of the EM
algorithm is the Expectation/Conditional Maximization (ECM) algorithm [30]
which is used in cases of complicated M-step. Ruud [34] is the first to apply the
EM algorithm for the estimation of the parameters of probit models. Kawakatsu
and Largey [24] extend Ruud’s work to a joint model of a single ordinal and
multivariate normal outcomes. Chan and Kuk [11] consider a correlated model
for a clustered binary variable and propose an ECM algorithm for parameter
estimation.

Our algorithm is a modification of the algorithm of Chan and Kuk [11]
and Grigorova and Gueorguieva [19] to multivariate ordinal data by using the
parameter transformation proposed by Kawakatsu and Largey [24] for estimation
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of the threshold parameters.

We apply the model to data on 121 women with cervical or endometrial
cancer. All of the cancer patients received post-operative external beam pelvic
radiotherapy. They were followed at the Medical University — Sofia in the period
from 2006 to the beginning of 2008. Skin, gastrointestinal and urogenital side
effects in the patients were observed and recorded. In this work we focused on
modeling of the early (starting from the first day of the radiotherapy to 3 months
after it) skin and the early urogenital normal tissue reactions.

A large number of genes are responsible for the biological response of
healthy tissues to ionizing radiation including DNA repair genes. Since the dam-
age of the DNA molecule is a process that occurs immediately after exposure, it
is logical to assume that impaired reparative processes of DNA may be respon-
sible for the development of radiation adverse events [32]. Given the importance
of DNA repair for cell and tissue response after radiation exposure, SNPs (sin-
gle nucleotide polymorphisms) in genes responsible for signaling DNA damage
and reparative mechanisms are suitable candidates in the search for genetic ba-
sis of normal tissues’ radio-sensitivity. Some studies revealed that the XRCC3
gene plays a key role in the repair of DNA changes induced by ionizing radiation
and oxidative stress. It is involved in double breaks DNA repair by homologues
recombination [38]. SNPs in this gene affect the risk for development of vari-
ous malignancies and are associated with different biological markers of impaired
DNA repair [4, 5].

The aim of our investigation was to assess the strength of association be-
tween early skin and early urogenital tissue reactions on the one hand and associ-
ations between them and a particular SNP of XRCC3 (241 Thr/Met) (rs861539)
on the other hand. This polymorphism is located in exon 8 and has a potential
functional effect [2].

The paper is organized as follows. Section 2 defines the correlated probit
model and outlines the estimation of the parameters and of their standard errors.
Section 3 describes the simulation studies that were performed in order to examine
the performance of the algorithm. An application of the model to the cancer data
is included in Section 4. Section 5 contains concluding remarks and discussion
about possible extensions of the algorithm.

2. Model. We observe p ordinal outcomes on the same subject i with
respectively m1,m2, . . . ,mp levels denoted by y∗

i = (y∗i1, y
∗
i2, . . . , y

∗
ip)

′. We use
bold type for vectors and matrices. We assume that latent normal variables
yij, j = 1, 2, . . . , p generate the observed variables. We consider the following
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correlated probit model for the latent variables:

yij = x′

ijβj + z′

ijbij + ǫij , j = 1, 2, . . . , p, where we observe(1)

y∗ij =







1, if yij ≤ αj,1;
l, if αj,l−1 < yij ≤ αj,l, l = 2, . . . ,mj − 1;
mj , if yij > αj,mj−1;

for some thresholds αj,1, . . . , αj,mj−1, j = 1, 2, . . . , p.

We assume a normal distribution of the q-dimensional vector of the ran-
dom effects bi = (b′

i1, . . . , b′

ip)′ ∼ N(0,Σ). The covariance matrix Σ is a
quadratic q × q positive semi-definite matrix. The error terms are independent
normally distributed ǫij ∼ N(0, σ2). We also assume that the random effects and
the error terms are independent of each other.

The regression parameters for the fixed effects in model (1) are denoted
by qj-dimensional vectors βj, j = 1, . . . , p. The vectors of predictors for the
fixed effects are xij, j = 1, . . . , p and the predictors for the random effects are
zij, j = 1, . . . , p.

