
Serdica J. Computing 6 (2012), 409–418

THE WIENER, ECCENTRIC CONNECTIVITY

AND ZAGREB INDICES OF THE HIERARCHICAL

PRODUCT OF GRAPHS∗

S. Hossein-Zadeh, A. Hamzeh, A. R. Ashrafi

Abstract. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs having a
distinguished or root vertex, labeled 0. The hierarchical product G2 ⊓ G1

of G2 and G1 is a graph with vertex set V2 × V1. Two vertices y2y1 and
x2x1 are adjacent if and only if y1x1 ∈ E1 and y2 = x2; or y2x2 ∈ E2 and
y1 = x1 = 0. In this paper, the Wiener, eccentric connectivity and Zagreb
indices of this new operation of graphs are computed. As an application,
these topological indices for a class of alkanes are computed.

1. Introduction. Throughout this paper by the word graph we mean

a finite, undirected graph without loops or multiple edges. If two vertices a and

b are adjacent then we use the notation a ∼ b. A graph invariant or topological

index is any function on a graph that does not depend on a labeling of its vertices.
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The distance between two vertices u and v of a graph G is denoted by dG(u, v)

(d(u, v) for short). It is defined as the number of edges in a minimum path

connecting them. A distance-based topological index is one that is related to

the above distance function. The first index is the well-known Wiener index [23]

defined as the sum of all distances between vertices of a given graph G.

Let G be a connected graph with vertex and edge sets V (G) and E(G),

respectively. For every vertex u ∈ V (G), the edge connecting u and v is denoted

by uv and degG(u) denotes the degree of u in G. The diameter of G, diamG(G),

is the maximum possible distance between any two vertices in the graph. We will

omit the subscript G when the graph is clear from the context.

The first and second Zagreb indices [12, 13, 19] were originally defined as

M1(G) =
∑

u∈V (G)

deg(u)2

and

M2(G) =
∑

uv∈E(G)

deg(u)deg(v),

respectively. These topological indices have numerous applications in chemistry

and attracted significant attention from mathematicians [11, 16]. The Zagreb

indices can be viewed as the contributions of pairs of adjacent vertices to cer-

tain degree-weighted generalizations of Wiener polynomials [9]. It turned out

that computing such polynomials for certain composite graphs depends on such

contributions from pairs of non-adjacent vertices. The first and second Zagreb

co-indices were first introduced by Došlić [9]. They are defined as follows:

M̄1(G) =
∑

uv 6∈E(G)

[deg(u) + deg(v)],

M̄2(G) =
∑

uv 6∈E(G)

[deg(u)deg(v)].

In [3], the authors considered some mathematical properties of this new graph

invariant.

The eccentricity εG(u) is the largest distance between u and any other ver-

tex v of G. We will omit the subscript G when the graph is clear from the context.

The eccentric connectivity index of G is defined as ξc(G) =
∑

u∈V (G)

ε(u)deg(u) [20].
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We encourage the reader to consult papers [1, 2, 21] for some applications and

[10, 15, 25] for the mathematical properties of this topological index.

In this article we study graph invariants, the first Zagreb index and co-

index, Wiener index and eccentric connectivity index under hierarchical product

of graphs [4]. One of us (ARA) in some earlier papers considered the same prob-

lem for other graph operations, see [3, 14, 16, 17, 18, 24] for details. Throughout

this paper our notation is standard. The complete graph and path on n vertices

are denoted by Kn and Pn, respectively. For terms and concepts not defined

here we refer the reader to any of several standard monographs such as, e.g., [8]

or [22].

2. Main Results. In this section exact formulas for some graph in-

variants under the hierarchical product of graphs are obtained. The hierarchical

product is a new graph operation introduced by Barrière et al. [4]. Following

Barrière et al. [5], the binary hypertree of dimension m is defined as the hierar-

chical product of m copies of the complete graph K2. Since the graphs obtained

from the hierarchical product are spanning subgraphs of the corresponding Carte-

sian products, we obtain that the binary hypertree of dimension m is a spanning

subgraph of the hypercube Qm. Then the authors applied this fact to obtain

some nice results on this class of trees. We refer the interested readers to [6, 7]

for a generalization of this concept and some other mathematical properties of

hierarchical product.

