
Serdica J. Computing 6 (2012), 437–450

A BIMODALITY TEST IN HIGH DIMENSIONS

Dean Palejev

Abstract. We present a test for identifying clusters in high dimensional
data based on the k-means algorithm when the null hypothesis is spherical
normal. We show that projection techniques used for evaluating validity of
clusters may be misleading for such data. In particular, we demonstrate
that increasingly well-separated clusters are identified as the dimensional-
ity increases, when no such clusters exist. Furthermore, in a case of true
bimodality, increasing the dimensionality makes identifying the correct clus-
ters more difficult. In addition to the original conservative test, we propose
a practical test with the same asymptotic behavior that performs well for a
moderate number of points and moderate dimensionality.

1. Introduction and notations. Hartigan [3] develops an asymp-

totic distribution for clustering criteria in the one-dimensional case. In this case,

the apparent bimodality of the sample can be used to infer bimodality in the

population. For two clusters, one can project the data into the line determined

by the cluster means. Hartigan notes an observation by Day [1] that apparent
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Fig. 1. Projections for two clusters, n = 200

bimodality on the projected data might not correspond to real bimodality on the

population in a case of relatively few observations in many dimensions.

Starting with n observations in d dimensions from N(0, Id) where Id is

the d× d identity matrix, we can apply the k-means clustering method described

by Hartigan [2]. As shown in Figure 1, the projection tests suggest the presence

of more than one cluster. We also see that for a fixed n, when d increases, the

separation becomes larger, which is misleading.

In many cases, we have multi-dimensional data for a relatively smaller

number of observations, e.g., high-frequency stock price or return series, or mi-

croarray or high-throughput sequencing data. Therefore, we are interested in

developing a test for determining whether the data came from a single mode.

Our theoretical results are proven when n and d → ∞. First, we find an asymp-

totic equation for the tail probability of the maximum of many independent χ2

random variables. Then we develop a Slepian-type inequality for the probabilities

of the maxima of independent and positively correlated χ2 processes. Based on

that inequality, we derive a conservative test for testing whether the data came

from one multidimensional normal distribution vs. two normals. After that, we

propose a practical test with the same asymptotic behavior. Although the the-

oretical results are asymptotic, the test can also be used for moderate values of

n and d. We conclude that in the case of true bimodality, when sampling from a

mixture of normals whose means are a fixed distance apart, increasing the dimen-

sionality makes identifying the correct clusters more difficult. In particular, when

the components are separated just enough for the distribution to be bimodal, the

correct components are not identified when d > n/10.
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We consider a set X ≡ {x1, x2, . . . , xn} of n points from N(0, Id). The

d-dimensional coordinates are denoted by superscripts, e.g. x = (x1, x2, . . . , xd).

Let S be a split of X into two clusters with means c1 and c2, consisting of n1 and

n2 points respectively. The between cluster sum of squares B(X,S) is given by

B(X,S) =

(

1

n1
+

1

n2

)

−1

‖c1 − c2‖2 =

(

1

n1
+

1

n2

)

−1 d
∑

j=1

(cj
1 − cj

2)
2

For m = 1, 2 and j = 1, 2 . . . d, cj
m has a N(0, 1/nm) distribution. Therefore

(1/n1 + 1/n2)
−1/2(cj

1 − cj
2) is N(0, 1) and (1/n1 + 1/n2)

−1(cj
1 − cj

2)
2 has a χ2

1

distribution. The coordinates are independent, therefore B(X,S) has a χ2
d dis-

tribution as a sum of d independent χ2
1 random variables.

If x̄ is a mean of the points in X, the total sum of squares T (X) has a

χ2
d(n−1) distribution and is given by T (X) =

n
∑

i=1

‖xi − x̄‖2.

For a fixed n, there are N = 2n−1 − 1 different splits of X into two

non-empty sets. We denote these splits by S1, S2, . . . , SN . Let Bi = B(X,Si)

for i = 1, 2, . . . , N and let Bmax(X) = max(B1, B2, . . . , BN ) be the maximum

between clusters sum of squares among all possible splits of X into two clusters.