From the observed data it is not possible to uniquely estimate all of the
unknown parameters, so we pose the following restrictions: the first thresholds
αj,1, j = 1, . . . , p are set to zero and the variance of the normal error terms σ2 is
set to 1. Some other restrictions and reparameterisations are possible.

2.1. EM algorithm for MLE. We propose an EM algorithm [13] for
estimation of the unknown parameters and thresholds in model (1).

The EM algorithm is an iterative procedure for obtaining maximum like-
lihood estimates for models that depend on unobserved data. In our model the
unobserved data are the latent variables and the random effects. Each iteration
of the EM algorithm consists of two steps: E-step (Expectation step) and M-step
(Maximisation step). Let us denote with X the observed data, with Z the unob-
served data and with Γ the unknown parameters of the model. The two steps at
the (k + 1)-st iteration of the algorithm are:

• E-step: Q(Γ|Γ(k)) = EZ|X,Γ(k) [ln L(Γ;X,Z)], where the ‘complete data’
likelihood function is L(Γ;X,Z) = f(X,Z|Γ), where f(.) is a density func-
tion,

• M-step: Γ(k+1) = arg maxΓ Q(Γ|Γ(k)).

The algorithm starts with initial values for the uknown parameters Γ(0), iterates
between the E-step and the M-step and stops when a converging criterion is met.
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Our choise for converging criterion is when |Γ(k+1) − Γ(k)| < ǫ for each element
of the vector, where ǫ is a preselected small number.

The first difficulty in applying the EM algorithm to our model is the intro-
duction of the thresholds in the complete data likelihood. We adopt the approach
by Kawakatsu and Largey [24] who extend Ruud’s work [34]. According to their
method we define the differences between consecutive thresholds with δj,i = αj,i−
αj,i−1, i = 2, . . . ,mj − 1, j = 1, 2, . . . , p (we define additionally δj,1 = δj,mj

= 1).

It follows the connection αj,i =

i
∑

k=2

δj,k, j = 1, 2, . . . , p, i = 2, . . . ,mj − 1. Then

we consider new variables which are a linear transformation of the latent variables.
The new variables are denoted by yijnew

= (yij − αj,y∗

ij
−1)/δj,y∗

ij
, j = 1, 2, . . . , p,

where αj,0 = 0, j = 1, 2, . . . , p and yinew = (yi1new
, yi2new

, . . . , yipnew
)′.

Since the new variables are a linear transformation of the latent variables,
they also have a normal distribution. But given the observed variables, the trans-
formed variables have truncated multivariate normal distribution with boundaries
of truncation independent of the unknown parameters.

If we observe the first level of y∗ij the new variable yijnew
is truncated at

(−∞, 0], if y∗ij is between the first and the last level the new variable is truncated
at (0, 1], and if we observe the last level of y∗ij the new variable is truncated at
(0,∞).

We use the approach by Chan and Kuk [11] in order to find closed form
expressions for the unknown parameters Γ = (β′

1, β′

2, . . . , β′

p, Σ, δ′

1, δ′

2, . . . , δ′

p),
where δj = (δj,2, . . . , δj,mj−1), j = 1, . . . , p.

2.1.1. Complete data log-likelihood. The complete data log-likelihood
has the following form:

ln L = ln f(b, ynew) =
n
∑

i=1

ln f(bi)f(yinew |bi) =
n
∑

i=1

ln[f(bi)

p
∏

j=1

f(yijnew
|bi)],

where f(.) denotes a normal density function.
From the model definition and the assumption for the distribution of the

random effects it follows that apart from the constants the log-likelihood is:

ln L = −0.5

n
∑

i=1

ln |Σ| − 0.5

n
∑

i=1

b′

iΣ
−1bi +

+
n
∑

i=1

ln δ1,y∗

i1
− 0.5

n
∑

i=1

[δ1,y∗

i1
yi1new

− (x′

i1β1 + z′

i1bi1 − α1,y∗

i1−1)]
2
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+ . . .

+

n
∑

i=1

ln δp,y∗

ip
− 0.5

n
∑

i=1

[δ1,y∗

i1
yi1new

− (x′

i1β1 + z′

ipbip − α1,y∗

i1−1)]
2.

