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A NEW METHOD FOR COMPUTING THE ECCENTRIC

CONNECTIVITY INDEX OF FULLERENES

Modjtaba Ghorbani, Khadijeh Malekjani

Abstract. The eccentric connectivity index of the molecular graph G,
ξc(G), was proposed by Sharma, Goswami and Madan. It is defined as
ξc(G) = Σu∈V (G) degG(u) ecc(u), where degG(x) denotes the degree of the
vertex x in G and ecc(u) = Max{d(x, u) | x ∈ V (G)}. In this paper this
graph invariant is computed for an infinite class of fullerenes by means of
group action.

1. Introduction. Mathematical chemistry is a branch of pure chemistry
for prediction of Chemical phenomena. Molecular descriptors play a significant
role in chemistry, pharmacology, etc. Among them, topological indices have a
prominent place. Here, we recall some algebraic definitions that will be used in
the paper. Throughout this paper, graph means simple connected graph. The
vertex and edge sets of a graph G are denoted by V (G) and E(G), respectively.
If x, y ∈ V (G) then the distance d(x, y) between x and y is defined as the length
of a minimum path connecting x and y.
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Nowadays very many topological indices have been defined for various
purposes. The eccentric connectivity index is one of the topological indices used
for QSAR and QSPR studies. This graph invariant was proposed by Sharma,
Goswami and Madan [12]. It is defined as ξc(G) = Σu∈V (G) deg(u)ε(u), where
deg(x) denotes the degree of the vertex x in G and ε(u) = Max{d(x, u) | x ∈
V (G)}, [1–7, 16]. The radius and diameter of G are defined as the minimum and
maximum eccentricity among vertices of G, respectively. Another topological
index defined by Gupta, Singh and Madan [8] is connective eccentric index. This
topological index was defined as

Cξ(G) =
∑

u∈V (G)

deg(u)

ε(u)
.

The fullerene era started in 1985 with the discovery of a stable C60 cluster
and its interpretation as a cage structure with the familiar shape of a soccer ball,
by Kroto and his co-authors [10]. The well-known fullerene, the C60 molecule,
is a closed-cage carbon molecule with three-coordinate carbon atoms tiling the
spherical or nearly spherical surface with a truncated icosahedral structure formed
by 20 hexagonal and 12 pentagonal rings [11]. Let p, h, n and m be the number of
pentagons, hexagons, carbon atoms and bonds between them in a given fullerene
F . Since each atom lies in exactly 3 faces and each edge lies in 2 faces, the number
of atoms is n = (5p + 6h)/3, the number of edges is m = (5p + 6h)/2 = 3/2n
and the number of faces is f = p + h. By Euler’s formula n − m + f = 2, one
can deduce that (5p + 6h)/3 − (5p + 6h)/2 + p + h = 2, and therefore p = 12,
v = 2h + 20 and e = 3h + 30. This implies that such molecules are made up
entirely of n carbon atoms and have 12 pentagonal and (n/2 − 10) hexagonal
faces, where n 6= 22 is a natural number equal or greater than 20. Herein, our
notation is standard and taken from the standard book of graph theory [9].

2. Results and discussion. The aim of this section is to compute the
eccentric connectivity index and then the connective eccentric index of an infinite
family of fullerenes as depicted in Figure 1.

Before going on to calculate this index for fullerene graphs, we must
compute the eccentric connectivity index for some well-known class of graphs:

Example 1. Consider the fullerene graph C20 (Figure 2). One can see
that for every x ∈ V (G), ecc(x) = 5. This implies that

ξC(G) =
∑

a∈V (G)

3 × 5 = 300, and so, Cξ(G) =
∑

a∈V (G)

3

5
= 12.
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Fig. 1. 2-D graph of fullerene C24n, for n = 8

Fig. 2. 2-D graph of fullerene C20
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Generally, it is easy to see that for every k-regular graph we have:

ξC(G) = k
∑

a∈V (G)

ecc(a) and Cξ(G) = k
∑

a∈V (G)

ecc(a)−1.

