Serdica J. Computing 7 (2013), No 2, 179-198 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

VERSIONING OF GRANULATED DATA IN
HIERARCHICALLY COMPOSED WORKSPACES*

Vladimir Jotov

ABSTRACT. For the last 30 years there has been a lot of research of versioned
software products, but challenges remain nevertheless. This article focuses
on a model of versioned objects and hierarchically composed workspaces.
The presented model of versioned object aims to solve the issue of granu-
lation of versioned data. The model of hierarchically composed workspaces
provides methods and rules for versioning, which complete the first model.

1. Introduction. Classic version control systems allow users to apply
version control over files [2, 5, 6, 8, 9]. The domain of software development
abstractions (classes, interfaces, objects, etc.) is distinguished from the file ab-
straction domain. These systems are very fast and widely used. Nevertheless,
the following disadvantages can be stated:

ACM Computing Classification System (1998): F.4.1.

Key words: version control, data granulation, workspaces, models.

*This article presents the principal results of the Ph.D. thesis Models in software version
management, based on hierarchical compositions of workspaces by Vladimir Jotov, successfully
defended at Veliko Tarnovo University “St. St. Cyril and Methodius”, Faculty of Mathematics
and Informatics, Department of Computer Systems and Technologies, on 16 March, 2013.

180 Vladimir Jotov

e Access to the objects (files) is vouched by a file system. We must note
that very few file systems support the required level of security when a user
works with versioned objects.

e Files as versioned objects have a large data granulation level. They don’t
allow the user to specify the relations between separate objects (files).

In order to solve these issues, Nguyen [8] introduces an object-oriented
approach to versioning. In his models, data is presented as a table of slots made
from attributes and nodes. As a disadvantage of the model, it could be pointed
out that many data slots could remain empty. Nevertheless the model follows
the need of multilevel data granulation.

In software development industry the term workspace is understood as
an isolated space (environment) where a certain work is done. The first com-
mercial solution with hierarchical structure of workspaces [12] was introduced
in 1989. Nevertheless, Estublier [4 — page 406] emphasizes that “...a mod-
ern workspace is created “behind-the-scenes” to perform a particular
user-selected task ...”. The authors label the workspace as a system element
that has to provide the following main features:

1. Sandbox — a save space where users have the opportunity to work without
being affected by other users.

2. Option of building a specific version/configuration of the software system.

3. Separation of changes, tests and other pursued activities without a direct
effect over the product or other users’ work.

Thus we can formulate the following problems in the current article:

e To present an object-oriented model of a versioned object that allows spec-
ifying the level of data granularity freely.

e To provide a model of workspaces with hierarchical composition including
set of rules for version control.

2. Object model. Leading authors in the version control domain
[3, 10] define the version object as two-part entity—object states and an object
version graph. An object version graph is a graph where the nodes represent
object states and arcs represent version transitions.

Versioning of Granulated Data in Hierarchically Composed Workspaces 181

We can identify the main feature of a versioned object as the possibility
to define data granulation in a free way. This feature needs to be supported by
the model of the versioned object. This leads us to the need of defining object
compositions as part of the model. The formal definition of the composed object
could be formulated as follows:

Definition 1. A composed object is an object that is built from other
objects using a composition entity.

Definition 2. As composition we will comprise the entity that defines
the relation between super-object and sub-object. One composed object could be a
super-object for one or more composition instances, i.e., be built by one or more
sub-objects.

The fact of adding the composed objects and sub-objects in the domain
leads us to the need of redefining the versioning process over versioned objects.
The following diagram presents an example of change of the version composition.
Here arrows represent changes in the objects’ content among different versions of
the end product.

I
Version 2 I Version 3

I
Version 1 I
B » B A A
—> i —t
AT — ==
A 1 | B | C
Cc I C I
X > E E
| v /] (new object) I e
o | o | I
~— Ll
T]
l Time ' >

Fig. 1. Example of change in objects’ content

On versions binding of a certain versioned object it is necessary to use
the relation of type foreign key. It follows from this pursue that a versioned
object entity has to consist of a unique and immutable number. It is useful to
regard that number as a primary key to the entity.

Object’s versions could be treated as its primitives (versioned primi-
tives) with the following attributes:

e Versioned object id.

182 Vladimir Jotov

e Version number — a serial number which specifies in a unique way the version
within the versioned object.

e Object’s name. Setting the name to be on the primitive level allows the
user to track among different versions even if the object is renamed. This
model becomes more complete, excluding the weakness related to object
(file) renaming in systems such as Subversion (SVN), Git, and others. [2,
5, 6].

e Object content.