Let G1 and G2 be graphs with vertex sets V1 and V2, respectively, having

a distinguished or root vertex, labeled 0. The hierarchical product H = G2 ⊓G1

is the graph with vertices the tuples x2x1, xi ∈ Vi, i = 1, 2, and edges defined as

follows:

x2x1 ∼

{

x2y1, if y1x1 ∈ E(G1),

y2x1, if y2x2 ∈ E(G2) and x1 = 0.

Notice that the structure of the obtained product graph H heavily depends on

the root vertices of the factors G1 and G2.

Theorem 1. Suppose G1 and G2 are connected graphs with vertex sets

V1 and V2, respectively. Then W (G2 ⊓G1) = |V2|W (G1) + |V1|
2W (G2) + (|V2|

2

− |V2|)|V1|DG1(0), where DG1(0) denotes the summation of all distances between

0 and other vertices of G1.
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P r o o f. Suppose x = x2x1, y = y2y1 ∈ V (G2⊓G1), where x1, y1 ∈ V1 and

x2, y2 ∈ V2. Apply [4, Proposition 2.4], we have:

W (G2 ⊓ G1) =
∑

{x,y}∈V (G2⊓G1)

dG2⊓G1(x, y)

=
∑

{x1,y1}∈V1
x2,y2∈V2;x2=y2

dG1(x1, y1)

+
∑

{x1,y1}∈V1
x2,y2∈V2;x2 6=y2

(dG2(x2, y2) + dG1(x1, 0) + dG1(0, y1))

= |V2|W (G1) + |V1|
2W (G2) + (|V2|

2 − |V2|)|V1|DG1(0),

which completes our argument. �

Corollary 2. Suppose G is a connected graph. Then the Wiener index

of Pn ⊓ G and alkanes Pn ⊓ Pn are computed as follows:

W (Pn ⊓ G) = nW (G) + |V (G)|2
n(n2 − 1)

6
+ (n2 − n)|V (G)|DG(0),

W (Pn ⊓ Pn) = (n3 + n2)
(n2 − 1)

6
+ n2(n − 1)DG(0).

Theorem 3. Suppose G1 and G2 are connected graphs. Then ξc(G2 ⊓

G1) = (δ1 + δ2)(ε2 + ε1) + (δ1|V (G1)| + δ2)(ζ(G2) − ε2) + (|V (G2)| − 1)(δ1 +

δ2)ε1 + δ1|V (G2)|DG1(0) + |V (G2)|(|V (G1)| − 1)δ1ε1 + δ1ε2(|V (G1)| − 1), where

ζ(G) =
∑

v∈V (G)

ε(v) is called the total eccentricity of G.

P r o o f. Suppose x = x2x1 ∈ V (G2 ⊓ G1) and δi and εi, i = 1, 2, are the

degree and eccentricity of root vertex of Gi, respectively. Applying [4, Proposition

2.4] and the definition of hierarchical product of graphs, we have:

ξc(G2 ⊓ G1) =
∑

x∈V (G2⊓G1)

εV (G2⊓G1)(x)degV (G2⊓G1)(x)
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= (δ1 + δ2)(ε2 + ε1) +
∑

x=x20;x2∈V (G2)

(δ1 + δ2)(εG2(x2) + ε1)

+
∑

x=x2x1
x1 6=0∈V (G1);x2∈V (G2)

δ1(εG2(x2) + dG1(x1, 0) + ε1)

= (δ1 + δ2)(ε2 + ε1) + (δ1 + δ2)
∑

x2 6=0∈V (G2)

εG2(x2)

+ (|V (G2)| − 1)(δ1 + δ2)ε1 + δ1(|V (G1)| − 1)
∑

x2 6=0∈V (G2)

εG2(x2)

+ δ1|V (G2)|DG1(0) + |V (G2)|(|V (G1)| − 1)δ1ε1 + δ1ε2(|V (G1)| − 1)

= (δ1 + δ2)(ε2 + ε1) + (δ1|V (G1)| + δ2)(ζ(G2) − ε2)

+ (|V (G2)| − 1)(δ1 + δ2)ε1 + δ1|V (G2)|DG1(0)

+ |V (G2)|(|V (G1)| − 1)δ1ε1 + δ1ε2(|V (G1)| − 1),

which completes our argument. �

Corollary 4. Suppose G1 is a connected graph, and δ1 and ε1 are the

degree and eccentricity of the root vertex of G1, respectively. Then the eccentric

connectivity index of Pn ⊓ G1 and alkanes Pn ⊓ Pn are computed as follows:

1) If n is even then:

ξc(Pn ⊓ G1) = (δ1 + δPn)(ε1 + εPn) + (δ1|V (G1)| + δPn)

(

3n2 + 2n

4
− εPn

)

+(n − 1)(δ1 + δPn)ε1 + nδ1DG1(0) + n(|V (G1)| − 1)δ1ε1

+δ1εPn(|V (G1)| − 1),

ξc(Pn ⊓ Pn) = 4δPnεPn + δPn(n + 1)

(

3n2 + 2n

4
− εPn

)

+ 2(n − 1)δPnεPn

+nδPnDPn(0) + n(n − 1)δPnεPn + δPnεPn(n − 1).
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2) If n is odd then:

ξc(Pn ⊓ G1) = (δ1 + δPn)(ε1 + εPn) + (n − 1)(δ1 + δPn)ε1 + nδ1DG(0)

+(δ1|V (G1)| + δPn)

(

3

4
(n2 − 1) +

n − 1

2
− εPn

)

+n(|V (G1)| − 1)δ1ε1 + δ1εPn(|V (G1)| − 1),

ξc(Pn ⊓ Pn) = δPn(n + 1)

(

3

4
(n2 − 1) +

n − 1

2
− εPn

)

+ 2(n + 1)δPnεPn

+nδPnDPn(0) + n(n − 1)δPnεPn + δPnεPn(n − 1).

In the following theorem, we use the notations given in the proof of The-

orem 3.

Theorem 5. Suppose G1 and G2 are connected graphs. Then the first

Zagreb index of the hierarchical product is computed as follows:

M1(G2 ⊓ G1) = |V (G2)||V (G1)|δ1
2 + |V (G2)|δ2

2 + 2|V (G2)|δ1δ2.

P r o o f. Suppose H = G2 ⊓ G1 and x = x2x1 ∈ V (H). Consider three

separate cases for x and apply [4, Equation 5]. If x = 00 then degH(x) = δ1 + δ2.

If x = x20, x2 6= 0, then there are |V (G2)| − 1 choices for the vertex x2 and

degH(x) = δ1 + δ2. Finally, if x = x2x1, x1 6= 0, then there are |V (G1)| − 1

choices for the vertex x1, |V (G2)| choices for x2 and degH(x) = δ1.

M1(G2 ⊓ G1) =
∑

v∈V (G2⊓G1)

deg2
G2⊓G1

(v)

= (|V (G2)| − 1)(δ1 + δ2)
2 + |V (G2)|(|V (G1)| − 1)δ1

2 + (δ1 + δ2)
2

= |V (G2)||V (G1)|δ1
2 + |V (G2)|δ2

2 + 2|V (G2)|δ1δ2,

which completes our argument. �

Corollary 6. With the notations of Theorem 3, we have:

a) M1(Pn ⊓ G1) = n|V (G1)|δ1
2 + nδPn

2 + 2nδ1δPn ,
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b) M1(Pn ⊓ Pn) = δPn

2(n2 + 3n),

c) M̄1(G2 ⊓ G1) = 2|E(G2 ⊓ G1)|(|V (G2 ⊓ G1)| − 1) − M1(G2 ⊓ G1)

= 2(|E(G2)| + |V (G2)||E(G1)|)(|V (G1)||V (G2)| − 1)

−M1(G2 ⊓ G1),

d) M̄1(Pn ⊓ G1) = 2(n − 1 + n|E(G1)|)(|V (G1)|n − 1) − M1(Pn ⊓ G1),

e) M̄1(Pn ⊓ Pn) = 2(n − 1)2 − δPn

2(n2 + 3n),

f) M2(Pn ⊓ G1) = (n − 1)(δ1 + 1)2 + n(M2(G1) + δ1
2),

g) M2(Pn ⊓ Pn) = (n − 1)(δPn + 1)2 + n(4n − 8 + δPn

2),

h) M̄2(Pn ⊓ G1) = 2(n − 1 + n|E(G1)|)
2 − (n − 1)(δ1 + 1)2

−n(M2(G1) + δ1
2) −

1

2
(n|V (G1)|δ1

2 + nδPn

2 + 2nδ1δPn),

i) M̄2(Pn ⊓ Pn) = 2(n − 1 + n(n − 1))2 − (n − 1)(δPn + 1)2

−n(4n − 8 + δPn

2) −
1

2
δPn

2(n2 + 3n).

P r o o f. Apply Theorem 5 and [3, Propositions 2 and 4]. �
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