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FINITE SYMMETRIC FUNCTIONS WITH NON-TRIVIAL

ARITY GAP

Slavcho Shtrakov, Jörg Koppitz

Abstract. Given an n-ary k-valued function f , gap(f) denotes the essen-
tial arity gap of f which is the minimal number of essential variables in f
which become fictive when identifying any two distinct essential variables in
f . In the present paper we study the properties of the symmetric function
with non-trivial arity gap (2 ≤ gap(f)). We prove several results concerning
decomposition of the symmetric functions with non-trivial arity gap with
its minors or subfunctions. We show that all non-empty sets of essential
variables in symmetric functions with non-trivial arity gap are separable.

Introduction. Given a function f , the essential variables in f are de-

fined as variables which occur in f and affect the values of that function. They

are investigated when replacing variables with constants or variables (see, e.g.,

[1, 2, 6, 9]). If we replace some variables in a function f with constants the result

is a subfunction of f and when replacing several variables with other variables,

the result is a minor of f .
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The essential arity gap of a finite-valued function f is the minimum de-

crease in the number of essential variables in identification minors of f . In this

paper we investigate functions in k-valued logics with non-trivial arity gap, which

are important in theoretical and applied computer science, namely the symmetric

functions.

R. Willard proved that if a function f : An → B depends on n variables

and k < n, where k = |A| then gap(f) ≤ 2 [10]. On the other hand it is clear

that gap(f) ≤ n. Thus in the case we have gap(f) ≤ min(n, k).

M. Couceiro and E. Lehtonen proposed a classification of functions ac-

cording to their arity gap [3, 4].

We have proved that if 2 ≤ gap(f) < min(n, k) then f can be decomposed

as a sum of functions of a prescribed type (see Theorem 3.4 [8]).

A natural question to ask is which additional properties, of the arity gap

are typical of symmetric and linear functions with non-trivial arity gap. We in-

vestigate the behavior of subfunctions of symmetric functions with non-trivial

arity gap. So, in this paper we consider together the both types of replace-

ment in a function’s inputs—with constants (subfunctions) and with variables

(minors). We prove that “almost” all subfunctions of a symmetric function f

with non-trivial arity gap inherit the property of f concerning the identification

of variables. We are interested also in decomposition of symmetric functions as

“sums of conjunctions“ (following [8]).

We also characterize the relationship between separable sets and subfunc-

tions of symmetric functions with non-trivial arity gap.

1. Preliminaries. Let k be a natural number with k ≥ 2. Denote by

K = {0, 1, . . . , k − 1} the set (ring) of remainders modulo k. An n-ary k-valued

function (operation) on K is a mapping f : Kn → K for some natural number

n, called the arity of f . The set of all n-ary k-valued functions is denoted by Pn
k .

Let f ∈ Pn
k and var(f) = {x1, . . . , xn} be the set of all variables, which

occur in f . We say that the i-th variable xi ∈ var(f) is essential in f(x1, . . . , xn),

or f essentially depends on xi, if there exist values a1, . . . , an, b ∈ K, such that

f(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= f(a1, . . . , ai−1, b, ai+1, . . . , an).

The set of all essential variables in the function f is denoted by Ess(f)

and the number of its essential variables is denoted by ess(f) := |Ess(f)|.
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Let xi and xj be two distinct essential variables in f . The function h is

obtained from f ∈ Pn
k by the identification of the variable xi with xj , if

h(a1, . . . , ai−1, ai, ai+1, . . . , an) := f(a1, . . . , ai−1, aj, ai+1, . . . , an),

for all (a1, . . . , an) ∈ Kn.

Briefly, when h is obtained from f by identification of the variable xi with

xj, we will write h = fi←j and h is called an identification minor of f . Clearly,

ess(fi←j) ≤ ess(f), because xi /∈ Ess(fi←j), even though it might be essential

in f . When h is an identification minor of f we shall write f ⊢ h. The transitive

closure of ⊢ is denoted by |=. Min(f) = {h | f |= h} is the set of all minors of f .

Let f ∈ Pn
k be an n-ary k-valued function. Then the essential arity gap

(shortly arity gap or gap) of f is defined by

gap(f) := ess(f) − max
h∈Min(f)

ess(h).

Let h ∈ Min(f) be a minor of f and

Lh := {m | ∃ (h1, . . . , hm) with f ⊢ h1 ⊢ . . . ⊢ hm = h}.

The number depth(h) := max Lh is called the depth of h and the gap index of f

is defined as follows

ind(f) := max
h∈Min(f)

depth(h).

Let 2 ≤ p ≤ m. We let Gm
p,k denote the set of all k-valued functions which

essentially depend on m variables whose arity gap is equal to p, i.e., Gm
p,k = {f ∈

Pn
k | ess(f) = m & gap(f) = p}.

Let xi be an essential variable in f and c ∈ K be a constant from K. The

function g := f(xi = c) obtained from f ∈ Pn
k by replacing the variable xi with

c is called a simple subfunction of f .

When g is a simple subfunction of f we shall write f ⊲ g. The transitive

closure of ⊲ is denoted by ≫. Sub(f) = {g | f ≫ g} is the set of all subfunctions

of f and sub(f) := |Sub(f)|.

