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APPROXIMATE MODEL CHECKING OF REAL-TIME

SYSTEMS FOR LINEAR DURATION INVARIANTS

Changil Choe , Hyong-Chol O, Song Han

Abstract. Real-time systems are usually modelled with timed automata
and real-time requirements relating to the state durations of the system are
often specifiable using Linear Duration Invariants, which is a decidable sub-
class of Duration Calculus formulas. Various algorithms have been developed
to check timed automata or real-time automata for linear duration invari-
ants, but each needs complicated preprocessing and exponential calculation.
To the best of our knowledge, these algorithms have not been implemented.

In this paper, we present an approximate model checking technique based
on a genetic algorithm to check real-time automata for linear durration
invariants in reasonable times. Genetic algorithm is a good optimization
method when a problem needs massive computation and it works particu-
larly well in our case because the fitness function which is derived from the
linear duration invariant is linear.

1. Introduction. Model checking (or property checking) in computer
science is the following problem: Given a model of a system, exhaustively and
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automatically check whether this model meets a given specification. Here the
systems can be hardware or software systems. The specifications can contain
safety requirements such as the absence of deadlocks and similar critical states
that can cause the system to crash. Model checking is a methodology for auto-
matically verifying correctness properties of finite-state systems. In order to solve
such a problem algorithmically, we require that both the system model and the
specification are formulated in some precise mathematical language. It is often
formulated as a task in logic, namely to check whether a given structure satisfies a
given logical formula. When two descriptions are not functionally equivalent, we
use property checking. The implementation or design is regarded a model of the
circuit whereas the specifications are properties that the model must satisfy [15].

We often apply model checking methods to hardware designs. For soft-
ware, because of undecidability the approach cannot be fully algorithmic. We
often give the structure as a source code description in an industrial hardware
description language or a special-purpose language. Such a program corresponds
to a finite state machine. A finite state machine is a directed graph with nodes
and edges. A set of atomic propositions is associated with each node. The nodes
represent states of a system whereas the edges represent possible transitions that
may change the state, while the atomic propositions represent the basic properties
that hold at a point of execution.

Formally, the problem can be stated as follows:

given a desired property, expressed as a temporal logic formula p,
and a structure M with initial state s, decide if M,s| = p.

If M is finite, as it is in hardware, model checking reduces to a graph
search. Model checking tools were initially developed to reason about the logical
correctness of discrete state systems, but have since been extended to deal with
real-time systems.

Duration Calculus (DC) is an interval logic for real-time systems. It was
originally introduced in [1] and then developed further in many other works. (See
[2].) DC is mainly useful at the requirements level of the software development
process for real-time systems. Validity in DC is generally undecidable, and de-
pending on the choice of authors who sometimes use DC for the subset of DC that
is captured by their particular technical results, model-checking may be deemed
decidable or not. See e.g., [3] for an early collection of results, and the more
recent related work [18, 19, 20] by Goranko, Montanari, Schiavico, Dario della
Monica et al. for related work on ITL.

LDI (Linear duration invariant) which is a subclass of chop-free formulas
is very useful to specify duration constraints of states of real-time systems [4]. For
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this reason, many researchers devoted their works to develop efficient algorithm
checking timed automata or real-time automata for LDIs under some restrictions
on automata or LDIs in most cases [4∼11].

In our view, these algorithms can be classified into three methods. The
first is to solve linear or integer programming problems generated from an au-
tomaton and LDI by applying a regular expression technique [4]. The second
is to check an integer timed region graph generated from an original automaton
and LDI using an exhaustive search technique [8]. The third is to check an un-
timed automaton for a CTL formula using a CTL model checking tool, which are
derived from the original automaton and LDI respectively [9].

These methods are valuable because they allow complete verification of
the satisfaction relation between automata and LDIs. However, from a practical
view, all these algorithms need complicated preprocessing and mainly for this
reason the total execution time is exponential.

