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SYMBOLIC SOLVING OF PARTIAL DIFFERENTIAL

EQUATION SYSTEMS AND COMPATIBILITY

CONDITIONS∗

Natasha Malaschonok

Abstract. An algorithm is produced for the symbolic solving of systems

of partial differential equations by means of multivariate Laplace–Carson

transform. A system of K equations with M as the greatest order of partial

derivatives and right-hand parts of a special type is considered. Initial con-

ditions are input. As a result of a Laplace–Carson transform of the system

according to initial condition we obtain an algebraic system of equations. A

method to obtain compatibility conditions is discussed.

1. Introduction. The Laplace transform has been useful in various
problems of differential equations theory, including problems of partial equations
(for example, [5, 8, 9, 14, 15, 16, 17, 19]). It serves as a basis for an operation
calculus used in such applications. We must mention that kinds of operation
calculus exist, such as Mikusinski-type operational calculus (see for example [2],
[3], [20], [21]), or an approach by M. Gutterman (for example [22]), close to the
ideas of J. Mikusinski, which use the convolution quotient, without referring to

ACM Computing Classification System (1998): G.1.8, G.4.
Key words: Laplace–Carson transform, systems of partial differential equations, symbolic

solving, compatibility conditions.
*Supported by RFBR, No.12-07-00755-a, RusMES No.1.345.2011



200 Natasha Malaschonok

the Laplace transform. Our method permits not to reduce PDE equations to
ordinary ones, but to obtain directly the algebraic system of equations for further
activities with it.

On the other hand, there are many ways to use computer algebra systems
for numerical or symbolic solving of PDE systems, for example the well-known
use of MAPLE for a characteristics method that permits to simplify equations in
many cases (for instance [18]).

The method produced in this paper is now of growing actuality because
of the increasing relevance of symbolic computations nowadays. It reduces a
system of partial differential equations with initial conditions to an algebraic linear
system with polynomial coefficients which already encloses in a symbolic way the
initial conditions requirements. An important advantage of the method is the
establishment of compatibility conditions in a symbolic way for many types of
PDE equations and systems of PDE equations. The type of PDE equations is not
of great importance, nor is their order or the size of the system.

We produce an algorithm for symbolic solving of systems of linear par-
tial differential equations by means of a multivariate Laplace–Carson transform.
Systems of arbitrary number K of unknown functions and equations of arbitrary
order M of derivatives are considered. The method allows not to reduce to canon-
ical form the problem at the initial stage, it reduces it to solving a linear algebraic
system with polynomial coefficients where efficient methods were developed (for
example [6, 7, 10, 13]). A parallel algorithm may be constructed on the basis of
the one produced. A way of parallelization is briefly discussed. So large systems
of linear PDE may be solved in real time.

2. Problem statement. Denote m̃ = (m1, . . . ,mn). Consider a sys-
tem

(1)

K∑

k=1

M∑

m=0

∑em ajemk

∂m

∂m1x1 . . . ∂mnxn
uk(x) = fj(x),

where j = 1, . . . ,K, uk(x), k = 1, . . . ,K are unknown functions of x = (x1, . . . ,
xn) ∈ R

n
+, fj ∈ S, ajemk

are real numbers, m is the order of a derivative, and k is the
number of an unknown function. Here and further summing by m̃ = (m1, . . . ,mn)
is executed for m1 + . . .+mn = m.

Functions fj(x) of the right-hand part of the system are in general com-

posite. For each j consider R
n
+ divided into parts Di

j =
{
x : xiν

ν,j < xν < xiν+1
ν,j ,

ν = 1, . . . , n}, iν = 1, . . . , Iν,j , xi1 = 0, xIν,j+1 = ∞.

fj(x) = f i
j(x), x ∈ Di

j, i = (i1, . . . , in).



