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NOUN SENSE DISAMBIGUATION USING

CO-OCCURRENCE RELATION IN MACHINE

TRANSLATION

Changil Choe, Hyonil Kim

Abstract. Word Sense Disambiguation, the process of identifying the
meaning of a word in a sentence when the word has multiple meanings,
is a critical problem of machine translation. It is generally very difficult
to select the correct meaning of a word in a sentence, especially when the
syntactical difference between the source and target language is big, e.g.,
English-Korean machine translation. To achieve a high level of accuracy
of noun sense selection in machine translation, we introduced a statistical
method based on co-occurrence relation of words in sentences and applied
it to the English-Korean machine translator RyongNamSan.

1. Introduction. In machine translation, WSD (Word Sense Disam-

biguation) is one of the most difficult problems and numerous works have been

devoted to solving this problem. These works can be found in various reposi-

tories for machine translation, and some of them are listed at the end of paper
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[1–12]. Well known disambiguation methods, such as knowledge based, example

based, and co-occurrence relation based method, as well as methods using linear

programming and logic programming, have their own respective.advantages and

disadvantages.

To solve the disambiguation problem of noun sense selection in machine

translation we introduced a statistical method based on co-occurrence relation of

words in sentences. Training data are automatically built from an English-Korean

bilingual corpus, and an extended sense set is introduced to enhance efficiency

of training. In section 2 and 3, we describe the details of our method. The

analysis of the statistical experiment in subsection 4 shows that our approach is

an effective method for WSD.

Statistical Method for Selecting Noun Sense using Co-oc-

currence Relation. In sentences, words have direct or indirect semantic rela-

tion with other words. That is, the words which frequently and simultaneously

occur in same sentences are strongly semantically related to each other much,

while the words which never occur simultaneously in sentences have no semantic

relation. This relation between words, the so-called co-occurrence relation, plays

an important role in WSD.

We call the set of words which have co-occurrence relation with word w

its CWS (Co-occurrence Word Set) and denote by C(w). The CWS of each word

is extracted from an English raw corpus by applying statistical testing. The CWS

of prepositions, articles, determiners and conjunctions are not considered.

Let M(w) denote the sense set of a word w. The problem of estimating

the optimal sense m∗ of the word w in sentence s can be formalized as follows.

(1) m∗ = arg max
m∈M(w)

P (w,m|s)

In a sentence, the words that have no co-occurrence relation with w do

not affect the sense estimation ofw. Therefore, we can rewrite (1) as follows.

m∗ = arg max
m∈M(w)

P (w,m|C(w))

= arg max
m∈M(w)

P (w,m) · P (C(w)|w,m)

= arg max
m∈M(w)

P (m|w) · P (w) · P (C(w)|w,m)

= arg max
m∈M(w)

P (m|w) ·
∏

c∈C(w)

P (c|w,m)(2)
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It’s not easy to estimate correctly the parameter P (c|w,m) in (3), as we

are faced with a data sparse problem in estimation.

To solve this problem, we consider the hypernym of each word, which has

an is-a relation with the word in a hierachical sense structure such as Thesaurus

or WordNet, and also consider the sense assigned to the word. We define the ESS

(Extended Sense Set) E(w) of sense set M(w) as follows.

E(w) = M(w) ∪ {m′|isa(m,m′) = true, m ∈ M(w)}

Here isa(m,m′) = true means that sense m′ is the hypernym of sense m. Sub-

stituting M(w) of (2) with E(w), we get the following expression:

(3) m̂ = arg max
m∈E(w)

P (m|w) · Π
c∈C(w)

P (c|w,m)

From the definition of the ESS, we can estimate m∗ by analyzing the

solution m̂ of (3).

Parameter Estimation. To estimate two parameters P (m|w) and

P (c|w,m), a sense tagged English corpus. However, it is very expensive to build

such large training data. We extract training data using E-K automatic alignment

from an E-K bilingual corpus and dictionary. Figure 1 shows the parameter

estimation process.

The estimation of parameters P (m|w) and P (c|w,m) from the training

data is formalized as follows.

P (m|w) =
Σ′

mCT (w,m′) ∗ WG(m,m′) + 1

CT (w) + N1
(4)

P (c|w,m) =
Σ′

mCT (w,m′, c) ∗ WG(m,m′) + 1

Σ′
mCT (w,m′) ∗ WG(m,m′) + N2

(5)

Here, CT (w) is the count of times that w is semantically tagged, CT (w,m′)

is the count of times that w is semantically tagged as m′ and CT (w,m′, c) is the

count of sentences in which the word assigned semantic tag m′ and the word c

appear simultaneously. WG(m,m′) represents the weight that means the possi-

bility of replacing the semantic tag m with virtual semantic tag m′. We set this

weight to be 1 in case that m is equal to m′, to be between 0 and 1 in case that

m′ is the hypernym of m, and to be 0 otherwise. N1 and N2 are the constants

for the smoothing.
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Fig. 1. Parameter estimation process

Experiments. We used the two polysemous words “plant” and “bank”

to test the effect of our approach. Table 1 shows the sense set and ESS of

the words “plant” and “bank” in the dictionary of the E-K machine translation

system RyongNamSan. Table 2 shows the CWSs of the words.