Let g ∈ Sub(f) be a subfunction of f and let

Og := {m | ∃ (g1, . . . , gm) with f ⊲ g1 ⊲ . . . ⊲ gm = g}.

The number ord(g) := max Og is called the order of g.
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As usual we denote by Sn the set of all permutations of the set {1, . . . , n}.

Let Ess(f) = {xi1 , . . . , xim} ⊆ {x1, . . . , xn}. Let Sf be the set of all permuta-

tions of {i1, . . . , im}. We say that f is a symmetric function if f(x1, . . . , xn) =

f(xπ(1), . . . , xπ(n)), for all π ∈ Sf .

Given a variable x and c ∈ K, xc is an unary function defined by:

xc =

{

1 if x = c
0 if x 6= c.

We use sums of conjunctions (SC) for representation of functions in Pn
k .

This is the most natural representation of functions in finite algebras. It is based

on the so-called operation tables of the functions.

Each function f ∈ Pn
k can be uniquely represented in SC-form as follows

f = a0 · x
0
1 . . . x0

n ⊕ . . . ⊕ am · xc1
1 . . . xcn

n ⊕ . . . ⊕ akn−1 · x
k−1
1 . . . xk−1

n

with m = Σn
i=1cik

n−i, and ci, am ∈ K, where “⊕ ” and “ · ” are the operations of

addition and multiplication modulo k in the ring K.

2. Symmetric functions with non-trivial arity gap. We are

going to study the behavior of the symmetric k-valued functions f with non-

trivial arity gap, i.e., with gap(f) > 1.

Lemma 2.1. Let f ∈ Pn
k be a symmetric function which essentially

depends on n variables and let f ≫ g then g is a symmetric function and if

Ess(g) 6= ∅ then ess(g) = n − ord(g).

P r o o f. Without loss of generality let us assume that ord(g) = m > 0

and

f ⊲ f(x1 = c1) ⊲ . . . ⊲ f(x1 = c1, x2 = c2, . . . , xm = cm) = g.

It is obvious that g is symmetric.

Clearly, xi ∈ Ess(g) if and only if xj ∈ Ess(g) for all i, j ∈ {m+1, . . . , n}.

Hence if Ess(g) 6= ∅ then Ess(g) = Xn \ {x1, . . . , xm}. �

Lemma 2.2. Let 2 ≤ p ≤ min(k, n). If f ∈ Gn
p,k is a symmetric function,

then p = 2 or p = n.

P r o o f. Let us suppose this is not the case. Then 2 < p < n. Hence there

is an identification minor h of f such that gap(f) = n−ess(h) and 2 < n−ess(h) <
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n. Without loss of generality assume that h = fn←n−1 and Ess(h) = {x1, . . . , xq},

where q = n − p such that 0 < q < n − 2. Then xn−2 ∈ Ess(f) \ Ess(h). Hence

for every n constants c1, . . . , cn−3, cn−2, dn−2, cn−1 ∈ K we have

f(c1, . . . , cn−3, cn−2, cn−1, cn−1) = f(c1, . . . , cn−3, dn−2, cn−1, cn−1).

Since f is symmetric, Lemma 2.1 implies

f(cn−2, . . . , c2, c1, xn−1, xn−1) = f(dn−2, cn−3, . . . , c2, c1, xn−1, xn−1).

Hence x1 /∈ Ess(h), which is a contradiction. �

Lemma 2.3 ([8]). Let f be a k-valued function which depends essentially

on all of its n, n > 3 variables and gap(f) = 2. Then there exist two distinct

essential variables xu, xv such that ess(fu←v) = n−2 and xv /∈ Ess(fu←v). More-

over, ess(fu←m) = ess(fv←m) = n − 2 for all m, 1 ≤ m ≤ n with m /∈ {u, v}.

Lemma 2.4. Let 3 < n ≤ k. If f ∈ Gn
2,k is a symmetric function then

xv /∈ Ess(fu←v) for all 1 ≤ u, v ≤ n with u 6= v.

P r o o f. From Lemma 2.3, there are 1 ≤ u, v ≤ n with u 6= v such that

xv /∈ Ess(fu←v). Without loss of generality, let u = 1 and v = 2. Further, let

1 ≤ i < j ≤ n and a1, . . . , an, b ∈ K. Then we have

fi←j(a1, . . . , an) = f(a1, . . . , ai−1, aj , ai+1, . . . , an) =

f(aj, aj , a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an) =

f(b, b, a1, . . . , ai−1, ai+1, . . . , aj−1, aj+1, . . . , an) =

f(a1, . . . , ai−1, b, ai+1, . . . , aj−1, b, aj+1, . . . , an) =

fi←j(a1, . . . , aj−1, b, aj+1, . . . , an).

This shows that xj /∈ Ess(fi←j). �

Remark 2.1. If f is a symmetric function with non-trivial arity gap

then all its identification minors are symmetric. In fact, we have h = f2←1 =

f(c, c, x3, . . . , xn) for all c ∈ K, according to Lemma 2.4. Hence h is the sub-

function h = f(x1 = c, x2 = c) of f and by Lemma 2.1 it follows that h is

symmetric.
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Lemma 2.5. If f ∈ Gn
2,k, n ≥ 2, is a symmetric function then 1 ≤

ind(f) ≤
n

2
.