Symbolic solving of partial differential equations 201

Denote the set of i for which iν = 1, . . . , Iν,j by I j . As usually, x− xi =
(x1 − xi1 , . . . , xn − xin). H(x) = H(x1, . . . , xn) is the multivariate Heaviside
function which equals 1 only if xν ≥ 0 for all ν, and zero otherwise. For l =
(l1, . . . , ln) we denote xl =

∏n
ν=1 x

lν
ν , 〈bijs, x〉 =

∑n
ν=1 b

i,ν
js xν . Using Heaviside

function, composite functions fj(x) may be written as follows

(2) fj(x) =
∑

i∈I j

[
f̃ i

j(x− xi)H(x− xi) − f̃ i
j(x− xi+1)H(x− xi+1)

]
,

where
˜
f

Ij+1
j (x− xIj+1) = 0, and

f i
j(x) =

Si
j∑

s=1

P i
js(x)e

〈bi
js

x〉, i = 1, . . . , Ij , j = 1, . . . , k,

P i
js(x) =

∑Li
js

l=0 c
ji
slx

l is a polynomial, Li
js = (Li1

js, . . . , L
in
js). For a polynomial P (x)

we denote P̃ (x− xi) its expansion in powers of (x1 − xi1), . . . , (xn − xin), and for
f(x) = P (x)e<a,x> we denote f̃(x− xi) = P̃ (x− xi)e

<a,xi>e<a,x−xi>.
Denote by A a class of functions which are reducible to the form (2).
We solve a problem with initial conditions for each variable (not separating

spatial or time data, it is defined by the particular problem). Introduce notations
for them.

Denote by Γτ a set of vectors γ = (γ1, . . . , γn) such that γτ = 1, γi = 0, if
i < τ , and γi equals 0 or 1 in all possible combinations for i > τ . The number of
elements in Γτ equals 2τ−1.

Denote β = (β1, . . . , βn), βi = 0, . . . ,mi, a set of indexes such that the
derivative of uk(x) of the order βi with respect to the variables with numbers i
equals uk

β,γ(x(γ)) at the point x = xγ with zeros at the positions µ for which the
coordinates γµ of γ equal 1 (for example, if zeros stand only at the places with
numbers 1, 2, 3, then γ = (1, 1, 1, 0, . . . , 0). We take functions uk

β,γ(x(γ)) also from
the class A.

Further we shall introduce a notion of compatible initial conditions and
consider a method to obtain compatible initial conditions. The system (1) is to
be solved under such conditions.

3. Laplace–Carson transform. Consider the space S of functions
f(x), x = (x1, . . . , xn) ∈ R

n
+, R

n
+ = {x : xi ≥ 0, i = 1, . . . , n}, for which M >

0, a = (a1, . . . , an) ∈ R
n, ai > 0, i = 1, . . . , n, exist such that for all x ∈ R

n
+ the

following is true: |f(x)| ≤ Me<a,x>. Evidently, A ⊂ S.
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On the space S the Laplace–Carson transform (LC) is defined as follows:

LC : f(x) 7→ F (p) = p1

∫ ∞

0
e−<p,x>f(x)dx,

p = (p1, . . . , pn), p1 = p1 . . . pn, dx = dx1 . . . dxn. Integration is multivariate.
The Laplace–Carson transform is more convenient than Laplace transform, as it
transfers the Heaviside function into the unit, and it rather simplifies calculations.

The Laplace–Carson image of (x− xi)
le<α,x−xi>H(x− xi) is

(3) p1
n∏

ν=1

lν !

(pν − αν)lν+1
e−<p,xi>, α = (α1, . . . , αn).

That is why LC is performed symbolically on the class A.
Let LC : uk 7→ Uk, u

k
β,γ(x(γ)) 7→ Uk

β,γ(p(γ)), fj 7→ Fj . The notation p(γ)

corresponds to the notation x(γ). Denote by ‖γ‖ the “length” of γ — the number
of units in γ.

The LC of the left-hand side of the system (1) is being written formally.
Write at first the image of a derivative;

LC :
∂m

∂m1x1 . . . ∂mnxn
uk(x) 7→

pmUk(p) +
n∑

ν=1

mν∑

βν=0

∑

γ∈Γν

(−1)‖γ‖pm1−β1−γ1

1 . . . pmn−βn−γn
n Uk

β,γ(p(γ)).

Denote

Φj
mk =

∑em ajemk

n∑

ν=1

mν∑

βν=0

∑

γ∈Γν

(−1)‖γ‖pm1−β1−γ1

1 . . . pmn−βn−γn
n Uk

β,γ(p(γ)).

As a result of a Laplace–Carson transform of the system (1) according to
the initial conditions we obtain the algebraic system relative to Uk:

(4)

K∑

k=1

M∑

m=0

∑em ajemk
p emUk(p) = Fj −

K∑

k=1

M∑

m=0

Φj
mk, j = 1, . . . ,K.

