
Serdica J. Computing 6 (2012), 333–348

VARIABLE NEIGHBORHOOD SEARCH FOR THE FILE

TRANSFER SCHEDULING PROBLEM

Zorica Dražić

Abstract. In this paper a file transfer scheduling problem is considered.
This problem is known to be NP-hard, and thus provides a challenging area
for metaheuristics. A variable neighborhood search algorithm is designed
for the transfer scheduling of files between various nodes of a network, by
which the overall transfer times are to be minimized. Optimality of VNS
solutions on smaller size instances has been verified by total enumeration.
For several larger instances optimality follows from reaching the elementary
lower bound of a problem.

1. Introduction. The problem discussed in this paper is introduced by
E.G. Coffman et al. in [3]. File transfer scheduling is concerned with transferring
a number of large files between various nodes of a computer network. At initial
time, files are located at some nodes and they should be transferred to some
other nodes of a network. For each file the amount of time needed for its transfer

ACM Computing Classification System (1998): I.2.8, G.1.6.
Key words: Metaheuristics, scheduling, file transfers, variable neighborhood search, opti-

mization.



334 Zorica Dražić

is known. The files are transferred directly between their starting and ending
nodes, without any forwarding involving other nodes. When the file transfer
starts, it continues without any interruption until its completion. Every node in
the network has its port constraint, i. e., the upper limit of simultaneous number
of file transfers (sum of uploads and downloads) it can handle. The problem of
minimizing the makespan of the schedule (the time interval between the beginning
of the first transfer and the completion of the last transfer) is investigated in this
paper. Node constraints make this problem hard to solve.

The file transfer scheduling problem (FTSP) can be modeled by an undi-
rected multigraph G = (V,E), which is called the file transfer graph. The vertices
v ∈ V represent the nodes of a network labeled with integers p(v) representing
its port constraint. The edges e ∈ E represent the files to be transferred la-
beled with integers L(e) representing the transferring time expressed in some
time units. The set of starting file transfer time moments forms the schedule for
the problem.

Minimizing the file transfer time is a common and very important prob-
lem in many areas such as Wide Area computer Networks (WAN), Local Area
Networks (LAN), telecommunications, as well as in multiprocessor scheduling
in a MIMD (multiple instruction multiple data) machine, task assignment in a
company, multi-tasking operating systems, etc.

In [3] the authors proved that the FTSP is NP-complete. They have
suggested several algorithms in which they have tried to compute the minimum
makespan in polynomial time, but the solutions were restricted by some condi-
tions: the file transfer graph G is bipartite and all the files have equal lengths;
the graph G possesses no simple cycle except in the trivial case of 2-vertex cycle
included by multiple edges and same value lengths; the graph G is a multiple-
edged graph with even cycle and equal file lengths; the graph G is a multiple-edged
graph with odd cycle, equal lengths of files, and all port capacities equal to one.

In [1] the authors presented the 2-dimensional neural network architecture
for solving the FTSP. The experiments were carried out on instances with small
dimensions—up to 39 vertices and 100 files that should be transferred. For all
instances where the solution was found, the theoretical lower bound of objective
function was reached which indicates that all test instances were too easy. The
simulation results showed that for bigger instances the algorithm didn’t converge
to the optimum solution.

In [9] the authors extended this model to directed file transfer graphs and
presented a polynomial-time algorithm for the problem when all file transfers
require an equal amount of time. Also, they studied the case when the file



Variable Neighborhood Search for the File Transfer Scheduling Problem 335

transfer time is arbitrary and proved that this problem is NP-complete.

In [5] the authors studied the performance of a greedy on-line algorithm
for a similar problem in which file transfer requests become known to the al-
gorithm one at a time and the routing decision must be made for each request
before any future requests are known. They discussed the performance of several
greedy on-line algorithms and showed that they are not always the best available.

In [6] the authors reconsidered time-index formulation of the FTSP in
multi-server and multi-user environments. Thy reduced the complexity of the
optimization by transforming it into an approximation problem.