On the other hand, a lot of work has been done to develop a model check-
ing tool for DC formulas [12-14]. Nevertheless, compared with other temporal
logic model checking, DC model checking is still not widely used by engineers
though several model checking tools for some decidable class of DC formulas are
available.

It seems necessary to consider the problem at a different view. We note
the fact that computationally efficient model checking algorithm for LDI has not
been developed yet, although many researchers tried to develop it since DC was
first introduced 20 years ago.

There is another problem concerning DC model checking in our view.
DC model checking only deals with a small decidable class of formulas. However,
many undecidable classes of formulas of DC, e.g., chop formulas, are really useful
to specify various patterns of real-time requirements. We think that approximate
information on whether the system model satisfies the requirement specification
with undecidable classes of DC formula or not may be valuable for the verification
of real-time systems.

This work aims to develop an approximate model checking technique for
DC formulas, which is quite different from normal model checking. Approximate
model checking, which was first introduced in temporal logic based verification,
is achived by generating a large number of random paths through the model,
evaluating the given properties on each run and using this information to get
an approximately correct result. It is particularly useful when normal model
checking is infeasible because of the very large amount of computation.

We use the genetic algorithm as a mathematical basis of our technique.
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The genetic algorithm is very appropriate for the verification of real-time systems
requiring exponential computation for model checking as it is a good approach to
searching a near-optimal solution in the case when the problem is so complicated
that seeking an optimal solution is practically impossible.

In this paper, we don’t try to present a complete approximate model
checking technique covering arbitrary timed automata and DC formulas. Instead,
we focus on showing the main idea of our technique clearly. This is the reason we
consider the problem of verifying real-time automata for LDIs, which is a typical
case of DC model checking.

The remainder of this paper is organized as follows. In section 2 we con-
struct a framework for approximate model checking of real-time automata against
LDIs. In Section 3, we present our genetic algorithm approach for approximate
model checking of real-time automata against LDIs based on the framework con-
structed in Section 2. A conclusion and a description of future work constitute
Section 4.

2. A Framework for Approximate Model Checking of Real-

time Automata against LDIs. In this Section, we define a satisfaction
relation between real-time automata and LDIs as a framework for checking real-
time automata aginst LDIs using a genetic algorithm.

Definition 2.1 (Real-time Automata). A real-time automaton M is
a triple M = (S, T, L) consisting of

• a finite set S of states,
• a transition relation T ⊆ S × I × S,
• a labeling function L : S → 2AP assigning a set of atomic propositions

to each state s ∈ S.

Here, I is the set of closed intervals [a, b] or semi-infinite intervals [a,∞)
on R+, the set of nonnegative real numbers. For convenience, we simply denote
these intervals by [∗, ∗]. Every state of a real-time automaton is both an initial
state and an accepting state. AP is the set of atomic propositions which is
differently decided according to the system. Real-time Automata have one clock
which is reset by every transition.

Example 2.2 (Gas burner). A gas burner is a device to generate a flame
to heat up products using a gaseous fuel [1]. If the flame fails to be on with the
gas valve open, gas leaks. A sensor should detect a gas leak and close the gas
valve within one second. Then the gas valve should not be open within 30 seconds
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to prevent accumulation of gas. Gas may leak again without the flame being on
at any time after the valve is open. Fig. 2.3 shows a real-time automaton model
of a gas burner. Leak and NLeak are used to denote atoms of the gas burner.

Fig. 2.3. Real-time automaton model of gas burner

For a transition ρ = (s, [a, b], s′) of M , notations ←−ρ = s and −→ρ = s′

are used. For a sequence ρ1ρ2 · · · ρm, (ρ1, t1)(ρ2, t2) · · · (ρm, tm) is called a time-
stamped sequence, where ρi = (si, [ai, bi] , s

′

i) and ti ∈ [ai, bi] for all i (1 ≤ i ≤ m).
Seq and TSeq are used to denote a sequence and time-stamped sequence respec-
tively.