P r o o f. Clearly if ess(f) ≥ 2 then ind(f) ≥ 1 for all f ∈ Pn
k .

Lemma 2.3 and Lemma 2.4 imply that if f ⊢ h1 ⊢ . . . ⊢ hm with

m = ind(f) then depth(hi) = i and ess(hi) = n − 2i for i = 1, . . . ,m. Hence

ind(f) ≤
n

2
. �

Let f ∈ Gn
2,k, n > 2, be a symmetric function and let ind(f) = m <

n

2
.

Then for each minor h ∈ Min(f) with depth(h) < m there is g ∈ Min(f) such

that f |= h |= g and depth(g) = m.

Remark 2.2. Let f ∈ Gn
2,k, n > 2, be a symmetric function and let

h ∈ Min(f). From Lemma 2.2, we conclude that if depth(h) = l < ind(f), then

h ∈ Gn−2l
2,k , else h ∈ Gn−2l

n−2l,k.

Let k and n, k ≥ n > 1, be two natural numbers such that 1 < n ≤ k.

The set Kn of all n−tuples over K is the disjoint union of the following two sets:

Eqn
k := {(c1, . . . , cn) ∈ Kn | ci = cj , for some i, j with i 6= j},

Disn
k := {(c1, . . . , cn) ∈ Kn | ci 6= cj , for all i, j with i 6= j}.

Theorem 2.1 ([8]). Let 3 ≤ n ≤ k. Then f ∈ Gn
n,k, if and only if f can

be represented as follows

(1) f =





⊕

β∈Disn
k

aβ .xd1
1 . . . xdn

n



 ⊕ a0.





⊕

α∈Eqn
k

xc1
1 . . . xcn

n



 ,

where β = (d1, . . . , dn) and α = (c1, . . . , cn), and at least two among the coeffi-

cients a0, aβ ∈ K for β ∈ Disn
k , are distinct.

Let α = (c1, . . . , cn) ∈ Kn. We denote

S(n, α) :=
⊕

π∈Sn

x
cπ(1)

1 . . . x
cπ(n)
n .

Let α = (c1, . . . , cn) ∈ Kn and β = (d1, . . . , dm) ∈ Km with m ≤ n.

We shall write β ≤ α if there are 1 ≤ i1, . . . , im ≤ n such that cij = dj

and cs 6= dj for all s /∈ {i1, . . . , im} and all j ∈ {1, . . . ,m}.
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Example 2.1. Let k = 5. Then (0, 1, 1) ≤ (0, 1, 2, 1, 4), but (0, 1) 6≤

(0, 1, 2, 1, 4) and (0, 2, 3) 6≤ (0, 1, 2, 1, 4). Let α = (1, 2, 4). Then

S(3, α) = x1
1x

2
2x

4
3 ⊕ x1

1x
4
2x

2
3 ⊕ x2

1x
1
2x

4
3 ⊕ x2

1x
4
2x

1
3 ⊕ x4

1x
1
2x

2
3 ⊕ x4

1x
2
2x

1
3.

Theorem 2.2. Let f ∈ Gn
n,k, 3 ≤ n ≤ k. Then f is a symmetric function

if and only if it can be represented in the following form:

(2) f = a0





⊕

α∈Eqn
k

xc1
1 xc2

2 . . . xcn
n



 ⊕





⊕

β∈Disn
k

bβS(n, β)



 ,

where α = (c1, c2, . . . , cn) ∈ Eqn
k , and at least two among the coefficients a0, bβ ∈

K, for β ∈ Disn
k are distinct.

P r o o f. Let f ∈ Gn
n,k, 2 < n ≤ k be a symmetric function and β =

(d1, . . . , dn) ∈ Disn
k . Let us set bβ = f(β). Since f is a symmetric function, it

follows that f(dπ(1), dπ(2), . . . , dπ(n)) = bβ, for each π ∈ Sn.

Let α ∈ Eqn
k . Then (1) implies f(α) = f(0, 0, . . . , 0) = a0, which proves

that f is represented in the form (2). Clearly, if f is represented as in (2), then

it is a symmetric function with arity gap equal to n. �

Corollary 2.1. There are k(k

n)+1 − k different symmetric functions

in Gn
n,k.

P r o o f. There exists

(

k

n

)

ways to choose β in (2). Thus there are
(

k

n

)

+ 1 coefficients in (2), including a0 taken from K. On the other hand we

have to exclude all k cases when a0 = bβ for β ∈ Disn
k . �

We are interested in an explicit representation of the symmetric functions

f with gap(f) = 2 in the case when ess(f) = 3. The case gap(f) = 2 and

ess(f) = 3 is really special and is deeply discussed in [8] where we decomposed

f ∈ G3
2,k for k = 3 (see Theorem 5.1 [8]). In a similar way one can prove the

following more general result.