2. Definition of the problem. This section has been written with
extensive reference to the work of E. G. Coffman et al. [3]. Given a file transfer
graph G = (V,E), a schedule can be formally represented as a function s : E →
[0,∞) that assigns a starting time s(e) to each edge e ∈ E, such that for each
vertex v ∈ V and time t ≥ 0

|{e : v is an end point of e and s(e) ≤ t ≤ s(e) + L(e)}| ≤ p(v) .

The makespan length of a schedule s is defined as the largest finishing
time, i.e., the maximum of s(e) + L(e) over all edges e ∈ E. Figure 1 illustrates
the file transfer graph and one of feasible timing diagrams which represent the
schedule. Given a file transfer graph G, the goal is to find a schedule s with the
minimum possible makespan.

One lower bound for the makespan, which shall be called the elementary
lower bound, is obtained as follows. Let Eu denote the set of files that are to
be sent or received by vertex u (i. e., the set of all edges that have one endpoint
at the vertex u). The degree of the vertex u is given by du = |Eu| . Let Eu,v

denote Eu

⋂

Ev , i. e., the set of files to be transferred between u and v. Further,
let

∑

u =
∑

e∈Eu
L(e) and

∑

u,v =
∑

e∈Eu,v
L(e). For consistency with this

notation, pu will be used to denote the port constraint p(u) for each vertex u.
The time to transmit all files sent or received by vertex u is at least ⌈

∑

u /pu⌉ (⌈x⌉
denoting the smallest integer greater than or equal to x). Thus, the following
holds true: The optimal schedule length OPT(G) for any graph G must satisfy
OPT (G) ≥ maxu⌈

∑

u /pu⌉. The right-hand side of this inequality is called the
elementary lower bound for the considering FTSP.

Figure 2 illustrates the fact that OPT(G) can be substantially larger than
maxu∈V ⌈

∑

u /pu⌉. Here the value of a lower bound is max{2, 2, 2, 6

2
} = 3, but the

following simple analysis shows that a makespan of 3 is not achievable. In order



336 Zorica Dražić

Fig. 1. A file transfer graph and a schedule

Fig. 2. An example where OPT (G) ≥ maxu⌈
∑

u
/pu⌉



Variable Neighborhood Search for the File Transfer Scheduling Problem 337

to finish the transfer of three files of vertex v4 in 3 time units, this two-port vertex
has to transmit two of its three files simultaneously. During this time the third
transfer cannot be in transmission. Since their transfer requires 2 time units, the
third transfer can start only when the other two finish. Thus, it is easy to see
that OPT (G) = 4 > 3.

Also note that this lower bound is not achieved by the schedule in Figure 1,
where the length of the makespan is equal to 9, but ⌈

∑

v1
/pv1
⌉ = 7/1 = 7.

It turns out that finding OPT(G) is not an easy problem to solve. The
general decision problem “Given G and a bound B, is there a schedule s for
G with makespan B or less” is NP-complete and hence unlikely to be solved
efficiently by methods known so far. For a discussion of NP-completeness see [3].

3. Variable neighborhood search for FTSP. Variable neighbor-
hood search (VNS) is an effective metaheuristic introduced by Mladenović and
Hansen [10] in 1997. The basic idea of this method is to proceed to a systematic
change of neighborhoods in order to avoid the algorithm traps in local optima.
The algorithm does not follow a trajectory but explores an increasingly distant
neighborhood of the current solution and jumps from the current solution to
another only if the new solution is better. Local search and shaking functions
perform this exploration, systematically.

At the starting point, a suitable neighborhood structure must be defined.
Let N t(t = kmin, . . . , kmax) be a finite set of neighborhoods, where Nk(x) is the
set of solutions in the kth neighborhood of the solution x. The simplest and
most common choice is a neighborhood structure in which the neighborhoods
have increasing cardinality: |Nkmin(x)| < |Nkmin+1(x)| < . . . < |Nkmax(x)|.

At each step, VNS starts from the incumbent solution x and an integer
k ∈ {kmin, . . . , kmax} associated to a current neighborhood. In the shaking step a
random solution x′ is generated from the Nk(x). Starting from x′, a local search
is then performed to produce a possibly better solution x′′. After exploring
the local area, the best solution of the local search x′′ is compared with x. If
x′′ is better than x, it replaces x and the next search continues with the first
neighborhood Nkmin of x′′. Otherwise, x is not replaced and algorithm continues
from the shaking phase with the next neighborhood structure.