2.1.2. Closed form expressions for the estimators. We obtain closed
form expressions for the estimators of the unknown parameters by setting the first
derivatives of the complete data log-likelihood to zero.

The estimator for the covariance matrix Σ of the random effects is:

Σ̂ =
1

n

n
∑

i=0

bib
′

i.

The regression parameters for the fixed effects βj, j = 1, 2, . . . , p satisfy
the following system of equations:

n
∑

i=1

xijx
′

ijβj =
n
∑

i=1

[δj,y∗

ij
yijnew

− z′

ijbij + αj,y∗

ij
−1]xij.

It follows that the regression parameters βj are a least square solution of
regression of ỹij on xij, where ỹij = δj,y∗

ij
yijnew

− z′

ijbij + αj,y∗

ij
−1, j = 1, 2, . . . , p.

The equations for δj,k, k = 2, . . . ,mj − 1, j = 1, 2, . . . , p are quadratic
equations of the form: ajδ

2
j,k + bjδj,k + cj = 0, which always have real roots and

the larger root is always positive. The constants aj , bj , cj are as follows:

aj =
∑

i

∑

y∗

ij
=k

(y2
ijnew

) + nj,k+1 + . . . + nj,m,

bj = −
∑

i

∑

y∗

ij
=k

yijnew
(x′

ijβj + z′

ijbij − αj,k−1) +

∑

i

∑

y∗

ij
>k

(δj,y∗

ij
yijnew

−x′

ijβj−z′

ijbij + δj,2 + · · · + δj,k−1 + δj,k+1 + · · · + δj,y∗

ij
−1),

cj = −nj,k,

where nj,k is the number of the observations of the categorical variable y∗j at the
k th level.

In order to update the new estimates of the parameters we need to express
the conditional expectations in the closed form expressions for the estimators. We
will show that all of the conditional expectations depend only on the first two
moments of the truncated multivariate normal distribution.
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Let us have the following notation: Xi =











x′

i1 0′ . . . 0′

0′ x′

i2 . . . 0′

...
...

...
...

0′ 0′ . . . x′

ip











,

Zi =











z′

i1 0′ . . . 0′

0′ z′

i2 . . . 0′

...
...

...
...

0′ 0′ . . . z′

ip











, β =











β1

β2

...
βp











, αi =











α1,y∗

i1−1

α2,y∗

i2−1
...

αp,y∗

ip
−1











,

δ
−1

i =











1/δ1,yi1

1/δ2,yi2

...
1/δp,yip











.

Then the joint distribution of yinew and bi is multivariate normal:

(

yinew

bi

)

∼ N

[(

(Xiβ − αi) ◦ δ
−1

i

0

)

,V

]

,

where ◦ is the Hadamard (element-wise) product and the covariance matrix V is:

V =

(

(ZiΣZ′

i + Ip) ◦ δ
−1

i δ
−1′

i ZiΣ ◦ (Jp×qδ
−1

i )

ΣZ′

i ◦ (Jp×qδ
−1

i )′ Σ

)

,

and Jp×qδ
−1

i is p × q matrix with columns δ
−1

i .

Let us denote Mi = yinew − (Xiβ − αi) ◦ δ
−1

i and with

ΣBi
= [ΣZ′

i ◦ (Jp×qδ
−1

i )′][(ZiΣZ′

i + Ip) ◦ δ
−1

i δ
−1′

i ]−1.

Then the conditional distribution of bi given yinew is again normal:

bi|yinew ∼ N [ΣBi
Mi, Σ − ΣBi

(ZiΣ ◦ (Jp×qδ
−1

i ))].

In the expressions for the estimators we have to calculate the following con-
ditional expectations: E(bi|y

∗

i ), E(bib
′

i|y
∗

i ), E(yijnew
bi|y

∗

i ). We will show that
they depend only on the first two moments of yinew |y∗

i .