Example 2. Suppose Kn denotes the complete graph on nvertices. Then
for every vertex v ∈ V (Kn), deg(v) = n − 1 and ecc(v) = 1. So, ξC(G) =
Cξ(G)(n − 1)

∑

a∈V (G) 1 = n(n − 1).

2.1. Symmetry group. Symmetry plays a central role in the analy-
sis of the structure, bonding, and spectroscopy of molecules. Chemists classify
molecules according to their symmetry. The collection of symmetry elements
present in a molecule forms a group, typically called a point group. Since all the
symmetry elements (points, lines, and planes) will intersect at a single point, we
name it point group. The symmetry properties of objects (and molecules) may be
described in terms of the presence of certain symmetry elements and their associ-
ated symmetry operations. Symmetry elements are properties which are related
to the structure of the molecule. They include mirror planes, axes of rotation,
centers of inversion and improper axes of rotation. (An improper axis of rotation
is a rotation followed by a reflection perpendicular to the rotational axis.) Sym-
metry operations are actions which place the molecule in an orientation which
appears to be identical to its initial orientation. Symmetry operations include
rotation, reflection, inversion, rotation followed by reflection, and identity. The
identity operation simply leaves the molecule where it is. All molecules have the
identity operation. Certain physical properties of molecules are clearly linked to
molecular symmetry. Molecules which are symmetrically bonded to the same ele-
ments will not be polar, due to the canceling dipole moments. Likewise, chirality
(left or right handedness) is clearly a symmetry property. Chirality can only be
present in molecules which lack an improper axis or rotation. Molecules with a
center of inversion or a mirror plane cannot be chiral. The symmetry properties
of molecules are tabulated on character tables. A character table lists the sym-
metry elements of the point group, along with characters which are consistent
with the different symmetry operations of the group. The table characterizes
how various atomic properties (the symmetry of atomic orbitals, rotations about
axes, etc) are transformed by the symmetry operations of the group.

In this section we compute the symmetry group of fullerenes C24n. The
generators of its symmetry group will be indicated by a and b, whereas a stands for
a reflection. In the first step, consider the labeling of vertices of the fullerene C72

as is indicated in Figure 3: the permutation representation of generators of the
symmetry group acting on the set of vertices is given by a := (1, 28, 31, 54, 43, 64,
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50, 56, 39, 30, 13, 25)(2, 24, 10, 44, 51, 70, 59, 65, 49, 37, 16, 21)(3, 9, 32, 52, 60, 69, 68,
66, 48, 27, 19, 17)(4, 23, 42, 61, 62, 72, 67, 57, 38, 22, 14, 8)(5, 34, 41, 63, 53, 71, 58, 47,
20, 26, 7, 18)(6, 35, 11, 45, 33, 55, 40, 46, 15, 36, 12, 29);
b := (1, 25)(2, 18)(3, 8)(4, 17)(5, 21)(6, 29)(7, 24)(9, 14)(10, 26)(11, 36)(12, 35)
(13, 28)(15, 45)(16, 34)(19, 23)(20, 44)(22, 32)(27, 42)(30, 31)(33, 46)(37, 41)(38, 52)
(39, 54)(40, 55)(43, 56)(47, 51)(48, 61)(49, 63)(50, 64)(53, 65)(57, 60)(58, 70)(59, 71)
(62, 66)(67, 69)(68, 72).

The generators satisfy in the following relations:

a12 = b2 = 1 and bab = a11 = a−1.

This implies that the symmetry group of fullerene C72 is isomorphic with
the Dihedral group D24. By using GAP [14], one can see that the symmetry
group S of C24n fullerene is isomorphic to the Dihedral group D24 of order 24
and the cycle types of elements of S are as in Table 1. By the above discussion
we have proven the following Theorem:

Theorem 3. The symmetry group of the fullerene graph C24n (n ≥ 3) is
isomorphic with Dihedral group D24.