A versioned primitive is determined in a unique way using the pair ver-
sioned object id and version number. In spite of the possibility of using this
unique pair and a compound key, good practices in ER model design [1] recom-
mend that each entity should possess its own non-compound key. In our case we
will introduce an additional field as a primary key — a global version number.

Versioning of a composed object requires defining an additional entity —
Versioned primitive composition (Composition for short). This entity is a relation
entity that binds in a unique way a version of a super-object with a version of a
sub-object. The following attributes of a composition can be defined:

e Global number of super-object;
e Global number of sub-object.

Here despite the fact that the attribute combination is always unique, we
will also use an additional attribute for primary key — composition id.

Versioned
Object
1

Super-object

0,1 N 1.5

Composition Versioned
posit primitive
1..U 2
Sub-object

1.*

Arcin version
graph

Fig. 2. ER model of versioned object

Due to needs of accounting and traceability of change, our model will be
extended in order to support the feature of versioned graph. In ER models graph

Versioning of Granulated Data in Hierarchically Composed Workspaces 183

structures could be presented using two entities — one entity for nodes and another
one for arcs [11]. Looking at a versioned object definition, we could conclude that
graph nodes correspond to a versioned primitive entity. The missing part will be
implemented as a new entity which will correspond to graph arcs — arc of version
graph. The new entity requires the following attributes:

e Arc id — primary key.
e Global number of source version.

e Global number of target version.

User who made the change.

Date and time of change.

Versioning of composed object. In this paragraph we will present the
peculiarities in versioning of composed objects with rank one. Based on that, we
will specify the versioning process of composed objects with rank N. The following
definition specifies the term rank of composed object.

Definition 3. A composed object with rank zero, i.e., a simple object is
an object which is not associated with its own sub-objects. A composed object with
rank N is an object for which the largest rank of associated sub-object is equal to
N —1.

0, Z Subobjects = 0
RObject =
N, maX(RSubobjects =N-1

The granularity degree of an object is its rank.

It is important to note that the definition of composed object doesn’t
apply any restrictions on sub-objects. This leads to the following conclusion:

Consequence 1. One sub-object can itself be part of a composed object.
Therefore we can build a composition of composed objects.

One of the core tasks ahead in the current article is to avoid unnecessary
complication of the models. Having that in mind, as well as the lack of necessity,
we can specify the following restriction rules during the building of composed
objects:

Rule 1. In a given composition of composed objects, a certain object can
occur at most once.

184 Vladimir Jotov

Super-object

B, v1 | —

t

Tree of the
second J
order

Sub-objects

e

A vl —

\
H

C,vi

S

Fig. 3. Tree of objects

Rule 2. One object can be part of at most one object composition.

In a change of composition between two objects, we should regard the
objects’ versions as different (Figure 4). Let us examine a chair (super-object)
with armrests (sub-objects). When we remove the armrests from a chair, we
get a new version of the chair—a chair without armrests. We have to underline
that sub-objects do not change its version. Therefore we get only a change in
compositions of the super-object. We have a similar situation in a building super-
object, i.e., when we have a simple object which is transformed to a composed
object. When we add armrests to a chair, we get a new version of that chair
without changing the version of armrests.

Version 1 Version 2

B, v1

» B, V2 A Vi
»

___/———P

I

|

A vl I
T
I

Version 1

B, v1 A vl I B,v2
>

I

I Ll

I

| 4v1
I

Fig. 4. Change in objects’ composition through change of version

Version 2

Another feature of composed objects is the case of sub-object change when
we get an indirect change of the composed object (Figure 5). Let us look at the
example: Let us have a change of a chair’s upholstery from blue to red. In this
case not only the version of the upholstery is changed but also the version of the
chair. The association of an object as a sub-object and removing of association

Versioning of Granulated Data in Hierarchically Composed Workspaces 185

with a sub-object and its transformation to a simple object could be regarded as
a special case of sub-object change.

Version 1 \ersion 2 Version 1 Version 2

| |
B, vi | By [T B2 || B
| 1
|
| |

”~
A Vi C,vl | A v~ A Vi

Fig. 5. Indirect change of version of composed object in case of its sub-object change

The opposite case — when we have a change in the super-object — does
not mean that the version of its sub-objects is changed. So if you have a chair
with three legs and red upholstery, the addition of a fourth leg to the chair does
not change the version of the red upholstery’s sub-object. (Figure 6)

Version 1 | Version 2
B, v1 || Bw
I »
A vl | A, vi
I

Fig. 6. Change in super-object doesn’t affect the version of sub-object

A consequence can be deduced from the last two rules:

Consequence 2. Changing the version of a sub-object for a super-object
does not affect the versions of its sibling sub-objects (Figure 5).