4. Solution of the algebraic system. Efficient methods for solving
such systems are developed according to size or density of the algebraic system
(for example [10, 6, 13, 7]).
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Denote by D the determinant of the system (4), by Dk the minor that is
obtained by replacing the kth column by the column of the right-hand part of (4).
The solution of the system (4) is

(5) Uk =
Dk

D
.

5. The inverse Laplace–Carson transform and compatibility

conditions. The next step of the algorithm is the inverse Laplace–Carson trans-
form of Uk. If it is possible, then we obtain as result the solution of the input
system, which is unique (due to uniqueness of the inverse LC) and satisfies the
input initial conditions. According to the character of the system – it is linear
with constant coefficients – the solutions depend continuously on changing of ini-
tial conditions inside the class A. This means that we have found a correct (in a
traditional meaning) solution of the system.

The inverse Laplace–Carson transform of Uk exists under the conditions
of convergence of the Laplace integral of Ũk(p) = 1

p1Uk(p), i. e., the following:

1∗ σ ∈ R
n, σ = (σ1, . . . , σn), exists, such that Ũk is holomorphic in the

domain Repν > σν ;
2∗ limp→∞ Ũk(p) = 0;

3∗ Ũk(p) is integrable by each pν along any line Re pν > σν0
, σν0

> σν .
We consider functions from class A. According to the properties of the LC

transform, in the fractions (5) the degrees of the polynomials in the numerators are
less than the degree of the denominator, and these fractions may be represented
as linear combinations of expressions of type (3). So 2∗ is fulfilled. 3∗ is satisfied
automatically as soon as 1∗ takes place, due to the type (3) of expressions. So it
remains to verify the implementation of 1∗.

Denote the set of zeros of D by Q. In the case when Q has no infinite limit
points at P+ = {p : Re pν > 0, ν = 1, . . . , n} the conditions 1∗–3∗ are satisfied
for any initial conditions, the solution of (1) is correct.

Consider the opposite case: denote by Q∞ the subset of Q with infinite
limit points at P+. The condition 1∗ fulfills if and only if functions uk

β,γ(x(γ)),
k = 1, . . . , n, exist and are being used as initial conditions, such that Dk has zeros
at Q∞ of multiplicity no less than the multiplicity of corresponding zeros of D.

This demand produces requirements to the LC images of initial conditions
functions, and after the LC−1 transform, to the initial conditions. They turn out
to be dependent.

Initial conditions whose LC images satisfy the conditions 1∗ − 3∗ we call

compatible.
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Thereby the following theorem is proved.

Theorem. If Q has no infinite limit points at P
+, the initial conditions

assumed above are compatible. If Q has infinite limit points at P
+ initial condi-

tions are compatible if and only if their images satisfy the condition: Dk has zeros

at P
+ of multiplicity no less than the multiplicity of corresponding zeros of D.

The theorem may be considered as the condition for the existence of the
inverse Laplace–Carson transform of Uk(p).

6. Independence of the type of equations. As can be seen from
the presented constructions, the order or the type of equations (elliptic, hyper-
bolic, parabolic, etc.) does not play a significant role in the method of Laplace–
Carson transform. Moreover, the method allows not to reduce (or to reduce to
canonical form) the problem at the initial stage. However some special effects
may occur in elliptic case.

7. Examples. In the Section 5 there was given the foundation of the
method to obtain compatibility conditions, and this method was described in
a general case. It would be useful not to overload the text with bulky common
constructions of the implementation and to demonstrate technical details through
rather transparent examples.

We present two examples: a system of the first order with composite
right-hand parts and an equation of the fourth order.

Implemented in Mathematica.

7.1. Example 1. To demonstrate the techniques of the LC algorithm
let us consider in detail the solving of a system of three equations with three
unknown functions f(x, y, z), g(x, y, z), h(x, y, z) on R

3
+.

∂
∂x
f + ∂

∂z
g + ∂

∂y
h = φ

∂
∂z
f + ∂

∂x
g + ∂

∂y
h = ψ

∂
∂y
f + ∂

∂x
g + ∂

∂z
h = θ

The functions φ, ψ, θ at the right-hand parts are composite. Using Heaviside
function we write them in the following way:

φ = x(H(x, y, z)−H(x−1, y−1, z−1)); ψ = y(H(x, y, z)−H(x−1, y−1, z−1));
θ = z(H(x, y, z) −H(x− 1, y − 1, z − 1)).