Whenever kmax is attained, the search continues with the first neighbor-
hood Nkmin. This is repeated until some stopping criterion is met. Possible
stopping conditions can be a maximum CPU time allowed, maximum number of
iterations or maximum number of iterations between two improvements. In its
most popular version, the VNS algorithm takes the following form:



338 Zorica Dražić

/* Initialization */
Select a set of neighborhood structures Nk, k = kmin, . . . , kmax

that will be used in the search;
Randomly choose an arbitrary initial point x ∈ X and set

x∗ ← x, f∗ ← f(x);
repeat the following steps until the stopping criterion is met
1: Set k ← kmin;

repeat the following steps until k > kmax

/* Shaking */
Generate at random a point x′ ∈ Nk(x∗) ;
/* Local search */
Apply some local search method with x′ as initial solution

to obtain a local minimum x′′ of the problem;
/* Move or not */
if f(x′′) < f∗ then

Set x∗ ← x′′, f∗ ← f(x′′) and goto 1;
endif

Set k ← k + 1;
end

end

Stop. Point x∗ is an approximative solution of the problem.

A detailed description of different VNS variants is out of this paper’s
scope and can be found in [4] by Hansen and Mladenovic, 2001. Some recent
successful VNS applications can be found in:

• Xiao et al. in [12] presented a reduced VNS algorithm and several imple-
mentation techniques for solving uncapacitated multilevel lot-sizing prob-
lems. The algorithm is competitive against other methods, enjoying good
effectiveness as well as high computational efficiency.

• Kratica et al. in [7] considered a VNS approach for the task assignment
problem. An appropriate neighborhood scheme along with a shaking oper-
ator and local search procedure are constructed specifically for this problem.
The proposed VNS approach reached all optimal solutions quickly.

• Mladenović et al. in [11] presented a VNS approach to solving the one-
commodity pickup-and-delivery traveling salesman problem. Using a binary
indexed tree, they efficiently update the data structures mainly used for
solving the classical TSP for feasibility checking in the neighborhoods. The
proposed VNS-based heuristics outperformed the best-known algorithms in



Variable Neighborhood Search for the File Transfer Scheduling Problem 339

terms of both solution quality and computational efforts and improved the
best-known solution of all benchmark instances from the literature (with
100 to 500 customers). They were also able to solve instances with up to
1000 customers.

• Labadie et al. in [8] investigated the Team Orienteering Problem (TOP), an
NP-hard problem that arises in vehicle routing and production scheduling
contexts. They proposed a VNS procedure based on the idea of exploring
granular instead of complete neighborhoods in order to improve the algo-
rithm’s efficiency without losing effectiveness. The method comes out to
be, on average, quite effective allowing to improve the best known values
for 25 test instances.

• Carrizosa et al. in [2] applied VNS metaheuristics to continuous optimiza-
tion problems. Instead of perturbing the incumbent solution by randomly
generating a trial point in a ball of a given metric, they proposed per-
turbing the incumbent solution by Gaussian distribution. Computational
results showed some advantages of this new approach.

For solving the FTSP the following optimization problem is considered:

min
x∈X

f(x).

In order to apply VNS metaheuristics for FTSP, first of all the objective function
f(x) and the set X must be defined. The set X = {1, ...n}n is a set of n-
dimensional vectors with integer elements, 1 ≤ xk ≤ n, where n is the number
of edges in the FTS problem. For an arbitrary vector x ∈ X the value of the
function f(x) is obtained as follows. The elements xk of x are considered to be
priorities assigned to each edge ek in the graph. With given edge priorities, the
unique schedule is formed following this algorithm:

1) All edges are uniquely sorted according to their priority. In the case of
identical priority values, the edge with larger length has priority, and if the
lengths are the same, the one with the smaller index.

2) All time lengths li are integers, so in the optimal schedule all edges are
started at integer time moments. Starting with time t = 0 the algorithm
tries to find the first feasible edge from the sorted array, i. e., that does not
violate vertex constraints. To this edge a starting time t will be assigned.
The same procedure is repeated for the remaining nonscheduled edges. If no
edge could be started at time t, t is increased by 1 and the whole procedure
repeated until all edges ek get their starting times tk.