3. Model of Hierarchical composed workspaces. The first
model we are going to examine is the model of hierarchical composed workspaces.
Within the model the following definitions will be used:

Definition 4. A product is the object of material or immaterial manu-
facturing, which after its creation can be reproduced and distributed to customers.

Definition 5. A product release is a fized version that has passed a
certain number of controls and meets the criteria of quality, safety and security.
Only product releases are distributed to customers. Versions that are not released
are called practice working versions.

186 Vladimir Jotov

Definition 6. A workspace is a location where certain activities are
carried out on the development of a version of a product.

Definition 7. A main workspace is a workspace where ??the final prepa-
ration of equipment and product release is made.

The arrangement (composition) of the workspace is taken to provide op-
portunity for each participant in the product development process and its releases
to carry out activities both individually and in cooperation with other partici-
pants. It is the workspace that provides the opportunity for independent work
which does not affect nor is affected by the work of other participants. On the
other hand, composing workspaces in a hierarchy is claimed to be a mechanism
which ensures cooperative work. Figure 8 presents a diagram of hierarchical
composition of workspaces.

Product Release Workspace

- >
1 * 1 *

Fig. 7. Class diagram of Product-Release-Workspace model

Versioned object visibility model in environment with hierarchi-
cal composition of workspaces. As in any hierarchical structure, here, too,
a parent-child relation will be considered. We will focus on the versioned object
visibility defined by the following principles of visibility.

Definition 8. The local version of the versioned object is the version
that is associated with a specific workspace.

Definition 9. The visible version of versioned object for a given workspace
1 a version of the object with which the user can work.

Visibility principles:
Principle 1. The local version of the versioned object for a given workspace

1s the visible version of the object in the same workspace, despite other local ver-
stons in the parent workspaces.

Principle 2. The local version of an object in a workspace can be seen
recursively in all subspaces, unless another local version is defined therein.

From the above principles we can deduce some consequences:

Versioning of Granulated Data in Hierarchically Composed Workspaces 187

~
Master workspace //fm /\/11

-
Mws e - ; c \R
7)
-,
s “ \\ ﬂ
-7 [\ <
I —1 e > / \)
/\) § / \
A B (c Rk (>] ;
\
/ \ £ 7\ LN ct c2
/ \ ,& /o ? { {
/ \ \ ’ / \ ﬂ $)\/
’ At A2 B1 K% c1 c2 j K_r X/
| 1 .)

A3 B1.1 B1.2 B2.1 c11 c2.1 c2.2

Fig. 8. Example of hierarchical composition of workspaces

Consequence 3. In any workspace, where objects do not have a local ver-
sion, they are presented with their version found in the nearest parent workspace.

Consequence 4. If for a given workspace the object has no version in
either parent workspace, it is not visible in the selected workspace.

In Figure 9 we present the way the two principles of visibility influence
object version distributions, for example hierarchical composition of workspaces.

In order to achieve completeness and correctness of the model, the fol-
lowing constraint can be formulated: an object can present only one version in a
workspace.

The composed object model and visibility principles lead us to the need
to address the problem of composed object visibility.

Consequence 5. A certain composed object version is visible in a certain
workspace only and solely when all its sub-objects are visible in that workspace.

4. Transactions over versioned objects. We introduced transac-
tions over versioned objects in [7]. Here we will make a short presentation and
classification of them.

bigskip

Transaction within a single workspace. Creation is the first transac-
tion for each versioned object. After the completion of the transaction, the object

188 Vladimir Jotov

A
// Local
/ version

Vo1.vi

A1
Visible
version of
Vo1.v1

B1
Local
version
Vo1.v2

Legend: Workspace name

—
Version visibility

Object version

Pr.2&
Consequence
B2 \

version
Vo1.v3

A1.1 c1

Visible Local Visible
version of version version of
Vo1.vi Vo1.v3 Vo1.v2

Object name

Fig. 9. Distribution of object versions according to the visibility principles

has an initial (zero) version, in which it is “empty”, i.e., contains no information.

The transaction of state marker creation by which we create a new version
of a versioned object can be regarded as the basis of a mechanism for creating
safe-points.

As a reverse transaction, to create a state may be classified for this waiver
of marker status. Through the model, the last state was released, and the current
local version of the object is the version prior to refusal.