We shall consider the problem when the values of the unknown function
at the zeros of x, y, z are taken as initial conditions.
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If we have the derivatives of the first order with respect to each variable
we need nine initial conditions – three for every unknown function – at (0, y, z),
(x, 0, z), (x, y, 0), correspondingly to the order of the derivative. A requirement
is the coincidence of correspondent functions values at the intersection of these
planes.

Denote the values of the functions at these points as follows:
f(0, y, z) = fx, f(x, 0, z) = f y, f(x, y, 0) = f z, g(0, y, z) = gx, g(x, 0, z) =
gy, g(x, y, 0) = gz , h(0, y, z) = hx, h(x, 0, z) = hy, h(x, y, 0) = hz .

Denote the images of the LC transform of f, g, h, respectively by u, v,w.
To be transparent in the example we denote the LC images of the initial

conditions functions by the nine Greek letters α, β, γ, δ, τ, ε, ξ, τ, σ:

Table 1

(q, r) (p, r) (p, q)

f α η δ

g ε ξ β

h τ γ σ

In the table the first column displays the functions for which the LC images
of the initial conditions are considered; the first line indicates the variables upon
which these images depend. Note that in our system we have no the derivatives
∂
∂y
g and ∂

∂x
h, so we do not need τ and ξ.

Applying the Laplace–Carson transform to the system (1) we obtain the
algebraic system

pu+ rv + qw − pα− rβ − qγ = F,

ru+ pv + qw − rδ − pε− qγ = G,

qu+ pv + rw − qη − pε− rσ = H,

where
F = −e−p−q−r + 1

p
− 1

p
e−p−q−r; G = −e−p−q−r + 1

q
− 1

q
e−p−q−r; H = −e−p−q−r +

1
r
− 1

r
e−p−q−r.

The solution of this system is

u = −
−pq2 + pqr − pq2r + qr2 + pqr2 + q2r2 − r3 − qr3

qr(p− r)(q − r)(p+ q + r)
+

ep+q+r

(
pq2 − pqr − qr2 + r3 + p2q2rα− p2qr2α+ pq2r2β − pqr3β

qr(p− r)(q − r)(p+ q + r)
+
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−pq2r2γ + q2r3γ − pq2r2δ + qr4δ

qr(p− r)(q − r)(p+ q + r)
+

−pq2r2ǫ+ pqr3ǫ+ pq3rη − q3r2η + pq2r2σ − q2r3σ

qr(p− r)(q − r)(p+ q + r)

)

v =
−p2q2 − p2q2r + q3r + p2r2 + p2qr2 + pq2r2 − qr3 − pqr3

pqr(p− r)(q − r)(p+ q + r)
−

ep+q+r

(
p2q2 − q3r − p2r2 + qr3 − p2q3rα+ p2qr3α− pq3r2β

qr(p− r)(q − r)(p+ q + r)
+

pqr4β − p2q2r2γ + pq2r3γ + pq3r2δ − p2qr3δ + p3q2rǫ

qr(p− r)(q − r)(p+ q + r)
+

p2q3rǫ− p3qr2ǫ− p2q2r2ǫ+ p2q3rη − pq3r2η + p2q2r2σ − pq2r3σ

qr(p− r)(q − r)(p+ q + r)

)
,

w =
p2q − p2r − q2r − pq2r + qr2 + pqr2 + q2r2 − qr3

pqr(p− r)(q − r)(p+ q + r)
−

ep+q+r

(
−p2q + p2r + q2r − qr2 + p2q2rα− p2qr2α

qr(p− r)(q − r)(p+ q + r)
+

pq2r2β − pqr3β + p2q2rγ + pq3rγ − pq2r2γ − q3r2γ

qr(p− r)(q − r)(p+ q + r)
+

p2qr2δ − q2r3δ − pq2r2ǫ+ pqr3ǫ− p2q2rη + q2r3η − p2qr2σ + qr4σ

qr(p− r)(q − r)(p+ q + r)

)
,

The determinant D of the system equals

D = −(p− r)(q − r)(p+ q + r).

The bracket (p+q+r) is not important for solving the problem of compatibility—
its zeros do not belong to Q∞.
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Consider the sets p = r, q = r. They form the set Q∞. We demand
that the numerators of the solutions be zero on these sets. To indicate that
the functions of the initial conditions are taken for p = r or q = r we use the
notations displaced in the following table. If for a function p = r is set, we use this
function with the index 1, if q = r is set, we use this function with the index 2.
To demonstrate the algorithm of getting compatibility conditions display initial
conditions and their transformations after substituting of points of Q∞ into the
table.