If a sequence ρ1ρ2 · · · ρm satisfies −→ρi =←−−ρi+1 for all i (1 ≤ i ≤ m− 1), it is
called a behavior and denoted by Beh = ρ1ρ2 · · · ρm. If a time-stamped sequence
(ρ1, t1)(ρ2, t2) · · · (ρm, tm) satisfies −→ρi =←−−ρi+1 for all i (1 ≤ i ≤ m− 1), it is called
a time-stamped behavior and denoted by TBeh = (ρ1, t1)(ρ2, t2) · · · (ρm, tm).

Definition 2.4 (Linear Duration Invariant, shortly LDI). Let M be a
real-time automaton. A DC formula of the form

A ≤ ℓ ≤ B →
∑n

i=1
ci ·

∫

Pi ≤ C

is called a linear duration invariant over M [4].
Here, each Pi (1 ≤ i ≤ n) is an atomic proposition of AP of M . A and

B are nonnegative real numbers, B could be ∞, ci (1 ≤ i ≤ m) and C are real
numbers.

LDI formalize a class of real-time properties that if the length of ob-
servation time interval over M is between A and B, the total duration ∫ Pi of
Pi-states for each i (1 ≤ i ≤ n) on this interval satisfies the linear constraint
∑n

i=1
ci ·

∫

Pi ≤ C. Here, Pi-state means the state in which Pi is labelled.

Example 2.5 (Real-time requirement of gas burner). A fan is installed
to protect the self-ignition of accumulated gas leakage for a gas burner. However,
frequent gas leak may cause self-ignition as the capacity of the fan is limited. A
desirable real-time requirement of the gas burner is as follows.
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“The proportion of total gas leak time is no more than one twentieth of
the elapsed time, if the system is observed for more than one minute“.

This real-time requirement can be specified using LDI as follows.

ℓ ≥ 60→ 19 ·
∫

Leak −
∫

NLeak ≤ 0

Here, 19 ·
∫

Leak −
∫

NLeak ≤ 0 is derived from
∫

Leak ≤ (1/20) · ℓ by
substituting ℓ =

∫

Leak +
∫

NLeak.
Let M be a real-time automaton and TBEH be the set of all TBeh =

(ρ1, t1)(ρ2, t2) · · · (ρm, tm) of M . The function L : TBEH → R+ is defined as

L(TBeh) =
∑m

j=1
tj.

For each atomic proposition P (∈ AP ) of M , the function
∫

P : TBEH →
R+ is defined as

∫

P (TBeh) =
∑m

j=1







tj P ∈ L(←−ρj )

0 otherwise







.

∫

P (TBeh) calculates the total duration time of P -states on TBeh. For
example, if TBeh = (ρ1, 3.1)(ρ2, 2.0)(ρ3, 1.5) and P is labelled in states ←−ρ1 and
←−ρ3, then

∫

P (TBeh) = 3.1 + 1.5 = 4.6.
Let D be a linear duration invariant A ≤ ℓ ≤ B →

∑n
i=1

ci ·
∫

Pi ≤ C
over M . The function LF : TBEH → R+ is defined as

LF (TBeh) =
∑n

i=1
ci ·

∫

Pi(TBeh)

LF is the fuction calculating the value of the linear term
∑n

i=1
ci ·

∫

Pi of
D over TBeh.

Based on the functions L and LF , the satisfaction relation between a real-
time automaton Mand D (an LDI) for approximate model checking is defined as
follows.

Definition 2.6 (Satisfaction relation between a real-time automaton and
a LDI ). Let D be an LDI. D is said to be satisfied by a real-time automaton
M , denoted by M | = D, iff A ≤ L(TBeh) ≤ B implies LF (TBeh) ≤ C for all
TBeh of M .

Example 2.7 (satisfaction realtion between a gas burner model and its
requirement specification). For a real-time automaton medel M of the gas burner
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of example 2.2 and its real-time requirement specification D of example 2.5,
M | = D means that the gas burner satisfies its real-time requirement.