The expectation of the random effects given the observed variable is:

E(bi|y
∗

i ) = E[E(bi|yinew )|y∗

i ]

= E[ΣBi
(yinew − (Xiβ − αi) ◦ δ

−1

i )|y∗

i ]

= ΣBi
[E(yinew |y∗

i ) − (Xiβ − αi) ◦ δ
−1

i ].
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The expectation of the second moment of the random effects given the
observed variable is:

E(bib
′

i|y
∗

i ) = E[E(bib
′

i|yinew)|y∗

i ]

= E[V ar(bi|yinew ) + E(bi|yinew )E(b′

i|yinew)|y∗

i ]

= Σ − ΣBi
(ZiΣ ◦ (Jp×qδ

−1

i )) + ΣBi
E[MiM

′

i|y
∗

i ]Σ′

Bi

= Σ − ΣBi
(ZiΣ ◦ (Jp×qδ

−1

i )) +

ΣBi
[V ar(yinew |y∗

i ) + E(yinew |y∗

i )E(y′

inew
|y∗

i )

−E(yinew |y∗

i )[(Xiβ − αi) ◦ δ
−1

i ]′

−[(Xiβ − αi) ◦ δ
−1

i ]E(y′

inew
|y∗

i )

+[(Xiβ − αi) ◦ δ
−1

i ][(Xiβ − αi) ◦ δ
−1

i ]′]Σ′

Bi
.

The last expectation that we need is:

E(yijnew
bi|y

∗

i ) = E[E(yijnew
bi|yinew )|y∗

i ]

= E[yijnew
ΣBi

(yinew − (Xiβ − αi) ◦ δ
−1

i )|y∗

i ]

= ΣBi
E[yijnew

yinew − yijnew
(Xiβ − αi) ◦ δ

−1

i |y∗

i ]

= ΣBi
[Cov(yijnew

yinew |y∗

i ) + E(yijnew
|y∗

i )E(yinew |y∗

i )

−E(yijnew
|y∗

i )(Xiβ − αi) ◦ δ
−1

i ].

2.1.3. (k+1)-st iteration of the EM algorithm. We use an extension
of the EM algorithm called Expectation/Conditional Maximization algorithm [30].
The E-step at the (k + 1)-st iteration of the proposed algorithm consists of find-
ing of following expectations: E(bi|y

∗

i ; Γ
k), E(bib

′

i|y
∗

i ; Γ
k), E(yijnew

bi|y
∗

i ; Γ
k),

where Γk are the kth estimates of the unknown parameters Γ. The M-step con-
sists of several computationally simpler CM-steps. In each CM-step we maximise
the expectation of the complete data log-likelihood function in respect to some
parameters when the other parameters are kept fixed. We will write down the
estimates of the unknown parameters at (k + 1)st iteration of the EM algorithm:

• The (k + 1)st estimate of regression parameters β
k+1

j , j = 1, 2, . . . , p is a

least square solution of regression of E(ỹij |y
∗

i ; Γ
k) on xij.

• The (k + 1)st estimates of δj,u, u = 2, . . . ,mj − 1, j = 1, 2, . . . , p are

δk+1
j,u = (−E[bj |y

∗; Γk] +

√

(E[bj |y
∗; Γk]2 − 4E[aj |y

∗; Γk]E[cj |y
∗; Γk]))/

2E[aj |y
∗; Γk] and in the expression for aj , bj , cj we use the updated esti-

mates β
k+1

j , δk+1
j,i , i = 2, . . . , u − 1.
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• The (k +1)st estimate of the covariance matrix of random effects is Σ̂
k+1

=

1

n

n
∑

i=0

E(bib
′

i|y
∗

i ; Γ
k).

The algorithm starts with initial values for the uknown parameters Γ0, iterates
between E-step and M-step and stops when |Γk+1 − Γk| < ǫ for each element of
the vector, where ǫ is a preselected small number (for example ǫ = 0.0001).

2.2. Standard error estimation. We use the bootstrap method for
standard errors approximation described in [29] pp. 130–131. The steps are as
follows:

1. We fit model (1) to the observed data set consisting of n individuals using
the proposed ECM algorithm and obtain the estimates of the unknown pa-
rameters denoted by Γ̂ = (β̂′

1
, β̂′

2
, . . . , β̂′

p, Σ̂, δ̂′

1
, δ̂′

2
, . . . , δ̂′

p). To generate

a bootstrap sample first we generate n random effects bb
k from N(0, Σ̂),

k = 1, . . . , n. Next we simulate normal values yb
k of dimension p according

to the fitted model for every random effect bb
k. We use the estimated via

δ̂j, j = 1, . . . , p thresholds to determine in which interval the normal data
yb

k, k = 1, . . . , n fall and determine the levels of the bootstrap categorical
variable yb∗

k . The bootstrap sample consists of the categorical variables yb∗

k ,
k = 1, . . . , n.