The creation of long sequences of unbranched versions, especially by the
same user within the same workspace, leads us to the idea of the transaction of
combining successive versions in order to save memory and make analyses of the
work faster and easier.

Updating a versioned non-local object, i.e., an object that does not have
any local version in the current workspace, can be considered the most important
part of the current section. This transaction is not entirely limited to a single
workspace, because it is composed of the following steps:

e Retrieve the previous version of the site visible for the workspace.
e Create a local version of the object in the current workspace.

e Create an arc in version graph — linking the previous visible version with
the new local version of the object.

Deleting an object is possible by creating a transaction called “tag for
deleted object”. This tag is intended to "hide” the object in its workspace and

Versioning of Granulated Data in Hierarchically Composed Workspaces 189

respectively to make it invisible in its sub-workspaces. It should be noted that
all transactions over the object described in this section are no longer available,
except for transaction rejection of tag status.

Transaction among two workspaces. Transactions between two work-
spaces can be divided into two groups—the publication of an object’s version and
giving up a local version. Before examining, it is necessary to introduce the terms
“derivative” and “parallel” version of an object.

Definition 10. Let us look at one versioned object and two versions of
it, X and Y. If there is a path in the versioned graph of the object from wversion
X to version Y, then version Y is called a derivative version of X, and version
X s called a previous version of Y.

Definition 11. Let us look at one versioned object and two versions of
it, X and Y. If there is no path in the versioned graph of the object from version
X to wersion Y, then both wversions are called parallel versions or not-derived
Versions.

Publishing an object’s version means the transformation of the local ver-
sion of the object from the current workspace into a local version of its parent
workspace.

The simple version publishing is in a situation where there is no local
version of a published object in the parent workspace—Figure 10.

Version graph of Object Vo1

B1
Local
version
Vo1.v2

B1
Local
version
Vo1.v2

Simple publication

B2
Visible
version version
Vo1.v3 Vo1v2

B2

Visible
version
Vo1v2

Fig. 10. Simple publishing

190 Vladimir Jotov

Following the transaction which needs to be addressed, is that of updating
publication (Figure 11). It is typical of it that it is possible when it simultaneously
satisfies two conditions:

e In the parent workspace there exists a local version of the object to be
published.

e The version of the object to be published is a derivative of the version in
the parent workspace.

Version graph of object Vo1

Environment state

Al
Visible
version
Vo1wvi

: /

Visible Local
version version
Vo1.v2 Vo1.v4

A1
Updating publication
version
Vo1.v1

Al
Local
version
Vo1.v4

Fig. 11. Updating publication

When an updating publishing happens, a merge of two versions is not
needed as a derivative version of evolution up to the previous version.

When the object version to be published in the parent workspace is a
parallel to the version in the parent workspace (Figure 12), it should merge both
versions. As a result of the merger, a new version of the object is produced. We
don’t aim to present a new method for merging versions of an object, so it can
be used as a handheld merge approach or an algorithmic approach similar to the
algorithm Westfechtel [13].

The transaction of giving up of a local version is the reverse of the trans-
action of publishing a version. The only step in this transaction is the removal
of the local version of the object on the workspace. It is important to note that

Versioning of Granulated Data in Hierarchically Composed Workspaces 191

A A

Local Local

version version

Yot —

Environment state
1 A

A Updating A1 Publication
LocPublication Local with merge
version | version
Vo1.v4 w Vo1.v4 ‘

Al1
Visible
version
Vo1.v4

A1
Visible
version

Version graph of object Vo1

Al1
Visible
version
Vo1.v4

Fig. 12. Publication with merge

if any of the parent workspaces has no version of the selected object, the object
becomes unavailable for subsequent use. This fact should be taken into account
when the transaction takes place in the main workspace of the product’s release.

Transactions over composed objects. Let us have the following sit-
uation: a local version of the object B in the parent workspace and its visible
version in current workspace. Let us make in A a sub-object of object B in the

192 Vladimir Jotov

current workspace (Figure 13). After publication, the version of sub-object A
may not lead to a change in the version of object B in the parent workspace.
However, in a subsequent publication, the version of the object B in conjunction
with its compositions in the parent workspace will lead to an automatic update
of the compositional scheme of objects (in Figure 13 with a green dotted arrow).
This is dictated by the fact that information regarding the organization of the
composite object should be considered as an inseparable part of it.