340 Zorica Dražić

For the obtained schedule, the value of the function f(x) is defined as the
maximal ending time for all edges, so f(x) = max1≤k≤n(tk + lk).

Input parameters for VNS are: minimal and maximal number of neigh-
borhoods which should be searched, kmin and kmax, maximal number of iterations
and p which represents probability of moving from one solution to another with
same value of the objective function.

Initialization is carried randomly. At the beginning of the VNS procedure
for each graph an initial solution x is formed by a random permutation of the
integer values 0, 1, . . . , n − 1.

The neighborhood structures are the key elements of VNS and the perfor-
mance depends on the choice of the neighborhood structure. The main difficulty
is to find a balance between effectiveness and the chance to get out of a local min-
imum. For a given k, the neighborhood Nk(x) contains all priority vectors which
may differ from the current solution x in at most k index positions. The shaking
step in VNS generates a new vector x′ ∈ Nk(x) following the next algorithm:

1) First, a vector of k distinct random integers from 0, 1, . . . , n− 1 is formed.
This vector (i1, . . . , ik) represents the indices of the solution vector which
will be modified.

2) Using the values of i1, . . . , ik obtained at the previous step, another vector
(p1, . . . , pk) is formed as a random permutation of these values. This vector
contains priority values to be used for obtaining x′.

3) The vector x′ is created as a copy of the current vector x, after which only
k of its elements are modified as x′(ij) = pj , j = 1, 2, . . . , k.

The solution x′, obtained from the shaking procedure, is usually not even a
locally optimal solution, so from x′ a local search is performed. The local search
explores the neighborhood of a solution x′ in order to identify a new solution
with a smaller objective function value. The main component of a local search
is the definition of an appropriate neighborhood. The neighborhood of a given
solution consists of all solutions which can be obtained from the given solution
by modifying the current solution in some way. The small neighborhood of x′,
which is here explored for better solution, consists of all vectors obtained from x′

by swapping two arbitrary elements. The main advantage of these neighborhoods
is that they can be explored very fast. The first improvement strategy was used.
This strategy iteratively scans the neighborhood of x′ and as soon as it finds
the first improving solution (i. e., with the smaller objective function value), the
local search is restarted and the improved solution is passed as initial solution



Variable Neighborhood Search for the File Transfer Scheduling Problem 341

to the next iteration. If there is no improvement, the solution x′ is not changed.
The local search stops when the solution can no longer be improved and the best
solution is denoted by x′′.

After the local search procedure it should be decided whether the search
should move to the new solution x′′ or not. The basic VNS algorithm is moving
from solution x to solution x′′ only if the objective function value for x′′ is smaller
than the value of the objective function for x. In the cases when the problem
has many local minima with the same objective function value, moving from
one to another can expand the search and increase the chance of finding a better
solution. On the other hand, if this move is made every time when a solution with
the same objective function value is found, there is a large probability of getting
into cycles. To prevent both of these problems, in cases when f(x) = f(x′′)
the proposed algorithm uses a parameter p which presents the probability of
moving from one solution to another. Thus, after the local search, there are
three possibilities:

• In the case when solution x′′ is better than x, i. e., f(x′′) < f(x), set x := x′′

and continue the search with the same neighborhood Nk.

• If f(x′′) > f(x), then repeat the search with the same x and the next
neighborhood.

• If f(x′′) = f(x), then with probability p set x := x′′ and continue the
search with the same neighborhood Nk and with probability 1 − p repeat
the search with the same x and the next neighborhood.

The stopping criterion of the proposed VNS was set to a limit on the
maximum number of iterations. One iteration corresponds to constructing one
new solution (shaking) and optimizing it locally in the local search step.

4. Experimental results. This section presents the experimental
results which show the effectiveness of the VNS method applied to FTSP. All
computations were carried out on a single core of the Intel Core 2 Duo 2.67 GHz
PC with 4 GB RAM under the Windows XP operating system. The algorithm
was coded in the C programming language.