2. We apply the ECM algorithm to the bootstrap data yb∗

k , k = 1, . . . , n to
obtain estimates for the generated bootstrap data set Γb.

3. We use the Monte Carlo method to approximate the bootstrap covariance
matrix. This means that we repeat step 1 and step 2 B times and calculate
the covariance matrix of the B estimated parameters Γb, b = 1, . . . , B:

Cov(Γ̂) ≈
B
∑

b=1

(Γb − Γ̄)(Γb − Γ̄)′

B − 1
,

where Γ̄ =
B
∑

b=1

Γb/B.

3. Simulations. We simulated values from the following correlated
probit model for two ordinal outcomes with three levels each:
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yi1 = β10 + β11xi1 + bi1 + ǫi1,

yi2 = β20 + β21xi2 + bi2 + ǫi2,

where β10 = −0.5, β11 = 1, β20 = 1, β21 = −0.5, V ar(ǫij) = 1, j = 1, 2 with
thresholds α1,1 = α2,1 = 0, α1,2 = 1.2, α2,2 = 0.7 and covariance matrix of the
random intercepts

V ar

(

bi1

bi2

)

=

(

σ11 σ12

σ21 σ22

)

=

(

1 −0.8
−0.8 1

)

.

We simulated 100 samples for two sample sizes (n = 100 and n = 500).
For each approximation of the standard errors we used 50 bootstrap samples which
is within the recommended range of 50 to 100 bootstrap replications (Efron and
Tibshirani [14]). The results are presented in Table 1.

Table 1. Table of estimates and standard errors in both simulation studies

parameters β10 β11 β20 β21 δ1,2 δ2,2 σ11 σ12 σ22

values −0.5 1 1 −0.5 1.2 0.7 1 −0.8 1
Simulation 1: number of subjects = 100

mean of −.550 1.057 1.070 −0.537 1.233 0.765 1.140 −0.940 1.134
estimates

stand. dev. 0.354 0.316 0.299 0.246 0.217 0.151 0.400 0.428 0.405
of estimates

mean of 0.371 0.335 0.291 0.237 0.216 0.167 0.452 0.485 0.456
bootstrap

stand. errors
Simulation 2: number of subjects = 500

mean of −.494 0.992 1.004 −0.505 1.203 0.703 1.003 −0.802 1.003
estimates

stand. dev. 0.149 0.141 0.116 0.067 0.097 0.067 0.166 0.181 0.170
of estimates

mean of 0.166 0.148 0.118 0.084 0.087 0.068 0.160 0.173 0.161
bootstrap

stand. errors

Note that due to the re-parametrization we estimate the differences in
the thresholds rather than the thresholds themselves, but they coincide in the
case of only three levels of the categorical variables. In the second simulation the
averages of the estimated parameters are equal within two significant digits after
the decimal point to the parameter values from which the samples were generated
except for two parameters, but they differ from the true values by < 0.01. For
the first simulation study we obtain biased estimates, which may be explained
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with the sample size. From statistical theory we know that maximum likelihood
estimates are only asymptotically unbiased. In larger samples the distribution of
the estimates will approximate normality even more closely due to the properties
of MLE.

As expected the estimates get closer to the real values and the standard
errors get smaller when we increase the sample size. All the estimates are statis-
tically significantly different from zero except β10 for the smaller sample size.

The approximate equality of the standard deviations of the estimates and
the bootstrap standard errors confirms that the algorithm is converging as ex-
pected. However, a larger simulation study that varies the parameter settings is
necessary to confirm the above observations.

3.1. Implementation of the algorithm. For the implementation of
the algorithm we used the free software environment for statistical computing
and graphics R [33]. The R code for fitting the presented models is available on
the journal’s web site or from the authors.