3. A genetic algorithm approach for checking real-time au-

tomata against LDIs. Mathematically, checking a real-time automaton M
against D (an LDI) is to solve the following optimization problem.

Find the maximum value of the function LF over {TBeh|A ≤ L(TBeh) ≤ B}.

Solving this problem, if the maximum value of LF is smaller than or equal
to C, then the real-time automaton M satisfies D.

Unlike the previous methods, we want to check the model approximately
using a genetic algorithm familiar to engineers. The genetic algorithm works very
well especially when the fitness function is linear and the problem of checking real-
time automata for LDIs just conforms to this case. In this section, we describe
our genetic algorithm technique that takes into consideration the characteristics
of the real-time automaton and the LDI.

In the first subsection, for readers’ convenience, we provide some elemen-
tary knowledge about genetic algorithms.

3.1. Preliminaries on Genetic Algorithms. Genetic algorithms are
widely applied in computational science and other fields.

A genetic algorithm is a heuristic search that imitates the natural evo-
lution process, which is used to generate useful solutions to optimization prob-
lems according to a routine [16]. A genetic algorithm is a kind of evolutionary
algorithm. It gives a solution to optimization problems using techniques such
as inheritance, mutation, selection and crossover.

Candidate solutions to an optimization problem in a genetic algorithm
are often called creatures, individuals or phenotypes and the population of can-
didate solutions evolves toward better solutions. Each candidat solution has its
chromosomes or genotype, which is a set of properties. Chromosomes can mutate
and change. Often, solutions are expressed in binary as strings of 0s and 1s. [17].

A population of randomly given creatures is a starting point of the evo-
lution, which is often an iterated process. The population of the creatures in
every iteration is called a generation, in which we estimate the fitness of every
individual in the population. In order to calculate the fitness, we often make
an optimization problem and calculate the value of the objective function of it.
We randomly select the more fit individuals from the current population. And
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then, we recombine and possibly randomly mutate each individual’s genome to
form a new generation. We use the population of the new generation in the next
iteration. In general, we end the algorithm when a satisfactory fitness level for
the population is reached.

Generally, in order to solve some problem with a genetic algorithm, at
first we must give a genetic representation of the solution domain and a fitness
function to evaluate the solution domain. A standard representation of each
candidate solution is as an array of bits [17]. Once the genetic representation
and the fitness function are defined, a genetic algorithm proceeds to initialize a
population of solutions and then to improve it through repeated application of
the mutation, crossover, inversion and selection operators.

3.2. Fitness function and genetic operations. Let M = (S, T, L) be
a real-time automaton and let D be an LDI

D := A ≤ ℓ ≤ B →
∑n

i=1
ci ·

∫

Pi ≤ C.

For each transition ρ = (s, [a, b] , s′) of M , the time-stamped transition
(ρ, t) where t ∈ [a, b] is a gene. Then we use the individual (ρ1, t1)(ρ2, t2) · · ·
(ρm, tm), i.e. time-stamped behavior, directly as chromosome. That is, we use
variable length encoding.

• Fitness function. LF defined in Section 2 is used as the fitness
function. LF calculates the value of linear constraint

∑n
i=1

ci ·
∫

Pi of Don each
individual (ρ1,t1)(ρ2, t2) · · · (ρm, tm).

• Initialization. The set of behaviors of M can be expressed as the
union of regular expressions consisting of concatenation and Kleene star on the
alphabet T of M . For example, the set of behaviors of the gas burner of Example
2.2 can be expressed as follows.

ρ1(ρ2ρ1)
∗ ∪ ρ2(ρ1ρ2)

∗ ∪ ρ1(ρ2ρ1)
∗ρ2 ∪ ρ2(ρ1ρ2)

∗ρ1

Here, ρ1 = (s1,[30,∞], s2) and ρ2 = (s2, [0, 1], s1).