Table 2

α(q, r) ε(q, r) τ(q, r) θ(p, r) ξ(p, r) γ(p, r) δ(p, q) β(p, q) σ(p, q)

p = r α(q, r) ε(q, r) τ(q, r) θ1(r, r) ξ1(r, r) γ1(r, r) δ1(r, q) β1(r, q) σ1(r, q)

q = r α2(q, r) ε2(r, r) τ2(r, r) θ(p, r) ξ(p, r) γ(p, r) δ2(p, r) β2(p, r) σ2(p, r)

Substituting p = r and q = r into the numerators of u, v, w, we obtain a
system of 6 equations, which connect functions α, β, γ, δ, δ, . . . , δ2.





−q2r + 2qr2 − r3 + eq+2r(q2r − 2qr2 + r3 + q2r3α− qr4α+ q2r3β1 −

qr4β1 − q2r3δ1 + qr4δ1 − q2r3ǫ+ qr4ǫ) = 0

q3r − q2r2 − qr3 + r4 + eq+2r(−q3r + q2r2 + qr3 − r4 − q3r3α+ qr5α −

q3r3β1 + qr5β1 + q3r3δ1 − qr5δ1 + q3r3ǫ− qr5ǫ) = 0

−q2r + 2qr2 − r3 + eq+2r(q2r − 2qr2 + r3 + q2r3α− qr4α+ q2r3β1 −
qr4β1 − q2r3δ1 + qr4δ1 − q2r3ǫ+ qr4ǫ) = 0

−pr4γ + r5γ − pr4δ2 + r5δ2 + pr4η −

r5η + pr4σ2 − r5σ2 = 0

−p2r4γ + pr5γ − p2r4δ2 + pr5δ2 + p2r4η −

pr5η + p2r4σ2 − pr5σ2 = 0

p2r3γ − r5γ + p2r3δ2 − r5δ2 − p2r3η +

r5η − p2r3σ2 + r5σ2 = 0

Solving it with respect to these variables, we get two conditions on them:

(6)
α = − (1−e−q−2r)(q−r)

qr2 − β1 + δ1 + ǫ,

γ = −δ2 + η + σ2.

We may take arbitrarily all images of initial conditions except of α and γ
and obtain α and γ according to the conditions (6).
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For example, we may take the following functions in Table 1.

Table 3

(q, r) (p, r) (p, q)

f e−q−2r(q − r)/(qr2) − (q − 2)/(qr2) 1/(pr) 1/(p2q)

g 1/(qr2) ξ 1/(pq)

h τ (p− r + pr)/(p2r2) 1/(pq2)

The corresponding initial conditions are the follows:

fx = 1
2 ((−1 + 2y)z2 − (2y − z)(−2 + z)H(−1 + y)H(−2 + z)), gx = yz2

2 ,

fy = xz, hy = 1
2(2xz − x2z + xz2), f z = x2y

2 , gz = xy, hz = xy2

2 .

Substituting the functions α, β, γ, . . . from Table 3 into the solution u, v,w,
after inverse LC transform we obtain the solution of the system (1) corresponding
to these initial conditions:

f =
1

24

(
12x2y − 24xyz + 24yz2 − 8z3−

H(−y + z)(8(3xy + 3y2 − y3 + 3xz − 3yz + 3y2z − 3yz2 + z3)+

8(y − z)(3x − 3y + y2 − 2yz + z2)H(−x+ y)−

12(y − z)(2 + y − z)H(−1 + x,−1 + y)+

12(y − z)(2 + y − z)H(−1 + x,−x+ y))−

3(−2 + x+ z)(−2 + 3x− 4y + 3z)H(−1 + y,−2 + x+ z)−

(−9x2 + 36xy − 36y2 − 18xz + 36yz − 9z2)H(−1 + y, x− 2y + z)−

(−12 − 24x− 9x2 + 24y + 12xy + 6xz − 12yz + 3z2)H(−1 − x+ y,−2 − x+ z)−

(9x2 − 36xy + 36y2 + 18xz − 36yz + 9z2)H(−1 − x+ y, x− 2y + z)−

(−12x2 − 8x3 + 24xz + 24x2z − 12z2 − 24xz2 + 8z3)H(−x+ y,−x+ z)−

(12 + 24y − 24z − 24yz + 12z2)H(−1 + x,−1 + y,−1 + z)−

(−12+24x−9x2−24y+12xy+24z−18xz+12yz−9z2 )H(−1+x,−1+y,−2+x+z)−

(9x2 − 36xy + 36y2 + 18xz − 36yz + 9z2)H(−1 + x,−1 + y, x− 2y + z)−

(−24x+ 9x2 − 12xy + 24z − 6xz + 12yz − 3z2)H(−1 + x,−x+ y,−x+ z)+

9(x− 2y + z)2H(−1 + x,−x+ y, x− 2y + z)
)
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g =
1

24

(
12x2y − 24xyz + 24yz2 − 8z3−

H(−y + z)(8(3xy + 3y2 − y3 + 3xz − 3yz + 3y2z − 3yz2 + z3)+

8(y − z)(3x − 3y + y2 − 2yz + z2)H(−x+ y)−

12(y − z)(2 + y − z)H(−1 + x,−1 + y)+

12(y − z)(2 + y − z)H(−1 + x,−x+ y))−

3(−2 + x+ z)(−2 + 3x− 4y + 3z)H(−1 + y,−2 + x+ z)−

(−9x2 + 36xy − 36y2 − 18xz + 36yz − 9z2)H(−1 + y, x− 2y + z)−

(−12 − 24x− 9x2 + 24y + 12xy + 6xz − 12yz + 3z2)H(−1 − x+ y,−2 − x+ z)−

(9x2 − 36xy + 36y2 + 18xz − 36yz + 9z2)H(−1 − x+ y, x− 2y + z)−

(−12x2 − 8x3 + 24xz + 24x2z − 12z2 − 24xz2 + 8z3)H(−x+ y,−x+ z)−

(12 + 24y − 24z − 24yz + 12z2)H(−1 + x,−1 + y,−1 + z)−

(−12+24x−9x2−24y+12xy+24z−18xz+12yz−9z2 )H(−1+x,−1+y,−2+x+z)−

(9x2 − 36xy + 36y2 + 18xz − 36yz + 9z2)H(−1 + x,−1 + y, x− 2y + z)−

(−24x+ 9x2 − 12xy + 24z − 6xz + 12yz − 3z2)H(−1 + x,−x+ y,−x+ z)+

9(x− 2y + z)2H(−1 + x,−x+ y, x− 2y + z)
)

h = 1/24
(
12xy2 − 12x2z − 24yz + 12xz2 + 24yz2 − 8z3+

4(y − z)H(−y + z)(−2(3x − 3y + y2 − 2yz + z2)+

(2(3x − 3y + y2 − 2yz + z2) + 3(2 + y − z)H(−1 + x))H(−x+ y)−

3(2 + y − z)H(−1 + x,−1 + y)) + 12(−2 + x+ z)H(−1 + y,−2 + x+ z)−

12y(−2 + x+ z)H(−1 + y,−2 + x+ z) + 9(−2 + x+ z)2H(−1 + y,−2 + x+ z)−

9(x− 2y + z)2H(−1 + y, x− 2y + z)− 12(2 + x− z)H(−1− x+ y,−2− x+ z)−

12x(2+x−z)H(−1−x+y,−2−x+z)+12y(2+x−z)H(−1−x+y,−2−x+z)+

3(2+x− z)2H(−1−x+y,−2−x+ z)+9(x−2y+ z)2H(−1−x+y, x−2y+ z)−

12(x − z)2H(−x+ y,−x+ z) − 8(x− z)3H(−x+ y,−x+ z)−
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24(−1 + z)H(−1 + x,−1 + y,−1 + z) + 12(−1 + z)2H(−1 + x,−1 + y,−1 + z)−

12(−2+x+z)H(−1+x,−1+y,−2+x+z)+12y(−2+x+z)H(−1+x,−1+y,−2+x+z)−

9(−2+x+z)2H(−1+x,−1+y,−2+x+z)+9(x−2y+z)2H(−1+x,−1+y, x−2y+z)+

12x(x − z)H(−1 + x,−x+ y,−x+ z) − 3(x− z)2H(−1 + x,−x+ y,−x+ z)+

24(−x+ z)H(−1 + x,−x+ y,−x+ z) + 12y(−x+ z)H(−1 + x,−x+ y,−x+ z)−

9(x− 2y + z)2H(−1 + x,−x+ y, x− 2y + z)
)

7.2. Example 2. Consider the equation of forced vibration of an elastic
rod:

∂2f

∂x2
+
∂4f

∂y4
= xy.

