
Serdica J. Computing 6 (2012), 369–384

A VARIABLE NEIGHBORHOOD SEARCH APPROACH FOR

SOLVING THE MAXIMUM SET SPLITTING PROBLEM

Dragan Matić

Abstract. This paper presents a Variable neighbourhood search (VNS)
approach for solving the Maximum Set Splitting Problem (MSSP). The al-
gorithm forms a system of neighborhoods based on changing the component
for an increasing number of elements. An efficient local search procedure
swaps the components of pairs of elements and yields a relatively short run-
ning time. Numerical experiments are performed on the instances known in
the literature: minimum hitting set and Steiner triple systems. Computa-
tional results show that the proposed VNS achieves all optimal or best known
solutions in short times. The experiments indicate that the VNS compares
favorably with other methods previously used for solving the MSSP.

1. Introduction. Let C be a collection of subsets of the finite set S.
The Set Splitting Problem (SSP) is to determine if there exists a partition of
the set S into two subsets P1 and P2, such that each element of the collection C
has a non-empty intersection with each set P1 and P2, i.e., no element from C

ACM Computing Classification System (1998): I.2.8.
Key words: variable neighborhood search, combinatorial optimization, maximum set splitting

problem, 2-coloring of the hypergraph, Steiner triple systems.

370 Dragan Matić

completely belongs to one partition set P1 or P2. The optimization version of the
problem is called Maximum Set Splitting Problem (MSSP), where the objective
is to find the partition of the set S, such that the number of elements from C
with a non-empty intersection with both P1 and P2 is maximized. The subsets
from C, with this property, are called split subsets. In the weighted variant of
the problem, the subsets in C have weights, so the objective is to maximize the
total weight of the split subsets.

This well-known problem was proven to be NP-hard by L. Lovász in [17],
where the author investigated some invariants of the hypergraphs. A hypergraph
is a generalization of a graph, where, for a given set V of vertices, more (or
fever) than two vertices can be incident with one “edge” (such “edge” is called
a hyperedge). The problem of finding the minimum number of colors to color
the vertices in such a way, that no hyperedge is contained in any color class is
proven to be as hard as determining the chromatic number in a graph. A special
case is coloring the vertices in exactly two colors and the maximization variant of
this problem is called Max Hypergraph 2-Coloring. More precisely, 2-Coloring of
the hypergraph is to find if all vertices from V can be colored in two colors (for
example white and black), such that each hyperedge has at least one vertex of
each color. The Max Hypergraph 2-Coloring problem is to maximize the number
of hyperedges containing at least one white and at least one black vertex.

It is well known that MSSP and 2-Coloring of the hypergraph are the same
problems. Indeed, for a given set V of vertices of a hypergraph, each hyperedge
defines a subset of V , containing the elements incident with the hyperedge. Then
the set of all hyperedges is in fact one collection C of the subsets of V . Thus, to
determine the 2-Coloring of vertices that maximizes the number of hyperedges
containing vertices of both colors is the same task as to find a partition of the set
V such that each subset contains vertices in both partitions.

A special case of the MSSP is also the well-known Max Cut problem. For
a given graph G = (V,E), the Max Cut problem is to find the partition of the
set V into two subsets V1 and V2 such that the number of edges with the ends in
different partitions is maximized. So, we can say that the Max Cut problem is
a case of Max Hypergraph 2-Coloring if each hyperedge is incident with exactly
two vertices, or a case of MSSP when all sets in C have cardinality 2.

Example 1. Let S = {1, 2, 3, 4, 5, 6, 7} and C = {S1, S2, S3, S4, S5},
S1 = {1, 2, 3, 7}, S2 = {2, 3}, S3 = {2, 3, 4, 5}, S4 = {4, 5, 7}, S5 = {1, 6, 7}.
Let us take a look on Figure 1. The figure shows a hypergraph, where the
vertices {v1, v2, . . . , v7} corresponds to the elements of S, and the hyperedges to
the subsets form C. The vertices v2 and v7 are colored white, and the others