Theorem 2.3. Let f ∈ G3
2,k, k ≥ 3. Then f is a symmetric function if

and only if it can be represented in one of the following forms:

(3) f =
k−1
⊕

i=0

ai



xi
1x

i
2x

i
3 ⊕





⊕

α∈Eq3
k
, (i)≤α

xc1
1 xc2

2 xc3
3







 ⊕





⊕

δ∈Dis3
k

bδS(3, δ)




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or

(4) f =

k−1
⊕

i=0

ai



xi
1x

i
2x

i
3 ⊕





⊕

α∈Eq3
k
, (ii)≤α

xc1
1 xc2

2 xc3
3







 ⊕





⊕

δ∈Dis3
k

bδS(3, δ)



 ,

where α = (c1, c2, c3) and at least two among the coefficients ai ∈ K, for i =

0, . . . , k − 1 are distinct.

Theorem 2.4. Let f ∈ Pn
k be a symmetric function with non-trivial arity

gap. Then

(i) If gap(f) = n or n, n ≥ 2, is an even natural number or ind(f) <
n − 1

2
then f(c1, . . . , c1) = f(c2, . . . , c2) for all c1, c2 ∈ K;

(ii) If n, 3 ≤ n ≤ k, is an odd natural number, gap(f) = 2 and ind(f) =
n − 1

2
then there exist at least two values c1, c2 ∈ K such that f(c1, . . . , c1) 6=

f(c2, . . . , c2).

P r o o f. (i) We have to consider three cases:

Case A. Let gap(f) = n.

Then f ∈ Gn
n,k and from Theorem 2.1 it follows f(c1, . . . , c1) = f(c2, . . . , c2)

for all c1, c2 ∈ K.

Case B. Let n, n ≥ 2 be an even natural number and gap(f) = 2.

Let c1, c2 ∈ K be two constants with c1 6= c2. From Lemma 2.4 it follows

that xv /∈ Ess(fu←v) for all 1 ≤ u, v ≤ n with u 6= v. Then we obtain

f(c2, c2, . . . , c2)

=f(c1, c1, c2, c2, c2, . . . , c2) because x2 /∈ Ess(f1←2)

=f(c1, c1, c1, c1, c2, . . . , c2) because x3 /∈ Ess(f4←3)

=f(c1, c1, c1, c1, c1, c1, c2, . . . , c2) because x5 /∈ Ess(f6←5)

. . . . . . . . . . . .

=f(c1, c1, . . . , c1, c1, c2, c2) because xn−3 /∈ Ess(fn−2←n−3)

=f(c1, c1, . . . , c1, c1, c1, c1) because xn−1 /∈ Ess(fn←n−1).

Case C. Let gap(f) = 2, n be odd and ind(f) <
n − 1

2
.
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Let ind(f) =
n − m

2
<

n − 1

2
, for some odd natural number m, n − 2 ≥

m ≥ 3. Let h ∈ Min(f) be a minor of f with depth(h) =
n − m

2
. Since f is

symmetric and gap(f) = 2 we have xv /∈ Ess(fu←v) for all 1 ≤ u, v ≤ n, u 6= v.

Hence from Lemma 2.1 it follows that

h = [. . . [f2←1]4←3 . . .]n−m←n−m−1 =

f(x1, x1, x3, x3, . . . , xn−m−1, xn−m−1, xn−m+1, . . . , xn) =

f(c1, . . . , c1, xn−m+1, . . . , xn)

for an arbitrary constant c1 ∈ K. Since depth(h) =
n − m

2
and m ≤ n − 2 it

follows that Ess(h) = ∅. Consequently, h = f(c1, . . . , c1) = f(c2, . . . , c2) for all

c1, c2 ∈ K.

(ii) Let n, 3 ≤ n ≤ k be an odd natural number, gap(f) = 2 and ind(f) =
n − 1

2
.

First, let n = 3. Then from (3) and (4) it follows that f(i, i, i) = ai and

there are ai, aj , i, j ∈ K with ai 6= aj . Hence f(i, i, i) 6= f(j, j, j).

Second, let n > 3 and ind(f) =
n − 1

2
. Let g ∈ Min(f) be a minor of f

for which depth(g) = ind(f) and as above we can write

g = [. . . [f2←1]4←3 . . .]n−1←n−2.

Let h be a minor of f with depth(h) =
n − 3

2
< ind(f) such that g = hn−1←n−2,

i.e., xn−2, xn−1 ∈ Ess(h) and by the symmetry of f we have {xn−2, xn−1, xn} =

Ess(h).

Then there is a ternary function t ∈ P 3
k such that

t(xn−2, xn−1, xn) = h(a1, . . . , an−3, xn−2, xn−1, xn)

for all (a1, . . . , an−3) ∈ Kn−3 and t is symmetric (see Remark 2.1).