We want to point out several things regarding the implementation of the
proposed ECM algorithm. In the package mvtnorm [36] there are functions for
analytical finding of the first two moments of multivariate truncated normal dis-
tribution based on the work by Manjunath and Wilhelm [28]. There are also
functions for generating random numbers using Gibbs sampling [35] which allows
stochastic approximation of the first two moments of the truncated normal distri-
bution. But when the multiple outcomes are only two, the analytical calculation
is more precise and at least as fast as the stochastic, so we recommend it.

A good choice of starting points for the regression parameters and thresh-
olds in model (1) for the proposed ECM algorithm are estimates from a model
without random effects. Selecting large values as starting points for the variances
of the random effects should be avoided. Problems with performance of the algo-
rithm may occur with starting points corresponding to a multivariate truncated
normal distribution for which the truncation area is close to 0. In such cases
finding analytical solutions for the moments of the truncated normal distribution
may fail. Generating random numbers via Gibbs sampling may also fail.

For data from the first simulation study it takes less than a second on
average to perform one iteration of the algorithm, while for a data set from the
second simulation study the time for performance of one iteration is less than 4
seconds on average on an Intel(R) Core(TM) i3 CPU @2.27 GHz with 4 GB RAM.
In our first simulation study it took 60 iterations on average for the algorithm to
converge and in our second simulation study – 50 iterations on average.



238 Denitsa Grigorova, Elitsa Encheva, Ralitza Gueorguieva

4. Application of the model. We apply the proposed model to a
data set from a study designed to assess the association of the severity of the
normal tissue reactions after radiotherapy in women with endometrial or cervical
cancer and their genetic characteristics. Previous analyses of the data can be
found in Grigorova [18]. In the this manuscript we focus on modeling the severity
of two types of reactions. The variables of main interest are the severity of skin
reactions and the severity of urogenital reactions. The variables take values from
the following levels: absent (1), weak (2), moderate or severe (3) reactions. We
examine how the genotype of polymorphism XRCC3 codon 241 (C>T) is related
to the severity of the reactions.

In the analysis we include 121 individuals in the study who have a complete
set of observations. The variable XRCC3_241 takes values 0 for genotype {C,C}
(45 observations) and 1 for genotype {C,T} or {T,T} (76 observations). We
merged genotypes {C,T} and {T,T} in one level of the categorical variable because
we have too few women with genotype {T,T}. This way we assess the influence
of the T allele on the severity of early adverse reactions. A summary of the data
is presented in Table 2 and Table 3.

Table 2. Contingency table of skin and urogenital reactions

Urogenital reactions
Skin reactions absent weak moderate or severe

absent 24 17 7
weak 12 16 14

moderate or severe 7 12 12

Table 3. Contingency table of skin reactions versus genotype
and contingency table of urogenital reactions versus genotype

Skin reactions
XRCC3 241 absent weak moderate or severe

{C,C} 11 19 15
{C,T} or {T,T} 37 23 16

Urogenital reactions
XRCC3 241 absent weak moderate or severe

{C,C} 16 17 12
{C,T} or {T,T} 27 28 21

We fit the following correlated probit model to the data:

yij = βj0 + βj1XRCC3_241i + bij + ǫij,
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Table 4. Table of estimates and standard errors for the model fitted to the radiotherapy
data

β10 β11 β20 β21 δ1,2 δ2,2 σ11 σ12 σ22

estimates 0.880 −0.772 0.554 0.025 1.417 1.500 1.237 0.801 1.366
standard errors 0.263 0.264 0.242 0.268 0.187 0.181 0.235 0.307 0.256

z-score 3.342 −2.928 2.292 0.093 7.578 8.275 5.255 2.610 5.327

Reactionsij =







absent, yij ≤ αj,1, (αj,1 = 0),
weak, 0 < yij ≤ αj,2,
moderate or severe, yij > αj,2,

where (ǫi1, ǫi2)
′ ∼ N(0, I2), j = 1 for skin reactions, j = 2 for urogenital reactions

and

Σ = V ar

(

bi1

bi2

)

=

(

σ11 σ12

σ21 σ22

)

.