B, v2

» o —
<
N

Fig. 13. Newly created sub-object to a super-object

The publication of the new version of the composite object B, v3 leads to
the requirement that this be done in a set with the version of the newly created
sub-object (Figure 13 — arrows with number 2).

Let us consider the situation where there is a local version of the object
in the parent workspace that is visible in the current workspace (Figure 14).
In current workspace we change the sub-object A, which leads to a change of
object B, i. e., the creation of a new local version of the sub-objects leads to
the automatic creation of a new local version of the entire composite object. We
should notice that separate publishing of the new version of the sub-objects in
the parent workspace should not be allowed. This restriction follows from the
fact that a new version of a sub-object assumes a new version of the super-object
(Figure 14 — arrow with number 1). In addition, we introduced the restriction
that an object may be present in only one version in a workspace. In conclusion

Versioning of Granulated Data in Hierarchically Composed Workspaces 193

to the situation we can formulate the following rule:

Rule 3. The publication of a version of a local composite object should
be made bundled with all local versions of its sub-objects that have a different
version in the parent workspace (Figure 14 — the arrows with number 2).

Local versions of the sub-objects in the parent workspace can be either
derivatives or parallel. In these cases it is necessary to execute the transactions
covered above.

Let us examine the same situation, where we have a local version of
the object B in the parent workspace that is visible in the current workspace
(??). From the composition of the composed object, a sub-object is excluded.
Reflecting this change in the parent workspace is achievable only by publishing
the composed object. This publication only transfers the composition change in
the parent workspace without changing the version of the sub-object. The former
sub-object is no longer part of the new super-object version.

A
(Y ’),\‘
4
Bepcusi 1 l Bepcus 2 b)
B, v1 | B, v2 - > b
l Pl g / * UJJ
Av | A v~ U B N
- L]
~ = : o v'\
| r S
L]
\ﬁ B, v2 o D
¢ ' 2
’ . P
- A ¥2 (/ 1
KL —

Fig. 14. Indirect change inversion of a super-object, caused by a new version of a
sub-object

Let us have a visible composed object A with a sub-object B, object A
and sub-object B being local versions in the parent space. We remove from the
composition of object A its sub-object B, i.e., we create a new local version of
object A (?7?). In this case a publication of any new version of object B would
lead to the following conflict: version vl of B requires that in its workspace
object A should be with its version v1 (visible or local version).

This fact could be regarded as a prerequisite for the following rule:

Rule 4. Let us have an object’s version that has a previous version, and
that is a sub-object of a composed object in the parent workspace. The publica-

194 Vladimir Jotov

T
‘/“‘/\ %“\
J B, v1 I
| ;
@ A J
B, vi — B, V2 AV ‘\/‘ v1 J
u ’ \4_/%&)\} b\/
A |
V1 | . r\,\/,\,\y\ /
(N /
J B, 2 A V1 ~_7
(e
. by
\'”\ﬂ)
v\J_/\/\J\—/\/
Fig. 15. Absence of change in the version of object A, i.e., there is no need of its
publication

tion of that object has to be performed simultaneously with the publication of the
composed object’s version.

As we noted above, the reverse transaction of publication is the give-up
of local version. Upon the give-up of a local version of the composite object we
should take into consideration the fact that its version could be largely dependent
on the version of its sub-objects. This leads to the following rule:

Rule 5. The give-up of a local version of a composed object has to be
performed in conjunction with a recursive give-up of all its sub-objects.

5. Workspace environment configurations. The model of work-
space composition presented above allows us to specify its appearance in the
form of workspace environment configuration. By workspace environment con-
figuration we will understand the process of determining the hierarchical archi-
tecture of workspaces. In Figure 17 and Figure 18 we present two examples
of workspace configurations. These diagrams display the freedom of workspace
arrangement in the most appropriate manner according to company architecture,
project specifics, methodology characteristics, or other needs.

Figure 17 presents workspace composition where all mainstreams are di-
vided into separate sub-trees—requirements, architecture, development and QA.
Only requirements that meet the requestor’s business needs are supposed to be
published to the master workspace of the project. And only after that do they
become visible to other project participants. The same scheme should be used for

Versioning of Granulated Data in Hierarchically Composed Workspaces 195

Bepcus 1 l Bepcus 2 I
B, Vi ; » B, v2 At i » B,v2 A, v2
— | } >
i I
I I

——

I
: B,v1 Avi1
I A
I
I
I

B, 2 A,v2 | B, v2 A v2 ‘

—_ | 2

| |
I
I

Fig. 16. Publication of a former sub-object is not possible before publication of the
super-objects new version

Fig. 17. Model of organization-driven workspace configuration

196 Vladimir Jotov

Fig. 18. Model of component-driven workspace configuration

the distribution of other artifacts—architecture, source code, test cases, etc. As a
disadvantage of the examined architecture we can emphasize the large amount of
information that users have to study. This is a very topical issue in large projects.