Thus we have t(xn−2, xn−1, xn) = f(c1, c1, . . . c1, c1, xn−2, xn−1, xn) for an

arbitrary c1 ∈ K. Hence f(c, . . . , c) = t(c, c, c) for all c ∈ K. If xu, xv ∈ Ess(h)

then xv /∈ Ess(hu←v), else xv ∈ Ess(fu←v) which is impossible, according to

Lemma 2.3. If we suppose that Ess(hu←v) = ∅, then by the symmetry of f it

follows that depth(h) = ind(f), which is a contradiction. Again, by the symmetry

of f it follows that Ess(hu←v) = Ess(tu←v) = Ess(t) \ {xu, xv} and hence t ∈
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G3
2,k. According to Theorem 2.3 it follows that there exist c1, c2 ∈ K such that

t(c1, c1, c1) 6= t(c2, c2, c2) (see case n = 3, gap(f) = 2) and hence f(c1, . . . , c1) 6=

f(c2, . . . , c2). �

Theorem 2.5. Let 3 < min(n, k). If f ∈ Gn
2,k is a symmetric function

then

f =
n−1
⊕

i=1

n
⊕

j=i+1

k−1
⊕

m=0

xm
i xm

j g(x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn) ⊕

⊕ h(x1, . . . , xn),

where g and h are symmetric functions such that: h(α) = 0 for all α ∈ Eqn
k and

g ∈

{

Gn−2
2,k if ind(f) > 2

Gn−2
n−2,k if ind(f) = 2.

P r o o f. The conjunctions in SC-form of any function f ∈ Pn
k can be

reordered so that

f =

n−1
⊕

i=1

n
⊕

j=i+1

k−1
⊕

m=0

xm
i xm

j gijm ⊕ h(x1, . . . , xn),

var(gijm) = {x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn} and h(α) = 0 for all α ∈

Eqn
k .

Let f ∈ Gn
2,k be a symmetric function with n > 2. Since h might assume

non-zero values on the set Disn
k , only, it follows that h has to be a symmetric

function.

Then we obtain

f2←1 =

[

k−1
⊕

m=0

xm
1 xm

1 g12m

]

⊕





n−1
⊕

i=3

n
⊕

j=i+1

k−1
⊕

m=0

xm
i xm

j [gijm]2←1



⊕

⊕
n

⊕

i=3

k−1
⊕

m=0

xm
i g1im(x2 = m) ⊕

n
⊕

i=3

k−1
⊕

m=0

xm
i g2im(x1 = m).

Since xv /∈ Ess(fu←v) for 1 ≤ u, v ≤ n, u 6= v it follows that g12m = g12s

for all s,m ∈ K. By the symmetry of f it follows that gijm = gijs for all
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s,m ∈ K and 1 ≤ i < j ≤ n. Hence the index m is redundant and we might

write gij instead of gijm, i.e., gij := gijm for m ∈ K. The symmetry of f

implies gij(α) = guv(α) for each α ∈ Kn−2, i.e., the functions gij are identical,

considered as mappings of Kn−2 to K. Hence there is an (n − 2)-ary function

g ∈ Pn−2
k which maps each α ∈ Kn−2 as follows g(α) = gij(α). Consequently

gij = g(x1, x2 . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xn) for 1 ≤ i < j ≤ n.

Suppose that g is not a symmetric function. Without loss of gener-

ality assume that gij is not symmetric with respect to x1, x2 and 3 ≤ i <

j ≤ n. Then there exist n − 2 constants c1, c2, c3, . . . , cn−2 ∈ K such that

gij(c1, c2, c3, . . . , cn−2) 6= gij(c2, c1, c3, . . . , cn−2). Clearly c1 6= c2. If d1, d2 ∈ K

with d1 6= d2 then

f(x1 = d1, x2 = d2) =

n−1
⊕

i=3

n
⊕

j=i+1

k−1
⊕

m=0

xm
i xm

j gij(x1 = d1, x2 = d2) ⊕

⊕ h(x1 = d1, x2 = d2).

Since h is symmetric, it follows h(x1 = d1, x2 = d2) = h(x1 = d2, x2 = d1) and

hence f(x1 = c1, x2 = c2) 6= f(x1 = c2, x2 = c1), which is a contradiction.

Hence gij is a symmetric (n − 2)-ary function which essentially depends

on all of its variables. Since ess(f2←1) = n − 2 it follows that x1 /∈ Ess([gij ]2←1)

and hence gap(gij) > 1. According to Lemma 2.2 we have gap(gij) = 2 or

gap(gij) = n − 2.

Let ind(f) > 2. Then ess([f2←1]4←3) > 0 implies Ess([gij ]2←1) 6= ∅. By

the symmetry of f and gij it follows that Ess([gij ]2←1) = {x3, . . . , xn} \ {xi, xj}.

Hence gij ∈ Gn−2
2,k for 1 ≤ i < j ≤ n.

Let ind(f) = 2. Then ess([f2←1]4←3) = 0 implies Ess([gij ]2←1) = ∅.

Hence gij ∈ Gn−2
n−2,k for 1 ≤ i < j ≤ n. �

Theorem 2.2, Theorem 2.3 and Theorem 2.5 provide decompositions of

the symmetric functions with non-trivial arity gap in the basis 〈⊕, · , {xα}α∈K〉

of the algebra Pn
k .

As usual we shall say that a k-valued function f ∈ Pn
k is linear if f =

a1x1 ⊕ a2x2 ⊕ . . . ⊕ anxn ⊕ c, where a1, a2, . . . an, c ∈ K. Clearly, xi ∈ Ess(f) if

and only if ai 6= 0.