This feature of the real-time automaton is useful when we generate the
initial population and replace some individuals for the generation of the new
population. It’s better to generate individuals randomly but uniformly from
each component of the union to expand the search space quickly and uniformly
in the feasible set.

• Selection operation. Elitist preserving selection is used. That is, the
best individuals of the current generation are retained in the next generation.
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Mutation operation. Mutation is realized by altering a selected gene
(ρ, t) with (ρ, t′) where ρ = (s, [a, b] , s′) and t, t′ ∈ [a, b]. Multi-point mutation
can be used for relatively long individuals. Application of mutation operation
expands the breadth of search space.

• Cut and splice operation. Cut and splice is applied to two parents
having same gene. Swapping each suffix beyond the selected gene produces two
childrens. Application of the cut and splice operation expands the depth of search
space.

3.3. The main procedure. Based on the operation specified above, a
genetic algorithm for checking a real-time automaton against a LDI is composed
as follows.

Step 1

Generate the initial population P (0) consisting of N individuals satisfying
A ≤ ℓ(TBeh) ≤ B using the initialization method described above.

Step 2

Evaluate the fitness of each individual. If LF (TBeh) > C for a individual
TBeh, stop the procedure and output M | 6 =D.

Step 3

Maintain the fittest individuals in the current population P (n).

Step 4

Generate population Q by applying the mutation operation and cut and
splice operation to P (n). Remove all individuals not satisfying A ≤ ℓ(TBeh) ≤ B
from Q and add new individuals satisfying A ≤ ℓ(TBeh) ≤ B as many as the
number of removed individuals.

Step 5

Evaluate the fitness of all individuals of Q and generate the new popula-
tion P (n+1) by replacing the least-fit individuals of Q with the best-fit individuals
of P (n).

Step 6

Repeat step 2-5 until the best-fitness value of populations is settled or the
maximum number of generation n is reached.

3.4. Experiments. We applied the genetic algorithm described above to
check the model of Example 2.2 against LDI ℓ ≥ 60→ 19 ·

∫

Leak−
∫

NLeak ≤ 0
of Example 2.5. The encoding and fitness function were designed according to
the method of Subsection 3.1. The initial population is generated by choos-
ing individuals randomly but uniformly in ρ1(ρ2ρ1)

∗, ρ2(ρ1ρ2)
∗, ρ1(ρ2ρ1)

∗ρ2 and
ρ2(ρ1ρ2)

∗ρ1 respectively.
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We executed our genetic algorithm 10 times by varying parameter N be-
tween 40–80, Pm between 0.1–0.3 and Pd between 0.4–0.6, where Pm was the prob-
ability of mutation and Pd is the probability of cut and splice. The termination
condition was n=100. The best fitness reached −3 or nearly -3 in each execution.
From this, we could estimate the maximum value of 19 ·

∫

Leak−
∫

NLeak is −3
which was much smaller than C=0 and therefore definitely conclude that the gas
burner model of Example 2.2 satisfies LDI ℓ ≥ 60→ 19 ·

∫

Leak−
∫

NLeak ≤ 0.

4. Conclusion and future work. While the DC model checking of
real-time systems has been focussed on checking timed automata or real-time
automata against LDIs for more than 20 years, an acceptable model checking
algorithm is still not available as some researchers have noted in their papers.
We changed the approach to the verification of real-time systems from normal
model checking to approximate model checking by considering the structural
feature of the automaton and the LDI.

Our approach is based on a genetic algorithm familiar to engineers, does
not need any complicated preprocessing, and generates useful information making
it possible to estimate the satisfaction relation between model and specification
in reasonable times. In case that the maximum of LF is different from C, it
certainly demonstrates the same effect as normal model checking. The opposite
case needs more executions of the algorithm to get enough information between
the maximum of LF and C.

In the future, we want to extend our approach to more general cases
such as extremely complicated probabiliistic DC model checking. Especially we
want to develop an approximate model checking technique for useful undecidable
classes of DC formulas.
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