Serdica J. Computing 6 (2012), 409-418 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

THE WIENER, ECCENTRIC CONNECTIVITY
AND ZAGREB INDICES OF THE HIERARCHICAL
PRODUCT OF GRAPHS"

S. Hossein-Zadeh, A. Hamzeh, A. R. Ashrafi

ABSTRACT. Let G = (V4, E1) and Gy = (Va, E2) be two graphs having a
distinguished or root vertex, labeled 0. The hierarchical product G2 M G;
of Gy and G is a graph with vertex set V5 x Vi. Two vertices yoy; and
xoxy are adjacent if and only if y121 € E1 and yo = x2; or yox2 € Es and
y1 = 1 = 0. In this paper, the Wiener, eccentric connectivity and Zagreb
indices of this new operation of graphs are computed. As an application,
these topological indices for a class of alkanes are computed.

1. Introduction. Throughout this paper by the word graph we mean
a finite, undirected graph without loops or multiple edges. If two vertices a and
b are adjacent then we use the notation a ~ b. A graph invariant or topological
index is any function on a graph that does not depend on a labeling of its vertices.
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The distance between two vertices u and v of a graph G is denoted by dg(u,v)
(d(u,v) for short). It is defined as the number of edges in a minimum path
connecting them. A distance-based topological index is one that is related to
the above distance function. The first index is the well-known Wiener index [23]
defined as the sum of all distances between vertices of a given graph G.

Let G be a connected graph with vertex and edge sets V(G) and E(G),
respectively. For every vertex u € V(G), the edge connecting u and v is denoted
by uv and degg(u) denotes the degree of u in G. The diameter of G, diamg(G),
is the maximum possible distance between any two vertices in the graph. We will
omit the subscript G when the graph is clear from the context.

The first and second Zagreb indices [12, 13, 19] were originally defined as

and

Ma(G) = deg(u)deg(v),
weE(G)

respectively. These topological indices have numerous applications in chemistry
and attracted significant attention from mathematicians [11, 16]. The Zagreb
indices can be viewed as the contributions of pairs of adjacent vertices to cer-
tain degree-weighted generalizations of Wiener polynomials [9]. It turned out
that computing such polynomials for certain composite graphs depends on such
contributions from pairs of non-adjacent vertices. The first and second Zagreb
co-indices were first introduced by Dosli¢ [9]. They are defined as follows:

M(G) = Y [deg(u) +deg(v)],
uwgE(G)

My(G) = > [deg(u)deg(v)].
wgE(G)

In [3], the authors considered some mathematical properties of this new graph
invariant.

The eccentricity g (u) is the largest distance between u and any other ver-
tex v of G. We will omit the subscript G when the graph is clear from the context.
The eccentric connectivity index of G is defined as £°(G) = Z e(u)deg(u) [20].

ueV(Q)
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We encourage the reader to consult papers [1, 2, 21] for some applications and
[10, 15, 25] for the mathematical properties of this topological index.

In this article we study graph invariants, the first Zagreb index and co-
index, Wiener index and eccentric connectivity index under hierarchical product
of graphs [4]. One of us (ARA) in some earlier papers considered the same prob-
lem for other graph operations, see [3, 14, 16, 17, 18, 24] for details. Throughout
this paper our notation is standard. The complete graph and path on n vertices
are denoted by K, and P,, respectively. For terms and concepts not defined
here we refer the reader to any of several standard monographs such as, e.g., [8]
or [22].

2. Main Results. In this section exact formulas for some graph in-
variants under the hierarchical product of graphs are obtained. The hierarchical
product is a new graph operation introduced by Barriere et al. [4]. Following
Barriere et al. [5], the binary hypertree of dimension m is defined as the hierar-
chical product of m copies of the complete graph Ks. Since the graphs obtained
from the hierarchical product are spanning subgraphs of the corresponding Carte-
sian products, we obtain that the binary hypertree of dimension m is a spanning
subgraph of the hypercube Q,,. Then the authors applied this fact to obtain
some nice results on this class of trees. We refer the interested readers to [6, 7]
for a generalization of this concept and some other mathematical properties of
hierarchical product.