A Variable Neighborhood Search Approach . . . 371

black. From the figure, it can be perceived that each hyperedge (each subset)
contains at least one vertex (element) of each color. So, the partition (P1, P2) =
({2, 7}, {1, 3, 4, 5, 6}) is optimal, because each subset contains at least one element
from each partition.

v1

v2

v3

v4v5

v6

v7

e1

e2

e3

e4

e5

Fig. 1. An example of a hypergraph

2. Previous work. In recent years, the MSSP and (Max) Hypergraph
2-Coloring problems, as well as their variants and similar problems, have been
widely investigated by many researches, both from combinatorial and algorithmic
viewpoints. Recall that the first proof that the problem is NP-hard is given in
[17] and the problem remains NP-hard even if all subsets have cardinality are
less or equal to 3 [9]. Furthermore, the decision variant of the problem is NP
complete, because it is obvious that any solution can be verified in polynomial
time. Even if all subsets in the collection are of fixed size k, k ≥ 2, the problem
is also NP-hard. The MSSP is also APX-complete, i.e., cannot be approximated
in polynomial time within a factor greater than 11/12 [10]. A simplified variant
of the problem is the case when each element of C has at most two elements.
The decision variant then becomes a “graph 2 colorability problem” which can
be solved in polynomial time, for example by using the well known depth first
search algorithm.

In [1], the first quadratic integer formulation (QIF) is introduced and is
used for constructing the 0.724-approximation algorithm of the MSSP. In [21],

372 Dragan Matić

the authors improved that formulation by adding some new valid inequalities
and by improving the rounding method. By the improvement, a slightly better,
0.7499-approximation is reached.

Several results related to the kernelization method have been improving
the upper bounds of the algorithm’s running times. Starting with the running
time O(72kNO(1)) and O(8kNO(1)) in [6] and [7], in [15] the improvement is
obtained with the value O(2.65kNO(1)). Finally, in [3, 4] a randomized algorithm
with the running time O(2k + N) for a weighted version of problem is provided
and in [16] the result O(1.96k + N) is presented.

A DNA-based algorithm for solving the MSSP is proposed in [2]. In order
to construct solution spaces of DNA strands in SSP, the authors used so called
sticker based model for DNA computation. To develop a DNA based algorithm,
biological operations were applied to the Adleman-Lipton model. The proposed
method proves that molecular computing can be an useful tool for solving this
and also other NP-hard problems.

Recent notable results in solving MSSP are presented in paper [14]. The
authors introduced the first integer linear formulation (ILP) and proposed a ge-
netic algorithm (GA) for solving MSSP. Based on the ILP model, tests are run in
an ILP solver and it is shown that the solver succeeds in finding optimal solutions
for all smaller-and most medium-scale instances. The GA implementation uses
binary encoding and the standard genetic operators adapted to the problem, im-
proved by a caching technique. Experimental results are performed on two sets
of instances, proving the efficiency and reliability of the proposed methods.

Another recent work deals with an electromagnetism-like (EM) heuristic
[13]. The EM implements a hybrid approach consisting of the attraction-repulsion
mechanisms for the movement of the particles, combining with the appropriate
scaling technique. The EM uses a fast local search procedure which additionally
improves the efficiency of the overall system. The algorithm was examined on
the same instances as in [14] and the results obtained clearly indicate that the
proposed EM is a useful tool for solving MSSP.

As many other set partition problems, the MSSP problem has direct and
closely related applications in various fields of science.

For example, a useful application of the set splitting approach is presented
in [19, 20]. The authors deals with the ternary content addressable memory
(TCAM) to solve the multi-match classification problem, which is needed for
network applications: intrusion detection systems, packet-level accounting. In
order to improve the performances of the use of TCAM, the authors use a set
splitting algorithm (SSA) to split the filters into multiple groups. SSA then

A Variable Neighborhood Search Approach . . . 373

performs separate TCAM lookups into these groups in parallel. By this approach,
at least half of the intersections are removed when a filter set is split into two sets.
This approach results in a low TCAM memory usage and better performances of
the overall algorithm.