Theorem 2.6. The set Pn
k , k, n ≥ 2, contains a linear function with

non-trivial arity gap if and only if k is an even natural number.
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P r o o f. Let f =

[

n
⊕

i=1

aixi

]

⊕c with c, ai ∈ K. Without loss of generality

let us consider the identification minor f2←1 = (a1 ⊕ a2)x1 ⊕

[

n
⊕

i=3

aixi

]

⊕ c.

Clearly ess(f2←1) ≥ ess(f) − 2, i.e., gap(f) ≤ 2.

Let k be an even natural number and k = 2m for some m ∈ N . Then let

us consider the following linear (and symmetric) function

f = m(x1 ⊕ x2 ⊕ . . . ⊕ xn) ⊕ c,

for some c ∈ K. Clearly,

fi←j = m(x1 ⊕ . . . ⊕ xj−1 ⊕ xj+1 ⊕ . . . xi−1 ⊕ xi+1 ⊕ . . . ⊕ xn) ⊕ c.

Hence f ∈ Gn
2,k.

Let k be an odd natural number and let f = a1x1 ⊕ . . . ⊕ anxn ⊕ c, for

some c ∈ K, be a linear k-valued function. First assume that there are i and j,

1 ≤ i, j ≤ n, such that i 6= j and ai = aj 6= 0. Without loss of generality let us

assume (j, i) = (1, 2). Then we have a1 ⊕ a2 = 2a1 and

f2←1 = 2a1x1 ⊕ a3x3 ⊕ . . . ⊕ anxn ⊕ c.

Since k is odd it follows that 2a1 6= 0 (mod k). Hence Ess(f2←1) = {x1, . . . , xn}\

{x2} and f /∈ Gn
2,k. Second, let ai 6= aj for all i and j, 1 ≤ i < j ≤ n. Then

we have a1 + a2 6= k or a1 + a3 6= k. Without loss of generality assume that

a1 + a2 6= k. Hence

f2←1 = (a1 + a2)x1 ⊕ a3x3 ⊕ . . . ⊕ xn ⊕ c.

Since k 6= a1 + a2 < 2k it follows that a1 + a2 6= 0 (mod k) which implies

f /∈ Gn
2,k. �

One can prove that if f is a linear function with non-trivial arity gap then

f is symmetric.

3. Subfunctions of symmetric functions with non-trivial ar-

ity gap. In this section, we shall study the subfunctions of the symmetric

k-valued functions f with non-trivial arity gap.
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Let c ∈ K be a constant from K and f ∈ Pn
k be a symmetric function.

We say that c is a dominant of f if f(c1, . . . , cn−1, c) = f(d1, . . . , dn−1, c) for

every c1, . . . , cn−1, d1, . . . , dn−1 ∈ K. Dom(f) denotes the set of all dominants

of f .

Clearly if c ∈ Dom(f) then Ess(f(x1, . . . , xn−1, c)) = ∅, i.e., the subfunc-

tions of f of order 1 obtained by dominants of f are always constant functions.

If f ∈ Gn
n,k then c ∈ Dom(f) if and only if f(c1, . . . , cn−1, c) = f(0, . . . , 0) for all

c1, . . . , cn−1 ∈ K, according to Theorem 2.1.

A constant c ∈ K is called a weak dominant of f if it is a dominant of an

identification minor of f .

If f is a symmetric function then the weak dominants of f are dominants

of all identification minors of f . Wdom(f) denotes the set of all weak dominants

of f .

Theorem 3.1. Let f ∈ Gn
n,k be a symmetric function with 2 ≤ k, 2 < n

and let g = f(xi = c) for some xi, 1 ≤ i ≤ n and for some constant c ∈ K be a

subfunction of f . If c /∈ Dom(f) then g is a symmetric function which belongs to

the class Gn−1
n−1,k.

P r o o f. We shall consider the non-trivial case n > 2 (else the subfunctions

of f will depend on at most one essential variable). Hence k > 2 because 2 <

n = gap(f) ≤ k.

By symmetry we may assume that g = f(xn = c). Since c /∈ Dom(f) it

follows that Ess(g) 6= ∅. Lemma 2.1 implies that Ess(g) = {x1, . . . , xn−1}. Thus

we obtain

g2←1 = g(x1, x1, x3, . . . , xn−1) = f(x1, x1, x3, . . . , xn−1, c).

Theorem 2.2 implies that for every n − 2 constants c1, . . . , cn−2 ∈ K we have

g(c1, c1, c2, . . . , cn−2) = f(c1, c1, c2, . . . , cn−2, c) = f(0, . . . , 0)

because (c1, c1, c2, . . . , cn−2, c) ∈ Eqn
k . Consequently g is symmetric and g ∈

Gn−1
n−1,k. �

Let us denote range(f) = |{f(α) | α ∈ Kn}| for f ∈ Pn
k and

subn
k =

(

k

1

)

+

(

k

2

)

+ . . . +

(

k

n − 1

)

.

Lemma 3.1. If f ∈ Gn
n,k, n ≤ k is a symmetric function, then sub(f) ≤

subn
k + range(f).
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P r o o f. Let f ≫ g and ord(g) = m > 1. Without loss of generality let

us assume g = f(x1 = c1, . . . , xm = cm).