The squared distances B(X,S) over different splits are not independent.

One could use a test with rejection region Bmax(X) > A for testing bi-

modality, however finding Bmax(X) is computationally infeasible even for mod-

erate values of n. Let Bk(X) be the optimal among the sum of squares obtained

by the k-means method. The method does not guarantee finding the global max-

imum, thus Bk(X) ≤ Bmax(X).

We say that xn ∼ yn if xn/yn → 1 when n → ∞.

2. Tail probabilities for one and the maximum of many in-

dependent χ
2 random variables

Lemma 2.1.

∫

∞

0
exp

(

−x − x2

2β

)

dx → 1 when β → ∞.

P r o o f. For β > 0, exp

(

−x2

2β

)

≤ 1. For a fixed x, when β → ∞,
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exp

(

−x2

2β

)

→ 1 therefore by dominated convergence

∫

∞

0
exp

(

−x − x2

2β

)

dx =

∫

∞

0
exp(−x) exp

(

−x2

2β

)

dx →
∫

∞

0
exp(−x) dx = 1

�

Lemma 2.2. If Y has χ2
d distribution, A > d, d → ∞, and (A−d)2/d →

∞, then

P (Y > A) ∼ A
d
2

Γ

(

d

2

)

2
d
2 e

A
2

(

A

2
− d

2
+ 1

)

P r o o f. If Y has χ2
d distribution, then

P (Y > A) =
1

Γ

(

d

2

)

2
d
2

∫

∞

A
y

d
2
−1e−

y
2 dy

Substituting u = y − A, after basic transformations we get

P (Y > A) =
A

d
2
−1

Γ

(

d

2

)

2
d
2 e

A
2

∫

∞

0
exp

{(

d

2
− 1

)

log
( u

A
+ 1
)

− u

2

}

du(1)

For x > 0 we have

(2) x − x2

2
< log(x + 1) < x

Using the right-hand side inequality, we get
∫

∞

0
exp

{(

d

2
− 1

)

log
( u

A
+ 1
)

− u

2

}

du <

∫

∞

0
exp

{(

d

2
− 1

)

u

A
− u

2

}

du

=
A

A

2
− d

2
+ 1

(3)

Using the left-hand side inequality from (2) and substituting z =

(

A

2
− d

2
+ 1

)

u/A

in the right-hand side yields
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(4)

∫

∞

0
exp

{(

d

2
− 1

)

log
( u

A
+ 1
)

− u

2

}

du

>
A

A

2
− d

2
+ 1

∫

∞

0
exp

{

−z − z2
(

d
2 − 1

)

2
(

A
2 − d

2 + 1
)2

}

dz

Because of Lemma 2.1 when (A − d)2/d → ∞ we have

∫

∞

0
exp



















−z −
z2

(

d

2
− 1

)

2

(

A

2
− d

2
+ 1

)2



















dz → 1

Combining the above limit, (3) and (4) gives us the desired convergence. �

Lemma 2.3. Let Y1, Y2, . . . , YN be N independent χ2
d random variables.

If α is a constant, A > d, d → ∞, (A−d)2/d → ∞ and N is such that NP (Y1 >

A) = α for some constant α, then

P (max{Yi}N
1 ≤ A) ∼ exp















− A
d
2 N

Γ

(

d

2

)

2
d
2 e

A
2

(

A

2
− d

2
+ 1

)















P r o o f. Under the conditions of the Lemma (A − d)/
√

2d → ∞. In

addition (Y1 − d)/
√

2d converges in distribution to N(0, 1), thus

P (Y1 > A) = P

(

Y1 − d√
2d

>
A − d√

2d

)

→ 0

We have that NP (Y1 > A) = α, therefore N → ∞. For N independent χ2
d

random variables:

P (max{Yi}N
1 ≤ A) = {P (Y1 ≤ A)}N = {1 − P (Y1 > A)}N =

(

1 − α

N

)N
→

→ exp(−α) = exp{−NP (Y1 > A)} ∼ exp















− A
d
2 N

Γ

(

d

2

)

2
d
2 e

A
2

(

A

2
− d

2
+ 1

)















�
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Lemma 2.4. Let Y1, Y2, . . . , YN be N = 2n−1−1 independent χ2
d random

variables, where d → ∞. For a constant α ∈ (0, 1), the cutoff value A = A(α, d, n)

so that P (max{Yi}N
1 ≤ A) = α is a solution of

log(− log(α)) − log(2n−1 − 1) + log(
√

4π) + o(1) =

=
d

2
log(A) −

(

d

2
− 1

2

)

log(d) +
d

2
− A

2
− log

(

A

2
− d

2
+ 1

)

(5)

P r o o f. Let b be such that α = exp(− exp(b)). Because of Lemma 2.3,

we need to solve:

−eb = − A
d
2 (2n−1 − 1)

Γ

(

d

2

)

2
d
2 e

A
2

(

A

2
− d

2
+ 1

) , or

(6) b =
d

2
log(A) + log(2n−1 − 1) − log Γ

(

d

2

)

− d

2
log 2 − A

2
− log

(

A

2
− d

2
+ 1

)

Substituting Binet’s formula

log Γ

(

d

2

)

= log
√

2π +

(

d

2
− 1

2

)

log

(

d

2

)

− d

2
+ o(1)

in (6), after transformations we get

b − log(2n−1 − 1) + log
√

4π + o(1)

=
d

2
log(A) −

(

d

2
− 1

2

)

log(d) +
d

2
− A

2
− log

(

A

2
− d

2
+ 1

)

Expressing b in terms of α yields the result of the Lemma. �
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3. A conservative test.

3.1. Proposed conservative test.

Lemma 3.1. Let n be fixed and Y1, Y2, . . . , YN be N = 2n−1 − 1 indepen-

dent χ2
d random variables with maximum Ymax. Then asymptotically in d for a

fixed A we have

P (Bmax > A) ≤ P (Ymax > A)

P r o o f. For i = 1, 2 . . . N , we denote the standardized versions of Bi and

Yi by asterisks, B∗

i = (Bi − d)/
√

2d and Y ∗

i = (Yi − d)/
√

2d. Then E(B∗

i ) =

E(Y ∗

i ) = 0 and V ar(B∗

i ) = V ar(Y ∗

i ) = 1. Let B∗

max = (Bmax − d)/
√

2d, Y ∗

max =

(Ymax − d)/
√

2d and A∗ = (A − d)/
√

2d.

Let Si and Sj be two splits of X into two clusters. Let the cluster sizes

for Si be n1,i and n2,i and the respective centers be c1,i and c2,i. Let the cluster

sizes for Sj be n1,j and n2,j and the respective centers be c1,j and c2,j. Therefore

Cor(B∗

i , B
∗

j ) = Cor

(

(

1

n1,i
+

1

n2,i

)

−1

‖c1,i − c2,i‖2,

(

1

n1,j
+

1

n2,j

)

−1

‖c1,j − c2,j‖2

)

= Cor(‖c1,i − c2,i‖2, ‖c1,j − c2,j‖2)

= {Cor(c1,i − c2,i, c1,j − c2,j)}2

The latter equality is true because c1,i − c2,i and c1,j − c2,j are normally distrib-

uted. Therefore Cor(B∗

i , B
∗

j ) = Cor(Bi, Bj) ≥ 0. In addition, by independence

Cor(Yi, Yj) = 0.