Solving MSSP can be useful for finding solutions to some practical or-
ganizational problems. Suppose that a set of tasks S = {t1, t2, . . . , tm} and the
set of employees C = {E1, E2, . . . , En} are given, where each employee can do
several tasks. One wants to divide the set S into two subsets (for example tasks
are disposed in two periods), in a way that the number of employees who can do
at least one task in each period is as large as possible.

In education, the MSSP can be used to improve course organization and
lesson scheduling. Suppose that a course contains m lessons: L1, L2, . . . , Lm. In a
wider context, lessons can belong to the fields: F1, F2, . . . , Fn. Each field contains
several lessons and one lesson can belong to several fields. The task is to divide
the set of lessons into two periods (e.g. winter and summer semester), in a way
that as many fields as possible are covered in each period. The motivation of this
approach could be the methodical reason indicating that the basics (and not only
the basics) of each subject field should be repeated and continuously processed
during the whole academic year.

The rest of the paper is organized as follows. The next section presents
two integer programming formulations. In Section 4 the VNS algorithm for solv-
ing MSSP is described. Section 5 contains experimental results, based on the
instances used in [14] and also in [13]. Section 6 is the conclusion.

3. Mathematical formulation. This section presents two already
known integer programming formulations: quadratic integer formulation from [1]
and integer linear programming (ILP) from [14].

Before the formulations are listed, let us introduce the appropriate nota-
tion. Let S be a finite set with cardinality m = |S| and let C = {S1, S2, . . . , Sn}
be a collection of subsets of S. Without loss of generality, we suppose that
S = {1, 2, . . . ,m}. Let (P1, P2) be a partition of S. Recall that for the subset
Sj ∈ C we say that it “is split”, if Sj has non-empty intersections with both P1

and P2.

The quadratic integer formulation (1)–(4) introduces two sets of variables:

yi =

{

1, i ∈ P1

−1, i ∈ P2
, for i = 1, . . . ,m

374 Dragan Matić

and

zi =

{

1, Sj is split
0, Sj is not split

, for j = 1, . . . , n

The QIP is defined as

(1) max
n

∑

j=1

zj

subject to

(2)
1

|Sj| − 1

∑

i1,i2 ∈ Sj

i1 6= i2

1 − yi1 · yi2

2
≥ zj , for all Sj ∈ C

(3) zj ∈ {0, 1}, for j = 1, . . . , n

(4) yi ∈ {−1, 1}, for i = 1, . . . ,m

For the Integer linear programming (ILP) formulation (5)–(9), the para-
meters

sij =

{

1 i ∈ Sj

0 i /∈ Sj

for i = 1, . . . ,m, j = 1, . . . , n

are introduced to denote if the element i from S belongs to the subset Sj. The
decision variables are defined as

xi =

{

1 i ∈ P1

0 i ∈ P2

yj =

{

1 Sj is split

0 Sj is not split

The ILP model for the MSSP is formulated as follows:

(5) max
n

∑

j=1

yj

subject to

(6) yj ≤

m
∑

i=1

sij · xi, for every j = 1, . . . , n

A Variable Neighborhood Search Approach . . . 375

(7) yj +

m
∑

i=1

sij · xi ≤ |Sj | , for every j = 1, . . . , n

(8) yj ∈ {0, 1} , for every j = 1, . . . , n

(9) xi ∈ {0, 1} , for every i = 1, . . . ,m

It can easily be counted that the ILP formulation deals with m+n binary variables
and 2 · n constraints.

4. VNS for solving MSSP. The VNS technique was introduced by
Mladenović and Hansen in [18]. As an effective metaheuristic approach, in recent
years VNS has been intensively used for solving hard and complex optimization
problems. The main strategy of the VNS approach is to investigate the quality
of the solutions which belong to some neighborhood of the current best one.
By a systematic change of the neighborhoods, the algorithm is steered to leave
the suboptimal solutions and to change over better ones. This approach has a
reasonable explanation in the fact that multiple local optima are often in a kind
of correlation. So, investigating the quality of the current solution’s neighbors
and seeking a better local optimum during the local search can lead to better
objective value.