Let α = (c1, . . . , cm) ∈ Eqm
k . Then Theorem 2.2 implies that g =

f(0, . . . , 0), i.e., g is a constant. So, g can be obtained in two ways, only: when

α ∈ Eqm
k or m = n. Then it is clear that the number of all constant subfunctions

is equal to range(f).

Let α = (c1, . . . , cm) ∈ Dism
k . Since |Dism

k | =

(

k

m

)

.m!, the symmetry of

f implies that there exist at most

(

k

m

)

subfunctions of order m, 1 ≤ m ≤ n− 1.

Thus, if f ∈ Gn
n,k, n ≤ k is a symmetric function then the number of all its

subfunctions is equal to at most subn
k . Hence sub(f) ≤ subn

k + range(f). �

Remark 3.1.

(i) Note that Lemma 2.1 and Theorem 3.1 imply that if g ∈ Sub(f) with

ess(g) = l > 1 then g ∈ Gl
l,k.

(ii) Let f be a function represented as in (2) with a0 = 0 and let

bβ ∈ K be non-zero integers for all β ∈ Disn
k . Let (cm+1, . . . , cn) ∈ Disn−m

k and

m < n. Then we have f(xm+1 = cm+1, . . . , xn = cn) =
⊕

γ∈Dism
k

bαS(m,γ), where

α = (d1, . . . , dm, cm+1, . . . , cn) ∈ Disn
k and γ = (d1, . . . , dm) ∈ Dism

k . Since bβ 6= 0,

it follows that f(xm+1 = cm+1, . . . , xn = cn) depends essentially on all its m vari-

ables. Consequently, f(xm+1 = cm+1, . . . , xn = cn) = f(xm+1 = am+1, . . . , xn =

an) for am+1, . . . , an ∈ K if and only if {cm+1, . . . , cn} = {am+1, . . . , an}. This

implies that sub(f) = subn
k + range(f), i.e., the function f reach the upper bound

for sub(f), obtained in Lemma 3.1.

(iii) The next example will show that sub(f) < subn
k + range(f) can hap-

pen. Let k = 4, n = 3 and f = S(3, (0, 1, 3)) ⊕ S(3, (0, 2, 3)) (mod 4). Clearly,

f ∈ G3
3,4 and f(x1 = 0, x2 = 1) = f(x1 = 0, x2 = 2) = x3

3, f(x1 = 1, x2 =

3) = f(x1 = 2, x2 = 3) = x0
3, and f(x1 = 1, x2 = 2) = 0, which shows that

sub(f) = 4 + 3 + 3 = 10 and sub3
4 =

(

4

1

)

+

(

4

2

)

+ range(f) = 4 + 6 + 3 = 13.

Theorem 3.2. Let f ∈ Gn
2,k, 3 ≤ min(n, k) be a symmetric function and

c ∈ K. Then

(i) t = f(xi = c, xj = c) ∈ Gn−2
2,k for all i, j, 1 ≤ i, j ≤ n, i 6= j if

ind(f) > 2;

(ii) t = f(xi = c, xj = c) ∈ Gn−2
n−2,k for all i, j, 1 ≤ i, j ≤ n, i 6= j if

ind(f) = 2;
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(iii) t = f(xi = c) ∈ Gn−1
n−1,k for all i, 1 ≤ i ≤ n if c ∈ Wdom(f);

(iv) t = f(xi = c) ∈ Gn−1
2,k for all i, 1 ≤ i ≤ n if c /∈ Wdom(f).

P r o o f. Let f ∈ Gn
2,k, 3 ≤ min(n, k) be a symmetric function and c ∈ K.

By the symmetry of f we may consider the pair (1, 2) instead (i, j).

(i) From Lemma 2.5 and ind(f) > 2 it follows that n ≥ 6. Then we have

t(a1, . . . , an−2) = h(c, c, a1, . . . , an−2) for all (a1, . . . , an − 2) ∈ Kn−2, where h =

f2←1 and depth(h) = 1 < ind(f). From Lemma 2.3 it follows that t and h depends

on n − 2 variables, i.e., Ess(h) = {x3, . . . , xn}. Then g = h4←3 = [f2←1]4←3 is a

minor of f with depth(g) = 2 < ind(f). Hence it follows that Ess(g) 6= ∅ and by

the symmetry of f we have Ess(g) = Ess(t4←3) = {x5, . . . , xn}. Hence t ∈ Gn−2
2,k .

(ii) Let ind(f) = 2 and t, h and g are as in (i). Now, depth(g) = 2 =

ind(f) implies that Ess(g) = Ess(t4←3) = ∅. By the symmetry of f it follows

that all identification minors of t do not depend on any of its variables. Hence

t ∈ Gn−2
n−2,k.

(iii) Let c ∈ Wdom(f) and t = f(c, x2, . . . , xn). Without loss of gener-

ality, assume that c is a dominant of fn←n−1, i.e., f(c, x2, . . . , xn−2, c1, c1) does

not depend essentially on any variable for all c1 ∈ K. Then Lemma 2.3 implies

t3←2 = f(c, c, c, x4, . . . , xn) = f(c, x2, . . . , xn−2, c1, c1). Hence Ess(t3←2) = ∅, i.e.,

t ∈ Gn−1
n−1,k.