In order to solve that issue on Figure 18, we present component-oriented
architecture of workspaces. Here we have dedicated workspaces for each project
participant and software components.

6. Conclusion and future work. The object-oriented model of
a composed versioned object presented in this paper extends the potentials of
versioning systems, allowing different level of data granularity. The model is a
complement of the model of hierarchically composed workspaces including a set
of rules for version control.

Versioning of complicated objects in complex environments becomes nec-
essary in complex prolonged software projects. Modern software life-cycle method-
ologies put more emphasis on linking artifacts between different stages—require-
ments, test plans, project plans, etc. The existing version control systems do
not provide a sufficient service level of change traceability among objects. We
could formulate, as a future research direction, the investigation of traceability
meta-data to support the accounting in versioning domain.

The issue of granting the respective data access level to versioned objects

Versioning of Granulated Data in Hierarchically Composed Workspaces 197

shapes the theme of data security in versioning domain. This theme is a challenge
for further development of the presented models.

REFERENCES

[1] AMBLER S. W., PRr. J. SADALAGE. Refactoring Databases: Evolutionary
Database Design. Addison Wesley Professional, 2006.

[2] CoLLINs-SussMAN B., B. W. FirzraTrIiCcK, C. M. PILATO. Version Con-
trol with Subversion. Book compiled from Revision 10945, 2008. http:
//svnbook.red-bean.com/en/1.0/index.html (visited in march 2009).

[3] CoNRADI R., B. WESTFECHTEL. Version models for software configuration
management. ACM Comput. Surv., 30 (1998), No 2, 232-282. DOI= http:
//doi.acm.org/10.1145/280277.280280

[4] ESTUBLIER J., D. LEBLANG, A. HOEk, R. CoNrADI, G. CLEMM, W.
Ticay, D. WIBORG-WEBER. Impact of software engineering research on
the practice of software configuration management. ACM Trans. Softw. Eng.
Methodol., 14 (2005), No 4, 383-430. DOI=http://doi.acm.org/10.1145/
1101815.1101817

[5] Git-Fast Version Control System. http://git-scm.com, 2012

[6] JONES M. T. Version control for Linux. 2006. http://www.ibm.com/
developerworks/linux/library /1-vercon, 2009

[7] JoTov VL. Transaction over Versioned Objects in Hierarchical Workspace
Environment. ECAI09, Pitesti, Romania, 2009.

[8] NGUYEN T. N. Model-based version and configuration management for a
web engineering lifecycle. In: Proceedings of the 15th international Confer-
ence on World Wide Web (WWW ’06), Edinburgh, Scotland, May 23 - 26,
2006, ACM Press, New York, 2006, 437-446. DOI= http://doi.acm.org/
10.1145/1135777.1135842

9] PriCE DEREK R. CVS—concurrent versions system v1.11.22, 2006. http:
//ximbiot.com/cvs/manual/cvs-1.11.22/cvs.html, 2009

198

[10]

Vladimir Jotov

SLEIN J. A.) F. ViTALl, E. J. WHITEHEAD, D. G. DURAND. Requirements
for distributed authoring and versioning on the World Wide Web. Standard-
View, 5 (1997), No 1, 17-24. DOI=http://doi.acm.org/10.1145/253452.
253474, 1997

STEPHENS S. M., J. RunG , X. LopPEz. X.: Graph data representation in
oracle database 10g: Case studies in Life science. IEEE Data Eng. Bull, 27
(2004), 61-67.

Sun Microsystem. Inc. The network software environment (NSE), Sun Tech.
Rep. Sun Msicrosystems, Inc., Mountain View, CA, 104, 1989.

WESTFECHTEL B. Structure-oriented merging of revisions of software docu-
ments. In: Proceedings of the 3rd international Workshop on Software Con-
figuration Management (Ed. P. H. Feiler), Trondheim, Norway, June 12-14,
1991, ACM, New York, 1991, 68-79. DOI= http://doi.acm.org/10.1145/
111062.111071

Veliko Turnovo University “St Cyril and St Methodius”

Teodosij Turnovski str.

5003 Veliko Turnovo, Bulgaria Received August 7, 2013
e-mail: vjotov@acm.org Final Accepted August 26, 2013