In general, the VNS generates a family of neighbors of the arbitrary so-
lution and at each step of the algorithm, a neighbor of the current solution is ex-
plored by a local search. This strategy of the VNS technique is usually combined
with the general strategy of most metaheuristic approaches, i.e., disseminating
the search into unexplored search spaces. To achieve this general proposition, the
VNS usually deals with neighborhoods of increasing cardinality. More precisely,
if x is a solution and Nk, (k = kmin, . . . , kmax) is a finite set of pre-selected neigh-
borhood structures, then Nk(x), the set of solutions in kth neighborhood of x, is
usually defined to satisfy the condition |Nk−1(x)| < |Nk(x)|. For an incumbent x
and an integer k associated to the kth neighborhood of the solution x, a feasible
solution x′ is generated in Nk(x), and a local search is then applied to x′ in order
to obtain a possibly better solution x′′. If x′′ is better than x, then x′′ becomes the
new incumbent and the next search begins at the first neighborhood Nkmin

(x′′);
otherwise, the next neighborhood in the sequence is considered in order to try
to improve upon solution x. If the last neighborhood Nkmax

is explored and a
solution better than the incumbent is not found, the search restarts at the first
neighborhood Nkmin

until a stopping condition is satisfied. The stopping criteria

376 Dragan Matić

most often used are maximum number of iterations, maximum number of iter-
ations between two improvements or maximum CPU time allowed. A detailed
description of different VNS variants is out of the paper’s scope and can be found
in [11, 12].

The basic scheme of VNS is shown in Figure 2. The whole VNS is imple-

Initialization:

3. Define the values k = kmin and kmax

While the stopping criterion is not met do

2. Determine the initial solution x (usually at random).

4. Define the stopping criterion;

1. Set k := kmin;

2. While k <= kmax do

Shaking procedure. Generate a point x
′ at random from the k-th neighborhood of x (x′

∈ Nk(x));

Local Search procedure. Apply a local search method with x
′ as initial solution;

Denote x
′′ the obtained local optimum;

Move or not procedure. If this local optimum is better than the incumbent, move

there (x := x
′′) and go to Step (1); Otherwise, set k := k + 1.

Collect output data and print the solution

and select the set of neighborhood structures Nk, for k = kmin, ..., kmax;

1. Read input data.

Fig. 2. VNS algorithm scheme

mented through two nested loops. The outer loop controls the overall iteration
process, while the inner loop controls the major search via two main VNS func-
tions, shaking and local search. The shaking procedure suggests a new potential
solution from the current neighborhood and local search is tries to improve that
solution “inside” the local neighborhood. If the current best solution can no
longer be improved by the shaking-local search system, the inner loop stops and
the outer one starts the next iteration. This process is repeated until the stopping
criterion is satisfied.

4.1. Initialization and objective function. Let S be a finite set and
|S| = m. A partition (P1, P2) of the set S, which is in fact a solution of the VNS
for solving MSSP, is represented as a binary array x with the length m. The
elements of the array correspond to elements of the set S, and indicate in which
of two subsets of S the elements are arranged, i.e., i ∈ P1 if xi = 1 and i ∈ P2 if
xi = 0. The initial solution is chosen randomly.

Each set from the collection C is represented as an array of belonging

A Variable Neighborhood Search Approach . . . 377

elements. For a given partition (P1, P2), for each element Sj ∈ C, the value yj is
calculated by the formula

yj =

{

1, Sj is split

0, Sj is not split

For the current solution, the algorithm calculates the objective value by
the formula

(10) obj(P1, P2) =
n

∑

j=1

yj

For each j ∈ {1, . . . , n} the time complexity for determining the value yi is O(m),
so the overall time complexity of the calculating objective function is O(mn).

4.2. Neighborhoods and the shaking procedure. The shaking pro-
cedure creates a new solution x′, x′ ∈ Nk(x) based on the current best solution
x. To define the kth neighborhood, the VNS randomly chooses some k ele-
ments from S. For each chosen element, the component is changed: all chosen
vertices belonging to P1 are moved into P2 and vice versa. Formally, the k-th
neighborhood of the vector x can be written as Nk(x) = {x′ : {i1, i2, . . . , ik} ⊂
{1, 2, . . . , |S|} x′

ij
= 1 − xij}.