Table 1. The sense set and ESS of “plant” and “bank”

Word Sense set ESS

plant factory,
plant,
equipment

factory, work area, establishment, place, plant, liv-
ing thing, equipment, goods, thing, lifeless thing

bank enterprise,
embankment,
shore

enterprise, organization, social collective, compo-
sition, abstract thing, embankment, flood con-
trol equipment, service, establishment, public es-
tablishment, establishment, place, concrete thing,
shore, far and near, space

Table 3 shows the result of extracting the sentences which include the

word “plant” or “bank” from a semantically tagged English corpus. We used 80

percent of the total data to estimate the parameters and 20 percent to test our

approach.
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Table 2. CWSs of “plant” and “bank”

Word Set of co-occurrence words

plant animal, soil, root, seed, transgenic, growth, gene, nu-
trient, crop, water, leaf, produce, tissue, power, heat
production, food, cell, fruit,. . .

bank loan, credit, financial, central, capital, risk, lending, de-
posit, fund, river, cod, inshore, offshore, boat, . . .

Table 3. Analysis of sentences which include “plant” or “bank”

Word Number Number of sentences by sense

of
sentences

Sense Num of
sentences

Training
data

Test data

factory 10.098 8.091 2.007

plant 24951 plant 13.094 10.475 2.619

equipment 1.759 1.395 364

enterprise 5.230 4.180 1.050

bank 9393 embankment 1.294 1.031 263

shore 2.869 2.303 566

We measured the recall, precision and F-Score for each sense as follows.

(We put the same weight on recall and precision for the calculation of F-Score.)

recall =
the number of correct estimations to be m

the number of total words which tagged with m
× 100(6)

precision =
the number of correct estimations to be m

the number of estimations to be m
× 100(7)

F − Score =
2 · recall · precision

recall + precision
(8)

To measure the effect of the extended sense set, we performe two experi-

ments. The first experiment is to measure the performance of the system without

extended sense set, and the second experiment is to measure it with an extended

sense set. The results are shown in Table 4 and Table 5.

Based on these results we calculated the recall, precision, and F-Score. In

the first experiment average recall was 56.9%, average precision was 98.4% and F-
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Table 4. The result of the first experiment

word sense Number of
sentences

Num. of
correct/num

of total
estimations

Recall
[%]

Preci-
sion
[%]

F-
Score

factory 2.007 987/1,004 49.2 98.3 65.6

plant flant 2.619 1.741/1.763 66.5 98.8 79.5

equipment 364 52/54 14.3 96.3 24.9

enterprise 1.050 825/838 78.6 98.4 87.4

bank embankment 263 12/12 4.6 100 8.73

shore 566 293/301 51.8 97.3 67.6

Table 5. The result of the second experiment

word sense Number of
sentences

Num. of
correct/num

of total
estimations

Recall
[%]

Preci-
sion
[%]

F-
Score

factory 2.007 1.908/1.995 95.1 95.6 95.4

plant plant 2.619 2.541/2,664 97.0 95.4 96.2

equipment 364 329/331 90.4 99.4 94.7

enterprise 1.050 1.031/1.067 98.2 96.6 97.4

bank embankment 263 249/250 94.7 99.6 97.1

shore 566 542/562 95.8 96.4 96.1

Score was 72.1, and in the second one average recall was 96.1%, average precision

was 96.1% and F-Score was 96.1. These experiments show that introducing the

extended sense set results in significant enhancement of average recall from 56.9%

to 96.1%, but average precision fall downs from 98.4% to 96.1%. However F-Score

is increased from 72.1 to 96.1.

Conclusion. In machine translation, semantic analysis is a very impor-

tant process, but it is still very difficult because of the high cost of building a

database. We introduced a method for noun sense disambiguation by building

large amount of training data with low cost and using co-occurrence relation of
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words. We could build training data easily from E-K bilingual corpus by realizing

automatic E-K sentence alignment and word corresponding. And by introducing

ESS using Thesaurus or WordNet, we could enhance training efficiency. Using

ESS, we achieved significant enhancement of recall as 39.2%. The precision of

our approach is measured as 96.08%.
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