For splits Si, 1 ≤ i ≤ N , consisting of clusters with n1,i and n2,i elements

and centers c1,i and c2,i respectively, we can write

B(X,Si) =

(

1

n1,i
+

1

n2,i

)

−1 d
∑

j=1

(cj
1,i − cj

2,i)
2

Therefore for arbitrary N coefficients β1, β2 . . . βN , we have

N
∑

i=1

βiB(X,Si) =
N
∑

i=1







βi

(

1

n1,i
+

1

n2,i

)

−1 d
∑

j=1

(cj
1,i − cj

2,i)
2






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=
d
∑

j=1

{

N
∑

i=1

βi

(

1

n1,i
+

1

n2,i

)

−1

(cj
1,i − cj

2,i)
2

}

The coordinates are independent, therefore

N
∑

i=1

βi(1/n1,i+1/n2,i)
−1(cj

1,i−cj
2,i)

2 are

independent and identically distributed over the different values of j (i.e. coordi-

nates). Therefore by the Central Limit Theorem,

N
∑

i=1

βiB(X,Si) approaches nor-

mal distribution when d → ∞. Thus, asymptotically in d, {Bi}N
i=1≡{B(X,Si)}N

i=1

are jointly normal. By the asymptotic behavior of χ2
d when d → ∞, {Yi}N

i=1 are

also jointly normal. The process {B∗

i }N
i=1 is normal for being a linear transfor-

mation of {Bi}N
i=1, similarly {Y ∗

i }N
i=1 is normal.

Asymptotically in d, the processes {B∗

i }N
i=1 and {Y ∗

i }N
i=1 are normal, cen-

tered and each of the variables has unit variance. In addition, Cor(B∗

i , B∗

j ) ≥
0 = Cor(Y ∗

i , Y ∗

j ). According to a generalized version, e.g., Rinott [6], of the

Slepian inequality [7], for such processes, the less correlated one has a larger (in

probability) maximum. Thus asymptotically in d for each fixed A∗, P (B∗

max >

A∗) ≤ P (Y ∗

max > A∗). Therefore P (Bmax > A) ≤ P (Ymax > A). �

Theorem 3.2. Asymptotically in d, the test with rejection region Bk(X) >

A(α, d, n) is a conservative level α∗ = 1−α test for testing whether the data comes

from N(0, Id) against two spherical normals.

P r o o f. The k-means method does not guarantee a global maximum,

thus Bk(X) ≤ Bmax(X) and P (Bk(X) > A) ≤ P (Bmax(X) > A). From Lemma

3.1 we have P (Bmax > A) ≤ P (Ymax > A), where Ymax is defined in that Lemma.

Therefore

P (Bmax > A) ≤ P (Ymax > A) = 1 − P (Ymax < A) = 1 − α = α∗

The rejection probability is no more than 1 − α thus the test is conservative at

that level. �

3.2. Cutoff point asymptotic behavior.

Lemma 3.3. If n → ∞ , d → ∞ and n/d → 0 then

√
A −

√
d ∼

√

(n − 1) log(2)
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P r o o f. When n → ∞, log(2n−1 − 1) = (n − 1) log(2) + o(1). For a fixed

α, (5) becomes

−(n−1) log(2)+O(1) =
d

2
log(A)−

(

d

2
− 1

2

)

log(d)+
d

2
− A

2
− log

(

A

2
− d

2
+ 1

)

Let B and ǫ be such that A = Bd, B = 1 + ǫ. Substituting them in the above

equation, transforming it and absorbing some terms in O(1) results in

(7) −(n − 1) log(2) + O(1) =
d

2
log(1 + ǫ) − dǫ

2
− log

(

ǫ
√

d

2
+

1√
d

)

The left-hand side of the above equation converges to −∞. We will prove that

under the conditions of the Lemma, dǫ2 → ∞ and ǫ → 0.

If dǫ2 has a subsequence bounded from above, then ǫ → 0, because d → ∞.