In the algorithm, the value kmin is set to 2. In order to satisfy the the-
oretical condition which states that the size of each neighborhood should be
increased at each step, kmax is defined as kmax = min{20, |S|/2}. Since the size

of the k-th neighborhood is

(

|S|

k

)

, k < |S|/2 implies

(

|S|

k − 1

)

<

(

|S|

k

)

, i.e.,

|Nk−1(x)| < |Nk(x)| and the condition is satisfied. For larger instances, experi-
ments show that kmax = 20 is enough for reaching good solutions.

It is clear that shaking consists of k steps with O(|S|), so the overall time
complexity of the Shaking() is O(kmax · |S|).

4.3. Local search. For the solution x′ obtained by the shaking proce-
dure, the local search is called. In each iteration of the local search, the algorithm
tries to improve the solution by swapping the components of two elements from
S. For example, if a ∈ P1 and b ∈ P2, after the swapping the status is a ∈ P2

and b ∈ P1. Let us denote a new solution as x′′. In the case when x′′ is better
solution than x′, x′ becomes equal to x′′. The local search stops after the first
such improvement. Otherwise, if there was no improvement by the swapping, the
solution x′ is not changed and the local search continues with the next pair of
vertices.

378 Dragan Matić

When the local search is finished, three cases are analyzed:

a. If the objective value of x′ is strictly less than the objective value of the
incumbent, the search is repeated with the same x and the next neighbor-
hood.

b. In the case when the objective value of x′ is greater than of x, the currently
best solution x gets the value x′.

c. If the objective values of the two solutions x and x′ are the same, then
x = x′ is set with probability pmove and the algorithm continues the search
with the same neighborhood. In the other case, the search is repeated with
the same x and the next neighborhood with probability 1 − pmove. In the
algorithm, pmove is set to 0.4.

Experiments show that the proposed algorithm can reliably work even for
pmove = 0, but in that case the algorithm does not have any chance to move to
another solution with the same objective value. On the other hand, the values of
pmove close to 1 can cause cycling through the solutions with the same objective
values. So, setting the pmove close to the middle of these two boundary values
generally enables the best performances of the algorithm.

It is obvious that the local search forms pairs of elements and the total
number is O(m2). Swapping the component for each pair is done in O(1), and
the calculation of the objective value of the new solution is done in O(mn). So,
the overall time complexity of the local search is O(m3n).

When all neighborhoods have been considered, the algorithm begins again
with the first one, until the stopping criterion, maximum number of iterations
reached, is satisfied.

Summarizing the overall strategy, the algorithm directs the search to the
unexplored area by examining the quality of the solutions in some neighborhood
of the current one. The candidate solution is constructed by swapping the com-
ponent for some k elements. After that, the algorithm tries to improve that
solution locally, by swapping the components for pairs of elements. Choosing
new solutions from the neighborhoods avoids the algorithm becoming trapped
in sub-optimal solutions, while the moving procedure decreases the probability
of cycling. This overall strategy seems to be a good compromise between the
exploration and the exploitation part of the searching process, which is the key
factor for a good direction of improvement.

5. Experimental results. This section presents some computational
results of the proposed VNS method. The VNS implementation was coded in

A Variable Neighborhood Search Approach . . . 379

the C programming language. All tests were carried out on the Intel Core 2
Quad Q9400 @2.66 GHz with 8 GB RAM. The tests were performed on two sets
of instances: minimum hitting set instances (MHS) from [5] and Steiner triple
systems (STS) described in [8]. The first class (MHS) contains ten instances with
different numbers of elements (m = 50, 100, 250, 500) and different numbers of
subsets (n = 100, 10000, 50000). The set of STS consists of seven instances: the
smallest has 9 elements and 12 subsets and the largest has 243 elements and 9801
subsets. The STS instances are marked as harder, because the ILP solver was
unable to reach optimal solutions for middle and large scale sets, containing 27
and more elements [14]. For each problem instance, the VNS was run 20 times.
Each run stopped after 100 iterations.