For experimental testing randomly generated instances were used. Those
instances include different numbers of vertices of the graph (|V | = 5, 10, 30, 50, 100)
and different numbers of edges (|E| = 10, 50, 100, 200, 500). At the beginning of



342 Zorica Dražić

the generation process, for each vertex the randomly generated integer port con-
straint is selected from the interval [1, vmax], where vmax = 8, 15, 50, 80, 150, 300,
depending on the number of vertices in the graph. In a similar way, the lengths
for each edge were generated, choosing the random integer from the interval
[1, emax], where emax = 8, 15, 50, 80, 150, 300. After this, the adjacency matrix of
the graph is randomly generated avoiding self-loops. After creating the instance
in this way, if the graph is not connected, it is ignored and the new instance is
constructed. Avoiding self-loops and disconnected graphs is done to make the
instances more realistic. To diversify the testing process, for every pair of |V |
and |E| ten instances were generated by using different random seeds.

The following values of the VNS parameters were used: kmin = 2, kmax =
20, p = 0.4, itermax = 100. The VNS was run 20 times for each problem instance
and the results are summarized in Tables 1–3. Table 1 presents results for small
size instances (vmax up to 10 and emax = 10) whose optimal solutions can be ob-
tained by total enumeration. Tables 2 and 3 contain results obtained on medium
size (vmax=10, 30 and emax = 50, 100) and large scale instances (vmax=30, 50, 100
and emax = 200, 500), respectively. The large CPU-times for instances in Table
3 are the reason for taking only 5 instead of 10 random instances as in Tables 1
and 2.

In order to verify the optimality of VNS solutions for small size instances,
a total enumeration technique was applied. For doing this, all permutations of
the set {1, . . . , |E|} are generated and the best (representing the schedule with
the best makespan) is chosen. The number of permutations grew rapidly with the
increase of the number of edges. Already for |E| = 10 the number of permutations
was 10! = 3628800, so, accordingly, the total enumeration obtained the solutions
only for instances where the number of edges of graph G was smaller or equal
to 10.

Table 1 is organized as follows:

• In the first column the test instance name is given. The instance name
contains information about the number of vertices and the number of edges,
respectively. For example, instance ftsp 50 200 0 has 50 vertices and 200
edges. The number 0 at the end is the ordinal number of the instance of
that type.

• The second column contains the elementary lower bound calculated as de-
scribed in Section 2.

• The third column contains optimal solutions which were obtained by total
enumeration in case when the method finished its work.



Variable Neighborhood Search for the File Transfer Scheduling Problem 343

• The fourth column, named VNSbest, contains the best objective function
value found by VNS in 20 runs. The solutions equal to the proved optimal
solutions from column 3 are marked as ‘opt’.

• The next two columns contain the average execution time (t) used to reach
the final VNS solution and the average total execution time (ttot).

• The last two columns (avnsp and σ) contain information on the average
solution quality: avnsp is an average relative percentage error of found opti-

mums defined as avnsp = 1

20

∑

20

i=1
vnspi, where vnspi = 100×VNSi−VNSbest

VNSbest

and VNSi represents the VNS solution obtained in the ith run, whereas σ
is the standard deviation of vnspi, i = 1, 2, . . . , 20 obtained by the formula

σ =
√

1

20

∑

20

i=1
(vnspi − avnsp)2.

Table 1. Experimental results on small size instances

Inst. LB opt VNSbest t ttot avnsp σ
(sec) (sec) (%) (%)