(iv) Let c ∈ K and c /∈ Wdom(f) and t = f(c, x2, . . . , xn). Then t3←2 =

f(c, c, c, x4, . . . , xn) depends on at least one variable (else c ∈ Wdom(f)). From

Lemma 2.1 it follows that Ess(t3←2) = {x4, . . . , xn} and hence t ∈ Gn−1
2,k . �

Corollary 3.1. If f ∈ Pn
k , is a symmetric function with non-trivial arity

gap, then its every subfunction g = f(xn = c) with c /∈ Dom(f) has non-trivial

arity gap.

P r o o f. If f ∈ Gn
n,k we are done by Theorem 3.1 and if f ∈ Gn

2,k by

Theorem 3.2. �

4. Separable sets of symmetric functions with non-trivial

arity gap.

Definition 4.1. A set M of essential variables in f is called separable

in f if there is a subfunction g of f such that M = Ess(g).

Sep(f) denotes the set of all separable sets in f and sep(f) = |Sep(f)|.

Note that the constants in the range V (f) = {c ∈ K | ∃α ∈ Kn, f(α) =

c} of f form subfunctions of f , which do not depend on any essential variable.
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So, the empty set, we will include in Sep(f).

The numbers sep(f) and sub(f) are important complexity measures of a

function f ∈ Pn
k . The separable sets and the valuations sep(f) and sub(f) are

studied in work by many authors: O. Lupanov [5], K. Chimev [1, 2], A. Salomaa

[6], S. Shtrakov and K. Denecke [9], etc.

If f ≫ g with ord(g) = m > 0 then g uniquely determines an m-element

set M , M = Ess(g) ⊆ Ess(f), which is separable in f . It is possible for the same

M to be the set of essential variables of another subfunction t, f ≫ t of f , i.e.,

Ess(g) = Ess(t), but g 6= t. Consequently, sep(f) ≤ sub(f). Theorem 3.1 and

Theorem 3.2 show that if f is a symmetric function with non-trivial arity gap

then its subfunctions determined by constants outside Dom(f) have non-trivial

arity gap. Lemma 3.1 gives an upper bound of sub(f).

In this section, we prove that the complexity measure sep(f) assumes its

maximum value on the symmetric functions with non-trivial arity gap.

Theorem 4.1. If f is a symmetric function with non-trivial arity gap,

then each set of essential variables in f is separable in f .

P r o o f. Let f ∈ Gn
n,k, n ≤ k and let Ess(f) = {x1, . . . , xn}. Without loss

of generality let us prove that M = {x1, . . . , xm}, m < n is a separable set in f .

According to (1) there are constants c1, . . . , cn ∈ K such that f(c1, . . . , cn) 6= a0,

where a0 = f(d1, . . . , dn) for all (d1, . . . , dn) ∈ Eqn
k . We must show that if

f1 := f(xm+1 = cm+1, . . . , xn = cn) then M = Ess(f1). Let xt ∈ M be an

arbitrary variable from M , i.e., 1 ≤ t ≤ m. Again from (1) it follows that

f(c1, . . . , ct−1, cn, ct+1, . . . , cm, . . . , cn) = a0.

Hence xt ∈ Ess(f1), which implies M = Ess(f1).

Let f ∈ Gn
2,k, n ≤ k be a symmetric function. Without loss of generality

let us assume that M = {x1, . . . , xm}, m < n is a set of essential variables in f .

We have to prove that M is a separable set in f . Since x1 ∈ Ess(f) by Theorem

1.2 [2], there is a chain of subfunctions

f = fn ⊲ fn−1 . . . ⊲ f2 ⊲ f1

such that Ess(f1) = {x1} and Ess(fj) = {x1, xi2 , . . . , xij} for all j = 2, 3, . . . , n.

Without loss of generality we may assume that il = l for l = 2, . . . , j and there

are constants cm+1, . . . , cn for the variables in Ess(f) \ Ess(fm) such that

fm = f(xm+1 = cm+1, xm+2 = cm+2, . . . , xn = cn).
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Consequently, f(xm+1 = cm+1, xm+2 = cm+2, . . . , xn = cn) is a function which

depends essentially on the variables x1, . . . , xm, i.e., M is a separable set in f . �

Corollary 4.1. If f ∈ Pn
k is a symmetric function with non-trivial arity

gap then sep(f) = 2n.

Corollary 4.2. If f ∈ Pn
k is a symmetric function with non-trivial arity

gap then sub(f) ≥ 2n.

Lemma 3.1 implies that if n ≤ k and f ∈ Gn
n,k then

2n = sep(f) ≤ sub(f) ≤
n

∑

i=1

(

k

i

)

and if k = n then 2n = sep(f) = sub(f).

REFERE NC ES

[1] Chimev K. On some properties of functions. In: Colloquia Mathematica

Societatis Janos Bolyai, Szeged, 1981, 97–110.

[2] Chimev K. Separable sets of arguments of functions. MTA SzTAKI
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