Table 1 and Table 2 provide testing results of the proposed VNS approach
on MHS and STS instances. Both tables are organized in the same way: the first
two columns contain information on the number of elements (m) and number
of subsets (n); the next column (o/b) contains the best known solution, marked
with an asterisk ‘*’ symbol, if the solution is not proven as globally optimal. The
best VNS value is given in the column VNS, with the mark ‘opt’ in cases when
the VNS reached an global optimal solution known in advance, or the mark ‘best’
if the solution is the best known, but not proved as globally optimal.

It is clear that no solution can have an objective value greater than the
total number of subsets. So, for the first class of instances (MHS instances), it
is obvious that the values reached are the global optima. For the second class of
instances (STS instances), the optimality of the results for the first two instances
is proven by the exact method from [14]. For other STS instances, we cannot
guarantee that achieved best solutions are globally optimal.

The average time needed to detect the best VNS value is given in the t
column. The solution quality in all 20 executions (i = 1, 2, . . . , 20) is evaluated as

a percentage gap named agap =
1

20

20
∑

i=1

gapi, where gapi = 100∗
Opt.sol − soli

Opt.sol
is

evaluated with respect to the optimal solution Opt.sol, or the best-known solu-

tion Best.sol, i.e. gapi = 100∗
Best.sol − soli

Best.sol
in cases where no optimal solution

is found (soli represents the VNS solution obtained in the i-th execution). The

standard deviation of the average gap σ =

√

√

√

√

1

20

20
∑

i=1

(gapi − agap)2 is also pre-

sented.

380 Dragan Matić

Table 1. VNS results on MHS instances

m n o/b VNS tV NS agap σ

50 1000 1000 opt 0.17835 0.0 0.00

50 10000 10000 opt 2.71175 0.0 0.00

100 1000 1000 opt 0.2969 0.0 0.00

100 10000 10000 opt 3.7231 0.0 0.00

100 50000 50000 opt 124.589 0.0 0.00

250 1000 1000 opt 0.80325 0.0 0.00

250 10000 10000 opt 12.3331 0.0 0.00

500 1000 1000 opt 1.64985 0.0 0.00

500 10000 10000 opt 20.11155 0.0 0.00

500 50000 50000 opt 225.2309 0.0 0.00

Table 2. VNS results on STS instances

m n o/b VNS tV NS agap σ

9 12 10 opt 0.0009 0.0 0.00

15 35 28 opt 0.002 0.0 0.00

27 117 91* best 0.00915 0.0 0.00

45 330 253* best 0.04215 0.0 0.00

81 1080 820* best 0.27625 0.0 0.00

135 3015 2278* best 1.2607 0.0 0.00

243 9801 7381* best 11.84055 0.0 0.00

From Tables 1 and 2 it is clear that VNS reaches all known globally
optimal and best solutions. Also, these solutions are reached in each of the 20
runs, which indicates high reliability of the VNS algorithm. The computational
time is rather small even for the largest MHS instances, with 100 and 500 elements
and 50 000 subsets. The computational times for these instances goes up to 124
and 225 seconds, respectively. For all STS instances, the VNS easily reaches all
known optimal/best solutions in a short time.

Tables 3 and 4 contain comparative results obtained on MHS and STS
instances by various techniques from papers [14, 13] and the proposed VNS. Table
columns are organized as follows:

• the first two columns contain m and n;

• optimal value, if it is known, and otherwise the best known solution, is

A Variable Neighborhood Search Approach . . . 381

marked with an asterisk ‘*’.

• the next two columns contain the value and running time obtained by
CPLEX, with the mark N/A if the solution is not available due to memory
or time limits [14];

• the next two columns contain the value and running time obtained by GA
[14];

• the next two columns contain the value and running time obtained by EM
[13];

• the last two columns contain the value and running time obtained by VNS;

In all cases, if the technique reached the optimal(respectively best) solution, the
mark ‘opt(best)’ is used instead of the optimal(best) value.