ftsp 5 10 0 14 14 opt 0.018 0.021 0.000 0.000
ftsp 5 10 1 10 15 opt 0.020 0.021 0.000 0.000
ftsp 5 10 2 12 12 opt 0.015 0.017 0.000 0.000
ftsp 5 10 3 14 14 opt 0.018 0.020 0.000 0.000
ftsp 5 10 4 10 10 opt 0.012 0.014 0.000 0.000
ftsp 5 10 5 6 13 opt 0.014 0.018 0.000 0.000
ftsp 5 10 6 12 13 opt 0.017 0.020 0.000 0.000
ftsp 5 10 7 8 8 opt 0.018 0.019 0.000 0.000
ftsp 5 10 8 11 11 opt 0.013 0.014 0.000 0.000
ftsp 5 10 9 26 26 opt 0.019 0.020 0.000 0.000
ftsp 10 10 0 12 15 opt 0.013 0.019 0.000 0.000
ftsp 10 10 1 12 12 opt 0.007 0.009 0.000 0.000
ftsp 10 10 2 5 14 opt 0.010 0.012 0.000 0.000
ftsp 10 10 3 19 19 opt 0.019 0.020 0.000 0.000
ftsp 10 10 4 17 17 opt 0.013 0.015 0.000 0.000
ftsp 10 10 5 10 15 opt 0.013 0.014 0.000 0.000
ftsp 10 10 6 3 15 opt 0.011 0.013 0.000 0.000
ftsp 10 10 7 11 14 opt 0.011 0.012 0.000 0.000
ftsp 10 10 8 11 14 opt 0.012 0.013 0.000 0.000
ftsp 10 10 9 2 14 opt 0.010 0.011 0.000 0.000

As can be seen from Table 1, total enumeration finished its work and
produced optimal solutions for all instances up to |E| = 10. VNS reached all
optimal solutions and running time on all instances in less than 0.021 seconds.



344 Zorica Dražić

Table 2. Experimental results on medium size instances

Inst. LB VNSbest t ttot avnsp σ
(sec) (sec) (%) (%)

ftsp 10 50 0 26 92 5.681 5.775 0.000 0.000
ftsp 10 50 1 17 81 4.733 4.811 0.000 0.000
ftsp 10 50 2 40 42 3.371 3.532 0.000 0.000
ftsp 10 50 3 31 57 4.147 4.212 0.000 0.000
ftsp 10 50 4 17 20 1.903 2.025 0.000 0.000
ftsp 10 50 5 32 LBopt 2.493 2.725 1.406 1.817
ftsp 10 50 6 36 LBopt 2.962 3.328 0.000 0.000
ftsp 10 50 7 85 LBopt 6.015 6.114 0.000 0.000
ftsp 10 50 8 85 LBopt 5.141 5.225 0.000 0.000
ftsp 10 50 9 44 LBopt 3.206 3.525 0.000 0.000
ftsp 30 100 0 199 LBopt 72.225 73.568 0.000 0.000
ftsp 30 100 1 45 68 26.481 27.229 0.000 0.000
ftsp 30 100 2 29 108 42.427 44.350 0.093 0.278
ftsp 30 100 3 108 LBopt 50.615 52.523 0.000 0.000
ftsp 30 100 4 31 67 26.903 27.724 0.970 4.188
ftsp 30 100 5 163 LBopt 59.277 60.400 0.000 0.000
ftsp 30 100 6 30 50 7.918 8.070 0.000 0.000
ftsp 30 100 7 177 LBopt 71.007 72.350 0.000 0.000
ftsp 30 100 8 45 96 42.533 43.724 0.000 0.000
ftsp 30 100 9 270 LBopt 98.240 100.092 0.000 0.000

Also, the optimal solution is reached in each of the 20 runs, which indicates high
reliability of the VNS algorithm.

The data in Tables 2 and 3 are presented in a way similar to Table 1. Note
that the third column from Table 1 is missing because the total enumeration could
not finish its work on larger instances for |E| > 10. On the other hand, VNS can
handle instances with larger number of elements. Although the optimal solution
of the problem is not found, the elementary lower bound (LB) is known and it is
easily calculated. If the solution obtained by VNS equals to LB, it is the optimal
solution of FTSP. If the VNS solution is greater than LB, there is no indication
whether the VNS solution is equal or near to optimal FTSP solution. In column
3 the best VNS solutions are presented. In cases when they are equal to LB the
optimal solution is found and this is marked with ‘LB opt’. In other cases the
optimal solution might be found as well, but in the absence of an efficient exact
method this is not known.

One of the significant characteristics of the VNS is its local search pro-
cedure, which effectively contributes to the intensification of the search process.