Initial conditions:

f(0, y) = a(y); ∂f(x,y)
∂x

∣∣
x=0

= b(y);

f(x, 0) = c(x); ∂f(x,y)
∂y

∣∣
y=0

= d(x);

∂2f(x,y)
∂y2

∣∣
y=0

= g(x); ∂3f(x,y)
∂y3

∣∣
y=0

= h(x)

LC : f(x, y) 7→ u(p, q),

a(y) 7→ α(q), b(y) 7→ β(q),

c(x) 7→ γ(p), d(x) 7→ δ(p),

g(x) 7→ σ(p), h(x) 7→ τ(p).

As a result of LC we obtain the algebraic equation:

p2u− p2α− pβ − qu+ qγqu+ qγ =
1

pq

D = p2 + q4

Then

u =
1 + p3qα+ p2qβ + pq5γ + pq4δ + pq3σ + pq2τ

pq(p2 + q4)
; .

Q consists of two sets of zeros of the denominator D = p2 + q4:
p = iq2, p = −iq2.
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In these sets the numerator of u equals respectively

A1 = 1 − iq7α− q5β + iq7γ1 + iq6δ1 + iq5σ1 + iq4τ1;

A2 = 1 + iq7α− q5β − iq7γ2 − iq6δ2 − iq5σ2 − iq4τ2,

where
γ1, δ1, σ1, τ1 are the values of the functions γ, δ, σ, τ at p = iq2,
γ1, δ1, σ1, τ1 – at p = iq2.
The functions with indexes 1 and 2 depend on different arguments iq2 and

−iq2, respectively. So it is convenient to take the originals c, d, g, h of γ, δ, σ, τ
as data functions of initial conditions and to find a, b as compatible with them.
Note that this is a characteristic speciality of equations of such type, for example
of elliptic equations.

Solve {
A1 = 0,
A2 = 0

with respect to α, β.
Compatibility conditions on images of LC:

α = −
−q3γ1 − q3γ2 − q2δ1 − q2δ2 − qσ1 − qσ2 − τ1 − τ2

2q3
;

β =
i(−2i + q7γ1 − q7γ2 + q6δ1 − q6δ2 + q5σ1 − q5σ2 + q4τ1 − q4τ2)

2q5
.

Taking the concrete functions c(t), d(t), g(t), h(t) of initial conditions, we
obtain a(x) and b(x) as compatible with them. In such way we may define, for
example, the following compatible initial conditions:

a = 1 − x4

12 , b = x5

120 , c = 1 + t2.
Finally we obtain the solution satisfying the initial conditions:

f(t, x) = 1 + t2 −
x4

12
+
tx5

120
.

8. A parallelization of solving. A parallel algorithm may be con-
structed on the basis of the one produced.

1. The Laplace transform of right-hand parts is independent on the num-
ber of equation, it is to be produced in parallel way.

2. The Laplace transform of left-hand parts is absolutely formal and also
independent, it is to be produced in parallel way.
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3. Solving the algebraic system permits various methods. The most effec-
tive ones are based on parallel computations.

4. The inverse Laplace transform for each obtained function is to be
parallelized.

9. Conclusion. Let us adduce advantages of the algorithm presented
in the paper.

1. The Laplace–Carson transform of a system with input functions from
class A is being fulfilled in a symbolic way.

2. The algebraic system obtained after the Laplace transform may be
solved by methods most convenient and efficient for each specific case.

Call a rational fraction “a proper fraction” if the degree of each variable
(over C) in the numerator is less then its degree in the denominator.

Call class B a set of equations defined by these conditions:
– the solutions of algebraic system may be represented as sums of proper

fractions with exponential coefficients,
– the denominators of these proper fractions may be reduced to a product

of linear functions.
3. If a system of differential equations belongs to class B, then the inverse

Laplace transform is being fulfilled symbolically.
4. The application of the Laplace–Carson transform permits obtaining

compatibility conditions in a symbolic way.
5. The order of derivatives, the size of the systems and in many cases the

types of equations are not significant for LC method.
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