Table 3. Comparative results on MHS instances

m n o/b CPL tCPL GA tGA EM tEM VNS tV NS

50 1000 1000 opt 0.078 opt 2.582 opt 0.158 opt 0.17835

50 10000 10000 opt 3.265 opt 60.039 opt 3.212 opt 2.71175

100 1000 1000 opt 0.188 opt 4.67 opt 0.334 opt 0.2969

100 10000 10000 opt 8.297 opt 168.603 opt 10.593 opt 3.7231

100 50000 50000 opt 155.203 opt 683.147 49998 216.316 opt 124.589

250 1000 1000 opt 0.219 opt 8.626 opt 1.062 opt 0.80325

250 10000 10000 opt 30.063 opt 336.894 opt 45.393 opt 12.3331

500 1000 1000 opt 0.500 opt 13.325 opt 2.336 opt 1.64985

500 10000 10000 opt 106.094 opt 437.909 opt 94.473 opt 20.11155

500 50000 50000 N/A — opt 2086.517 opt 486.124 opt 225.2309

Data shown in Tables 3 and 4 indicate high performances of the proposed
VNS. As well as the GA, the VNS achieves all optimal/best solutions, while the
EM algorithm fails to find the best solution for the MHS instance with 10000
elements and 50000 subsets. Comparing the computational times of the heuris-
tics, it is clear that the GA is about 5–10 times slower than the two remaining
methods for most instances. For the MHS instances, the VNS is up to twice
faster than the EM for most instances, (for the instances with 10000 subsets the
VNS is even 3–5 time, faster than the EM). For the STS instances, the EM and
the VNS computational times are similar.

382 Dragan Matić

Table 4. Comparative results on STS instances

m n o/b CPL tCPL GA tGA EM tEM VNS tV NS

9 12 10 opt 0.031 opt 0.193 opt 0.001 opt 0.0009

15 35 28 opt 0.343 opt 0.233 opt 0.003 opt 0.002

27 117 91* N/A — best 0.382 best 0.005 best 0.00915

45 330 253* N/A — best 0.914 best 0.030 best 0.04215

81 1080 820* N/A — best 2.893 best 0.173 best 0.27625

135 3015 2278* N/A — best 7.858 best 0.905 best 1.2607

243 9801 7381* N/A — best 65.409 best 14.953 best 11.84055

Although both set of instances are relatively small, any fair comparison
between existing methods and the proposed VNS can only be made by using the
same benchmark data. Experimental results performed on the instances known
in the literature indicate that the proposed VNS for solving the MSSP shows
better overall performances than the GA from [14] and the EM from [13]. The
results obtained in the short execution times make a reliable assumption that the
proposed VNS can be used efficiently for solving the MSSP.

6. Conclusions. This paper presents the VNS technique for solving
the NP hard Maximum Set Splitting problem. The VNS implements two main
procedures: shaking and local search. In the shaking procedure, the algorithm
forms the system of neighborhoods, which are based on changing the component
for an increasing number of elements. This approach disseminates the search in
a good direction and enables the effective application of the local search to the
current solution candidate. In order to improve the solution in local search, the
VNS algorithm swaps the components for pairs of elements, trying to move to a
better solution in the local neighborhood.

According to the computational results, the applied VNS approach proves
to be successful. The VNS achieves all known global optima and best solutions
in short times. The experiments indicate that the VNS algorithm shows better
overall performances than other methods used for solving the MSSP.

Possible directions for further work include the combination of the VNS
approaches with other heuristics or exact methods and their applications on sim-
ilar problems.

A Variable Neighborhood Search Approach . . . 383

REFERE NC ES

[1] Andersson G., L. Engebretsen. Better approximation algorithms for set
splitting and not-all-equal sat. Inform. Process. Lett., 65 (1998), 305–311.

[2] Chang W. L., M. Guo, M. Ho. Towards solution of the set-splitting prob-
lem on gel-based DNA computing.Future Gener. Comput. Syst., 20 (2004),
No 5, 875–885.

[3] Chen J., S. Lu. Improved algorithms for weighted and unweighted set split-
ting problems. LNCS, Vol. 4598, Springer, 2007, 537–547.