Fig. 3. 2-D and 3-D graph of fullerene C24n, for n = 3

2.2. Vertex-transitive graphs. As we know groups are often used to
describe symmetries of objects. This is formalized by the notion of group action.
Let G be a group and X a nonempty set. An action of G on X is denoted by
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Table 1. Cycle type of elements of symmetry group of fullerene C24n

#Permutations Cycle type Fullerene

1 124n

6 14212n−2

7 212n

2 38n C24n

2 46n

2 64n

4 122n

GX and X is called a G-set. It induces a group homomorphism ϕ from G into
the symmetric group SX on X, where ϕ(g)x = gx for all x ∈ X. The orbit of x
will be denoted as xG and defines as the set of all ϕ(g)x, g ∈ G.

A bijection σ on vertices set of graph G is named an automorphism of
the graph if it preserves the edge set. In other words, σ is an automorphism if
e = uv is an edge, then σ(e) = σ(u)σ(v) is an edge of E. Let Aut(G) = {α :
V → V, α is bijection}, then Aut(G) under the composition of mappings forms a
group. We say that Aut(G) acts transitively on V if for any vertices u and v in
V there is α ∈ Aut(G) such that α(u) = v. Similarly, the edge transitive graph
can be defined.

Lemma 4 ([2]). Suppose G is a graph, A1, A2, . . . , At are the orbits
of Aut(G) under its natural action on V (G) and x, y ∈ Ai, 1 ≤ i ≤ t. Then
ecc(x) = ecc(y). In particular, if G is vertex transitive then for every pair (u, v)
of vertices ecc(u) = ecc(v).

Now we are ready to compute the eccentric connectivity index of fullerene
C24n. To do this, first consider some exceptional cases (3 ≤ n ≤ 6) for this class
of fullerenes:

ξ(C72) = 3
∑

u∈C72

ε(u)

= 3(48 × 17 + 24 × 16 + 24 × 15 + 24 × 14 + 24 × 13 + 24 × 12)

= 7488.

ξ(C96) = 3
∑

u∈C96

ε(u)
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= 3(48 × 17 + 24 × 16 + 24 × 15 + 24 × 14 + 24 × 13 + 24 × 12)

= 7488.

ξ(C120) = 3
∑

u∈C120

ε(u)

= 3(48 × 17 + 24 × 16 + 24 × 15 + 24 × 14 + 24 × 13 + 24 × 12)

= 7488.

ξ(C144) = 3
∑

u∈C144

ε(u)

= 3(48 × 17 + 24 × 16 + 24 × 15 + 24 × 14 + 24 × 13 + 24 × 12)

= 7488.

For n ≥ 7 we can prove the following Theorem:

Theorem 5. ξC(C24n) = 108n2 + 324n − 72and Cξ(C24n) = 108n2 +
324n − 72.

P r o o f. By using GAP software one can see that the number of orbits of
group D24 on the set {1, 2, . . . , 24n} can be divided into 2 classes, namely [u] and
[v]. To reach vertex x from vertex u, we must pass through n hexagons and one
pentagon, see Figure 4. This implies that the eccentricity of vertex u is 2n + 3.
Obviously, the eccentricity of other vertices is as shown in Table 2.

Table 2. The eccentricity of vertices in C24n fullerene

Vertices Ecc(x) No

The type 1 vertices 2n + 3 48

The type 2 vertices 2n + 3 − i, 1 ≤ i ≤ n − 2 24

By using the values reported in this table the eccentric connectivity index
is as follows:

ξC(C24n) =
∑

u∈C24n

ε(u) deg(u) = 3
∑

u∈F24n

ε(u)

= 3(48(2n + 3) + 24(2n + 2) + 24(2n + 1) + · · · + 24(n + 5))
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u

Fig. 4. The eccentricity of vertex u

= 72

(

n − 1

2
[2n + 10 + n − 2] + (2n + 3)

)

= 36(n − 1)(3n + 8) + (144n + 216)

= 108n2 + 324n − 72.

By using these calculations and Figure 4, the theorem is proved.

Corollary 6. The connective eccentric index of C24n is as follows:

Cξ(C24n) =
∑

u∈C24n

deg(u)ε(u)−1

= 3(48/(2n + 3) + 24/(2n + 2) + 24/(2n + 1) + · · · + 24/(n + 5)).
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