Let G; and G2 be graphs with vertex sets Vi and Vs, respectively, having
a distinguished or root vertex, labeled 0. The hierarchical product H = G2 M G}
is the graph with vertices the tuples xox1, x; € V;, i = 1,2, and edges defined as
follows:

zoy1, if yixy € E(Gy),
o1 ~

Y221, if Y22 € E(Gg) and z; = 0.

Notice that the structure of the obtained product graph H heavily depends on
the root vertices of the factors G; and Gs.

Theorem 1. Suppose G1 and Go are connected graphs with vertex sets
Vi and Va, respectively. Then W (Go M G1) = [Va|[W(Gy) + [VAI|PW(Gs) + (|Va]?
— |Va|)[Vi|Dg, (0), where Dg,(0) denotes the summation of all distances between
0 and other vertices of G1.
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Proof. Suppose x = x9x1,y = yoy1 € V(G2MGy), where x1,y; € Vi and
x2,y2 € Vo. Apply [4, Proposition 2.4], we have:

W(G2MGr) = > deyne, (2,9)
{z,y}GV(GgﬂGl)

= Y. do(w,m)

{z1.,v1}eWT
T2,Y2€V2ira=y2

+ Y (day(w2,y) + da, (21,0) + de, (0,51))

{z1,91}eV1
x9,y2 EVoizo#Y9

= [RIW(G1) + [ViPW(G2) + (|Vaf* = [Va]) V1| De;, (0),

which completes our argument. 0O

Corollary 2. Suppose G is a connected graph. Then the Wiener index
of P, MG and alkanes P, M P,, are computed as follows:

2 n(n? —1)
6

+n2(n — 1)Dg(0).

WP, NG) = nW(G)+|V(G)

(n? — 1)
6

+ (n® = n)|V(G)|Dc(0),

W(P,MP,) = (n®+n?

Theorem 3. Suppose G1 and Go are connected graphs. Then £°(Ga M
G1) = (01 + 82)(e2 + 1) + (01|V(G1)| + 02)(C(G2) — €2) + ([V(G2)| — 1)(61 +
d2)e1 + 01|V (G2)[De, (0) + [V(G2)[([V(G1)| — 1)dier + drea([V(G1)| — 1), where
(@)= Z e(v) is called the total eccentricity of G.

veV(Q)

Proof. Suppose z = zox; € V(G2 M Gy) and 6; and €;, i = 1,2, are the
degree and eccentricity of root vertex of G;, respectively. Applying [4, Proposition
2.4] and the definition of hierarchical product of graphs, we have:

£C(G2 r Gl) = Z 5V(G2f—|G1)(:C)degV(sz—lGl)(x)
z€V (G2MNGh)
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(51 + 52)(52 + 51) + Z (51 + 62)(6G2(x2) + 61)
z=x20;22€V (G2)

> 01(Gy (72) + de, (21,0) + €1)

T=xQT|

z1#0€V(Gq);29€V (Gg)

(01 + 62)(e2 +€1) + (61 + 02) Z £Gy (72)
:EQ;IEOGV(GQ)

V(G = D01+ 6)er + 61 (VG = 1) Y eay(2)
22#0€V (G2)

611V (G2)|Dg, (0) + [V (G2)|(|V(G1)| — 1)d1e1 + 1e2(|V (G1)| — 1)
(61 + d2)(e2 + €1) + (01|V(G1)| + 02)(C(G2) — €2)
(IV(G2)| = 1)(d1 + d2)e1 + 01|V (G2)|Dg, (0)

V(G2)(IV(G1)| = 1)d1e1 + d1e2(|V(G1)| = 1),

which completes our argument. O

Corollary 4. Suppose G1 is a connected graph, and 61 and 1 are the

degree and eccentricity of the root vertexr of Gy, respectively. Then the eccentric
connectivity index of P, M Gy and alkanes P, M Py, are computed as follows:

1) If n is even then:

gc(Pn M Gl)

§(Pa M Py)

4
+(n — 1)(51 + 5Pn)€1 + n(lecl (0) + n(\V(Gl)] — 1)(5181

3n2 4+ 2
(61 +3p)(e1 +£n) + B[V (G| + 7,) (u - epn)

+oiep, ([V(G1)| = 1),

3n2 + 2n

45Pn€Pn+5Pn(n+]‘) ( 1

— €Pn) + 2(77, — 1)5pn€pn

+ndp, Dp,(0) +n(n —1)dp,ep, + 0p,ep, (n —1).
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2) If n is odd then:

gc(Pn M Gl) = (51 + 5Pn)(51 + EPn) + (n — 1)((51 + (Spn)efl + n51Dg(0)

+(01|V(G1)| + 0p,) <2(n2 —-1)+ r ; L_ €pn>

—H”L(’V(Gl)‘ — 1)5161 + (51813”(“/((;1)’ — 1),

n—1

¢(P,NP,) = 6p(n+1) <%(n2 —1)+ - Spn> +2(n+1)0p,ep,

+n(5anpn(0) + n(n — 1)5}:'”51:'” + 5pn€pn(n — 1).

In the following theorem, we use the notations given in the proof of The-
orem 3.

Theorem 5. Suppose G1 and Go are connected graphs. Then the first
Zagreb index of the hierarchical product is computed as follows:

My(Ga N Gh) = [V(G2)[IV(G1)I6:1% + [V (G2)[82° + 2|V (G2)|61 6.

Proof. Suppose H = G2 M Gy and z = x9x1 € V(H). Consider three
separate cases for x and apply [4, Equation 5]. If z = 00 then degy(x) = d1 + da.
If x = 290, x5 # 0, then there are |V(G2)| — 1 choices for the vertex z and
degy(z) = 01 + d2. Finally, if x = zoz1, 1 # 0, then there are |V (G1)| — 1
choices for the vertex x1, |V (G2)| choices for xo and degy(x) = 6.

Mi(GoGy) = Z degg,n, (v)
VeV (G2NGh)

= (V(G2)| = 1) (61 + 82)* + [V(G)|([V(G1)| = 1)61% + (61 + 62)?
= [V(G)IV(G1)I6:” + [V(G2)[82% + 2|V (Go) |12,
which completes our argument. O

Corollary 6. With the notations of Theorem 3, we have:

a) Ml(Pn M Gl) = n\V(Gl)]512 + néan + 2n(51(5pn,
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b) My(P,11P,) = 0p%(n®+3n),
¢) Mi(GoMGy) = 2/E(GeNG)|(|[V(G2NGy)| —1) — Mi(Ga M Gh)
= 2(|E(G2)| + V(G| E(G)D(IV(G)[V(G2)| — 1)
—M1(Go N Gy),
d) Mi(P,M1Gy1) = 2(n—1+n|E(G)])(|V(G1)n—1) - My(P, N Gy),
e) My(P,MP,) = 2(n—1)%>—=5p2n%+3n),
f) Ma(P,Gy) = (n—1)(81 + 1)* + n(Ma(Gy) + 612),
g) My(P,MP,) = (n—1)(6p, +1)® +n(4n —8 +dp,?),
h) My(P,MGy) = 2(n—1+n|E(G1)])? - (n— 1) +1)*
—n(Ms(Gh) + 6,2) — %(n!V(Gl)\élz +ndp, 2+ 26165, ),
i) Mo(P,MP,) = 2(n—1+n(n—-1)%*—(n—1)(p, +1)°

1
—n(4n — 8 +dp,?) — §5pn2(n2 + 3n).

Proof. Apply Theorem 5 and [3, Propositions 2 and 4]. O
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