[4] Chen, H., S. Lu. Improved parameterized set splitting algorithms: A prob-
abilistic approach. Algorithmica, 54 (2009), 472–489.

[5] Cutello V., G. Nicosia. A clonal selection algorithm for coloring, hitting
set and satisfiability problems. LNCS, Vol. 3931, Springer, 2006, 324–337.
http://www.dmi.unict.it/∼nicosia/cop.html

[6] Dehne F. K. H. A., M. R. Fellows, F. A. Rosamond. An FPT algo-
rithm for set splitting. In: WG, LNCS, Vol. 2880, Springer, 2003, 180–191.

[7] Dehne F. K. H. A., M. R. Fellows, F. A. Rosamond, P. Shaw. Greedy
localization, iterative compression, modeled crown reductions: New fpt tech-
niques, an improved algorithm for set splitting, and a novel 2k kernelization
for vertex cover. In: IWPEC, LNCS, Vol. 3162, Springer, 2004, 271–280.

[8] Fulkerson D. R., G. L. Nemhauser, L. E. Trotter. Two computa-
tionally difficult set covering problems that arise in computing the l-width
of incidence matrices of steiner triple systems. Math. Prog. Study, 2 (1974),
72–81. http://www.research.att.com/∼mgcr/data/steiner-triples.tar.gz

[9] Garey M., D. Johnson. Computers and intractability: A guide to the
theory of NP-completeness. Freeman, San Francisco, 1979.

[10] Guruswami V. Inapproximability results for set splitting and satisfiability
problems with no mixed clauses. LNCS, Vol. 1913, Springer, 2000, 155–166.

[11] Hansen P., N. Mladenović, J. A. Moreno-Pérez. Variable neighbour-
hood search: methods and applications (invited survey). 4OR: A Quarterly

Journal of Operations Research, 6 (2008), 319–360.

384 Dragan Matić

[12] Hansen P., N. Mladenović, J. A. Moreno-Pérez. Variable neighbour-
hood search: algorithms and applications. Ann. Oper. Res., 175 (2010), No
1, 367–407.

[13] Kratica J. An Electromagnetism-like method for the maximum set split-
ting problem. YUJOR, 23 (2013), No 1, 1–11.

[14] Lazović B., M. Marić, V. Filipović, A. Savić. An integer linear pro-
gramming formulation and genetic algorithm for the maximum set splitting
problem. Publications de l’Institut Mathematique, 92(2012), No 106, 25–34.

[15] Lokshtanov D., C. Sloper. Fixed parameter set splitting, linear kernel
and improved running time. In: ACiD, 4 (2005), 105–113.

[16] Lokshtanov D., S. Saurabh. Even faster algorithm for set splitting!.
In: Proceedings of the International Workshop on Parameterized and Exact
Computation (IWPEC), 2009, 288–299.

[17] Lovász L. Coverings and colorings of hypergraphs. In: Proceedings of the
4th Southeastern Conf. on Comb., Utilitas Math., 1973, 3–12.

[18] Mladenović N., P. Hansen. Variable neighbourhood search. Comput.

Oper. Res., 24 (1997), 1097–1100.

[19] Yu F., T. V. Lakshman, M. A. Motoyama, R. H. Katz. SSA: A Power
and Memory Efficient Scheme to Multi-Match Packet Classification. In: Pro-
ceedings of the ACM Symp. Architecture for Networking and Comm. Sys-
tems (ANCS 05), 2005, 105–113.

[20] Yu F., T. V. Lakshman, M. A. Motoyama, R. H. Katz. Efficient
Multimatch Packet Classification for Network Security Applications. IEEE

J. Selected Areas in Comm., 24 (2006), No 10, 1805–1816.

[21] Zhang J., Y. Ye, Q. Han. Improved approximations for max set splitting
and max NAE SAT. Discrete Appl. Math., 142 (2004), 133–149.

Dragan Matić

Mladena Stojanovića 2

Department of Mathematics and Informatics,

Faculty of Science and Mathematics

University of Banja Luka

Bosnia and Herzegovina

e-mail: matic.dragan@gmail.com

Received April 3, 2012

Final Accepted December 2, 2012