Therefore for that subsequence we can expand log(1 + ǫ) and (7) becomes

−(n − 1) log(2) + O(1) = −dǫ2

4
(1 + o(1)) − log

(

ǫ
√

d

2
+

1√
d

)

For the subsequence bounded from above, the right-hand side of the latter equa-

tion is bounded from below, whereas the left-hand side converges to −∞. There-

fore dǫ2 → ∞ and we can write

(8) log

(

ǫ
√

d

2
+

1√
d

)

= log

(

ǫ
√

d

2

)

+ o(1)

Substituting the latter equality in (7), dividing by d/2, absorbing log(
√

d/2)/d

in o(1), and o(1) in O(1) yields

−(n − 1) log(2) + O(1)

d/2
= log(1 + ǫ) − ǫ − 2 log(ǫ)

d
+ o(1)

Under the conditions of the Lemma, the left-hand side converges to 0, therefore

(9) log(1 + ǫ) − ǫ − 2 log(ǫ)

d
→ 0

If ǫ → ∞ when d → ∞ then −2 log(ǫ)/d ≤ 0 (in limit) and log(1 + ǫ)− ǫ → −∞,

therefore (9) does not hold.
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If ǫ is bounded and away from 0 (i.e., there are constants c and C so that

0 < c < ǫ < C), then 2 log(ǫ)/d → 0 when d → ∞. In addition, log(1 + ǫ) − ǫ is

bounded from above away from 0 (i.e. log(1 + ǫ) − ǫ < log(1 + c) − c < 0) and

(9) does not hold.

Therefore ǫ → 0 and dǫ2 → ∞. Using (8), transferring O(1) to the right-

hand side, expanding log(1 + ǫ) and absorbing minor-order terms into dǫ2, turns

(7) into

−(n − 1) log(2) = −dǫ2

4
(1 + o(1))

Therefore

dǫ2

4
= (n − 1) log(2)(1 + o(1)) and ǫ = 2

√

(n − 1) log(2)

d
(1 + o(1))

Finally,

A = Bd = (1 + ǫ)d = d + 2
√

d(n − 1) log(2)(1 + o(1))

= d + 2
√

d
√

(n − 1) log(2)(1 + o(1)) + (n − 1) log(2)(1 + o(1))

− (n − 1) log(2)(1 + o(1))

Under the conditions of the Lemma n/d → 0, therefore (n − 1) log(2)(1 + o(1))

gets absorbed in
√

d
√

(n − 1) log(2)o(1), thus

A = d + 2
√

d
√

(n − 1) log(2)(1 + o(1)) + (n − 1) log(2)(1 + o(1))

= {
√

d +
√

(n − 1) log(2)(1 + o(1))}2

Therefore
√

A−
√

d =
√

(n − 1) log(2)(1+o(1)) or
√

A−
√

d ∼
√

(n − 1) log(2). �

4. Suggested test and separation detection.

4.1. Suggested general test. Using numerical simulations for n = 100

and d = 10 we found that less than 0.1% of the empirical 95th percentiles of Bk

are higher than A(0.95, 10, 100). For larger values of d and n, the fraction of 95th

percentiles that is larger than A(0.95, d, n) is even lower. This is consistent with

Theorem 3.2, but the test is too conservative and is not very useful.
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T (X) has a χ2
(n−1)d distribution with mean (n− 1)d. Standardizing

√

Bk

by
√

T (X)/(n − 1)d results in the proposed test R(X) =
√

Bk(X)(n − 1)d/T (X).

Theorem 4.1. Let Bk(X) be the between cluster sum of squares found

by the k − means method and T (X) be the total sum of squares. Also let R =
√

Bk(X)(n − 1)d/T (X). Then the test with rejection region

R(X) > µn,d + z(1−α∗)σn,d

where z(1−α∗) is the 1 − α∗ quantile of the standard normal distribution,

µn,d = −0.493 +
√

d + 0.789
√

n − 1 − 0.00018
√

d(n − 1) and

σn,d = 0.159 + 0.604/
√

d + 0.697/
√

n − 0.9595/
√

d(n − 1)

is approximately α∗ = 1 − α significance level test for testing whether the data

came from one multidimensional normal distribution vs. two normal distribu-

tions.