Variable Neighborhood Search for the File Transfer Scheduling Problem 345

Table 3. Experimental results on large scale instances

Inst. LB VNSbest t ttot avnsp σ
(sec) (sec) (%) (%)

ftsp 30 500 0 167 168 9348.251 9705.179 3.075 1.746
ftsp 30 500 1 718 LBopt 34507.249 34860.305 0.000 0.000
ftsp 30 500 2 269 LBopt 11505.293 12513.212 0.074 0.189
ftsp 30 500 3 117 129 6187.198 6739.084 5.271 2.671
ftsp 30 500 4 528 LBopt 20450.232 20823.454 0.000 0.000
ftsp 50 200 0 73 567 1409.227 1430.328 0.000 0.000
ftsp 50 200 1 89 116 358.705 368.036 1.164 2.560
ftsp 50 200 2 423 LBopt 1033.391 1048.931 0.000 0.000
ftsp 50 200 3 102 109 322.114 326.639 5.872 4.132
ftsp 50 200 4 59 344 851.106 863.951 0.000 0.000
ftsp 100 500 0 208 578 22430.227 22846.668 0.000 0.000
ftsp 100 500 1 197 227 9998.633 10234.793 5.132 2.608
ftsp 100 500 2 300 301 13189.866 13547.214 3.090 1.929
ftsp 100 500 3 794 830 31584.480 32155.459 0.000 0.000
ftsp 100 500 4 154 224 10114.071 10383.340 1.674 4.057

The local search is very fast for small size instances. As can be seen from Table
3, for larger instances the performance is slower since it uses sorting for calculat-
ing objective function values, but it still contributes to the overall efficiency. It
can also be seen that the instances of the same size have significantly different
execution times. This is due to different efficiency of the local search step, i. e.,
in some instances the local minimum procedure performed in each iteration is
much faster (reaches the local minimum more quickly) than in other instances.

For many instances the same solution was found in all 20 runs and avnsp
and σ are both zero. For other instances they are positive. It is interesting
to notice that sometimes avnsp is greater than σ and sometimes it is smaller.
In situations where in one or few runs the vnspi is significantly greater than
the others, the σ value is greater than avnsp. Contrary, in absence of such
outliers, the σ value is smaller than avnsp. Since avnsp and σ are average
relative percentage error and standard deviation of relative error, the previous
note agrees with the well-known theoretical results from mathematical statistics.

As mentioned before, for the large size instances the same number of
iterations were executed in significantly different times. In order to avoid such
large CPU times, the other experiment was performed. For each run, the stopping
criterion was set to CPU time limited to 1000s, instead of the 100 iterations
criterion used before. The results are summarized in Table 4.

In the cases where in all 20 runs for one instance the same solution was



346 Zorica Dražić

Table 4. Experimental results on large size instances with CPU times limited to 1000s

Inst. LB VNSbest avnsp σ
(%) (%)

ftsp 30 500 0 167 171 5.393 2.716
ftsp 30 500 1 718 LBopt 0.000 0.000
ftsp 30 500 2 269 LBopt 2.034 1.732
ftsp 30 500 3 117 135 4.327 3.738
ftsp 30 500 4 528 LBopt 0.000 0.000
ftsp 50 200 0 73 567 0.000 0.000
ftsp 50 200 1 89 116 0.000 0.000
ftsp 50 200 2 423 LBopt 0.000 0.000
ftsp 50 200 3 102 109 3.165 2.150
ftsp 50 200 4 59 344 0.000 0.000
ftsp 100 500 0 208 578 0.000 0.000
ftsp 100 500 1 197 237 9.008 4.292
ftsp 100 500 2 300 306 10.327 5.433
ftsp 100 500 3 794 830 0.000 0.000
ftsp 100 500 4 154 224 11.964 9.504

reached after 100 iterations, the same result was achieved after 1000s. As can be
seen, in most cases 1000s was sufficient time to find the same minima as obtained
in Table 3, but the avnsp and σ values are significantly greater, as expected. This
indicates that for some runs VNS needed much more time to obtain values equal or
close to VNSbest. The exceptions are instances ftsp 20 200 1 and ftsp 20 200 3,
where 100 iterations were completed in less than 1000s, so after an extended
execution time in 20 runs solutions closer to the obtained minimum were found.
For four instances the minimal result is greater than in Table 3.