The estimates of the parameters, their standard errors and z-scores are
presented in Table 4. Z-scores are computed before rounding off the estimates
and their standard errors, and then rounded to the third decimal point. The
results show that all of the parameters in the model are statistically significantly
different from zero, except the regression parameter β21 for the genotype in the
sub-model for the urogenital reactions.

The parameters of most interest are the regression coefficients β11 and β21.
The estimate for β11 is negative. The two-sided z-test statistic for this parameter
is z = −2.928 with p−value = 0.0034 and thus we conclude that genotype {C,C}
of polymorphism XRCC3 codon 241 increases the risk of adverse skin reactions.
Further study including additional covariates may reveal an association between
the severity of the side effects and other particular subject characteristics.

We note that the variances of the random intercepts are significantly
greater than 0. Because under the null hypothesis, the variances take values at the
boundary of the parameter space, the actual distributions of the squared z-scores
are mixtures of chi-square distributions with 0 and 1 degrees of freedom. Using
the normal distribution rather than the mixture for calculating the p-value of the
test is a conservative approach. The p-values for both variances are < 0.0001.
The covariance of the random effects is statistically significantly different than
zero (p − value = 0.009 for the two-sided test). The estimate for the covariance
of the random effects is 0.801 and the conclusion is that the association between
skin and urogenital reactions is significantly positive.
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5. Discussion. In this paper we considered a correlated probit model
for the analysis of multiple ordinal outcomes. We proposed an extension of the
EM algorithm of Chan and Kuk [11] and the ECM algorithm of Grigorova and
Gueorguieva [19] for obtaining maximum likelihood estimates. The algorithm
is implemented in the free software environment for statistical computing and
graphics R [33]. We studied its performance via simulations. We illustrated the
approach on a data set previously analyzed in Grigorova [18]. Our approach
has advantages over alternative estimation methods in that it can handle a large
dimension of the multivariate outcome, it can be easily extended to any combina-
tion of binary, ordinal and continuous outcomes, and it provides asymptotically
unbiased estimates. It is also easily implemented in the free open-source software
environment R.

There are several possible directions in which the algorithm implemen-
tation can be improved. There is a possible extension of the algorithm, called
parameter expanded EM algorithm (PX-EM algorithm, [25]), that can acceler-
ate the speed of convergence of the algorithm. Rather than restricting some
parameters (e.g., the variance of the error terms) in order to achieve parameter
identifiability up front, this extension allows estimation of all or some parameters
free of restrictions. At the last iteration of the PX-EM algorithm fully identifiable
functions of the parameters are calculated (e.g., the ratios of the regression para-
meters and the squared root of the variance of the errors estimate). An example
of an implementation of this algorithm can be found in Gueorguieva and Agresti
[22].

We used a bootstrap method for standard error estimation, which is com-
putationally very intensive. While the bootstrap algorithm can always be applied,
it is not efficient. Other approaches may be possible. For example, one might
consider Louis’s approximation method [27].

Further research is needed to extend the algorithm to combinations of
ordinal and continuous longitudinal outcomes. Model selection and model diag-
nostics are also open areas of research.

The observed positive association of the early skin and urogenital reactions
is a novel finding. Although statistically significant, it is not clear what the
clinical significance is. One possible explanation is the clinical assessment of the
side effects. Some urogenital reactions reported by the patient could be related
to the skin reactions in the irradiated area. For example dysuria is one of the
urogenital radiation side effects and is a condition when the patient feels pain
when urinating. But when a patient has skin side effects around the genital area
urination also could cause itching and pain, so we could wrongly asses this adverse
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event as urogenital instead of skin reaction.
Our analysis revealed that genotype {C,C} of polymorphism XRCC3 241

increases the risk of adverse skin normal tissue reactions. Our result is close
to the findings of a Danish post-mastectomy study that has found a significant
relationship between allele C at codon 241 and increased risk of subcutaneous
fibrosis in a subgroup analysis of 41 patients. Such association was also found for
teleangiectasia [5]. In other studies, however, carried out specifically to confirm
the results from those 41 breast cancer patients, no replication of the initial results
on association between this SNP and the risk of late radiation effects was obtained
[12, 3]. Further extended studies are needed.
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