P r o o f. We use numerical simulations for several values of d between

10 and 5000 and n between 10 and 200. For each pair of values of d and n,

we use the k-means method to simulate 10000 observations from Bk. For each

observation, the k-means method was used with 100 choices of initial cluster

means and 100 iterations within each attempt. The results for confidence level =

0.90 (significance level α∗ = 10%) and confidence level = 0.95 (significance level

α∗ = 5%) are given in Tables 1 and 2. Each table entry shows the proportion of

the simulated Bk values that are within the proposed test rejection region.

Table 1. Comparison with simulation results for confidence level = 0.90,
significance level = 10%

n\d 10 20 50 100 200 500 1000 2000 5000

10 0.0239 0.0355 0.0470 0.0539 0.0595 0.0610 0.0604 0.0660 0.0810

20 0.0330 0.0446 0.0628 0.0733 0.0717 0.0780 0.0842 0.0918 0.1010

50 0.0425 0.0603 0.0764 0.0790 0.0839 0.0912 0.0854 0.1000 0.1240

100 0.0521 0.0730 0.0873 0.0892 0.0882 0.0820 0.0854 0.0952 0.1148

200 0.0683 0.0894 0.1052 0.1054 0.0906 0.0805 0.0595 0.0672 0.0829
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Table 2. Comparison with simulation results for confidence level = 0.95,
significance level = 5%

n\d 10 20 50 100 200 500 1000 2000 5000

10 0.0090 0.0137 0.0212 0.0242 0.0280 0.0299 0.0300 0.0318 0.0360

20 0.0137 0.0199 0.0297 0.0381 0.0346 0.0407 0.0431 0.0440 0.0520

50 0.0169 0.0300 0.0377 0.0428 0.0465 0.0491 0.0446 0.0548 0.0674

100 0.0239 0.0367 0.0467 0.0475 0.0466 0.0435 0.0418 0.0488 0.0622

200 0.0307 0.0481 0.0568 0.0554 0.0477 0.0422 0.0298 0.0340 0.0483

We can see that the proposed test performs very well, especially for mod-

erate and large values of d. Moreover, the cutoff points for both the practical

and conservative tests have the same asymptotic behavior with the main term√
d being the same. The term

√

d(n − 1) in µm,d takes care of moderate values

of n and d. �

4.2. Separation detection. If the data consists of n/2 observations from

each of two normal distributions with covariance matrices Id and distance c be-

tween their means, then the interclusters sum of squares for the genuine bimodal-

ity direction is given by Breal = nc2/4, therefore
√

Breal = c
√

n/2. According to

our asymptotic results, in other directions
√

B behaves like
√

d+
√

(n − 1) log(2).

For bimodality in one dimension (the genuine bimodality dimension), the dis-

tance between the means c should be at least 2. When the clusters in the

real bimodality directions are just enough separated for bimodality, c = 2. If√
d +

√

(n − 1) log(2) > c
√

n/2 = 2
√

n/2 =
√

n, then the between clusters sum

of squares is larger in a direction different than the genuine bimodality direc-

tion. The latter condition is (approximately) equivalent to
√

d/n + log(2) > 1,

or d > n/10. Therefore, for a fixed number of points n, the genuine bimodality

is hard to discover even in a relatively small number of dimensions.

5. Conclusion remarks. The asymptotic result
√

A −
√

d ∼
√

(n − 1) log(2) is similar to the expression for the square root of the shift pa-

rameter (except for the log(2) term) in an article by Johnstone [5] about the

asymptotic distribution of the largest principal component variance of the data

covariance matrix. It is possible that the maximum of many χ2 random variables

is also related to the Tracy-Widom distribution.
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Cover’s theorem (e.g. [4]) deals with similar behavior, according to it,

when increasing the dimensionality, the probability of linear separation increases.

Finding A or its asymptotic behavior is equivalent to inverting the incom-

plete gamma distribution. Temme [8] discusses the topic, but there is no close

form asymptotic solution in his article.
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