As can be seen from the tables, VNS can handle much larger instances
than the neural network proposed in [1]. From the experimental results for the
proposed VNS it can be seen that the elementary lower bounds for problems were
not always equal to their optimal solutions as they were in [1]. This indicates
that the presented test instances are harder to solve.

5. Conclusions. In this paper, the variable neighborhood search ap-
proach for solving the file transfer scheduling problem is presented. The suitable
choice of neighborhood structures, efficient implementation of shaking and fast
local search procedures resulted in promising experimental results. For all in-
stances where the exact solution could be found by exact methods, VNS reached
those solutions very fast. For larger instances in some cases the optimality of



Variable Neighborhood Search for the File Transfer Scheduling Problem 347

the VNS solution is proved by matching with the elementary lower bound. From
the experimental results it can be seen that VNS is able to solve even large size
FTS problems. However, only static FTS test problems were considered, so the
usefulness of this metaheuristic is yet to be tested on more realistic dynamic FTS
problems (when the files arrive continuously).

This research can be extended in several ways. The dynamic variant
of FTSP should be investigated and its efficiency compared with other meta-
heuristics used in practice. One possible direction of the future work can be
parallelization of the presented VNS approach. Another direction can be im-
proving the performance of VNS through hybridization with exact methods or
other metaheuristics, particularly for large instances of the problem.

REFERE NC ES

[1] Akbari M. K., M. H. Nezhad, M. Kalantari. Neural Network Realiza-
tion of File Transfer Scheduling. The CSI Journal of Computer Science and

Engineering, 2 (2004), No 2&4, 19–29.

[2] Carrizosaa E., M. Dražić, Z. Dražić, N. Mladenović. Gaussian vari-
able neighborhood search for continuous optimization. Computers & Opera-

tions Research, 39 (2012), No 9, 2206–2213.

[3] Coffman E. G., M. R. Garey, D. S. Johnson, A. S. Lapaugh. Schedul-
ing File Transfers. SIAM Journal of Computing, 14 (1985), No 3, 744–765.

[4] Hansen P., N. Mladenović. Variable neighborhood search: principles
and applications. European Journal of Operational Research, 130 (2001),
449–467.

[5] Havill J. T., W. Mao. Greedy on-line file transfer routing. In: Proc.
IASTED International Conf. on Parallel and Distributed Systems, 1997,
225–230.

[6] Higuero D., J. M. Tirado, F. Isaila, J. Carretero. Enhancing file
transfer scheduling and server utilization in data distribution infrastructures.
In: Proceedings of MASCOTS 2012: The 20th IEEE International Sympo-
sium on Modelling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, 2012.



348 Zorica Dražić

[7] Kratica J., A. Savić, V. Filipović, M. Milanović. Solving the task
assignment problem with a variable neighborhood search. Serdica Journal of

Computing, 4 (2010), No 4, 435–446.

[8] Labadie N., R. Mansini, J. Melechovsky, R. Calvo. The team orien-
teering problem with time windows: an LP-based granular variable neighbor-
hood search. European Journal of Operational Research, 220 (2012), No 1,
15–27.

[9] Mao W. Directed File Transfer Scheduling. In: Proc. of the ACM 31st An-
nual Southeast Conference, 1993, 199–203.

[10] Mladenović N., Hansen P. Variable neighbourhood search. Computers

and Operations Research, 24 (1997), 1097–1100.

[11] Mladenović N., D. Urošević, S. Hanafi, A. Ilić. A general variable
neighborhood search for the one-commodity pickup-and-delivery travelling
salesman problem. European Journal of Operational Research, 220 (2012),
No 1, 270–285.

[12] Xiao Y., I. Kaku, Q. Zhao, R. Zhang. A reduced variable neighborhood
search algorithm for uncapacitated multilevel lot-sizing problems. European

Journal of Operational Research, 214 (2011), No 2, 223–231.

Zorica Dražić
Faculty of Mathematics
University of Belgrade,
Studentski trg 16/IV, 11 000 Belgrade
Serbia
e-mail: zdrazic@matf.bg.ac.rs

Received May 1, 2012
Final Accepted July 19, 2012


