
Serdica J. Computing 6 (2012), 267–286

APPLICATION OF SERVICE-ORIENTED ARCHITECTURE

IN SOFTWARE QUALITY MANAGEMENT

Olga Marinova

Abstract. This article examines the quality management software pro-
cesses and offers a model for their automation based on Service-oriented
Architecture. The prerequisites for creating such a solution are analyzed, as
are existing automated tools in this area. The possibilities of service-oriented
architecture are presented along with its advantages in the context of this
research on developing a quality management system that will operate effec-
tively against defined requirements, consistently and regardless of the used
platform, database management system (DBMS) and other technological
features of the applications.

1. Introduction. In recent years of dynamic and volatile markets, the
interest in quality is driven by people’s rising expectations towards products and
services, and also by more vigorous competition. In the context of software organi-
zations, each developed product must meet the increasingly stringent requirements
to match quality parameters expected by the user.

The increasing complexity and rapid development of information technol-
ogy, as well as the boom in the variety of software solutions, require continued

ACM Computing Classification System (1998): D.2.5, D.2.9, D.2.11.
Key words: Service-oriented architecture, software quality management, quality and test

management tools, application lifecycle management, software quality, services.



268 Olga Marinova

attention and quality assessment, even at the stage of software product develop-
ment. In reality, the evolution of software development poses a specific threat
to its effectiveness and expected behavior, which enforces broad-scale research of
the relationships between different aspects of software quality. In order to investi-
gate these relationships, the meanings of quality should be differentiated so that
relative or quantitative evaluation can be achieved. For its part, assessing and
measuring software quality requires defining and measuring its characteristics.
After that effective mechanisms for tracking and controlling the quality crite-
ria, based on defined quality factors, should be provided. Today more and more
companies realize this need and implement automated tools both for testing the
software during its development, and for measuring and managing the software
quality.

The purpose of this paper is to analyze existing tools for automated soft-
ware quality management and to propose a new model of information services for
the software quality management processes through Service-oriented Architecture
building.

Software quality management is a complex process that depends largely
on the successful implementation of almost all processes comprising the building
of a project. These include tracking the status and project progress, controlling
the implementation of quality criteria, risk management, planning and executing
different tests, defect management, configuration management and control. Each
of them affects the quality assurance of software and is responsible for achieving
certain goals and requirements for quality guarantee, according to the planned
budget and time.

The paper is structured as follows. In section 2 the existing level of au-
tomated tools that are applied to manage software quality is presented through
analyzing some of the most popular integrated packages for test management and
partial quality management. Section 3 specifies the prerequisites for building a
unified software quality management system and the main components that such
a system should include. Section 4 describes in detail the application of the SOA
architecture as a basic concept for the integrated system for managing software
quality proposed in section 3. Section 5 (Conclusion) presents concluding remarks
on the described integrated approach to quality management based on SOA ar-
chitecture and the potential risks associated with its implementation.

2. Tools for software quality management. According to Gartner
Research, the automated software quality assurance market is a subsegment of the
overall ALM (Application lifecycle management) market [6]. They also note
that software quality covers many more activities than before and that the leaders



Application of Service-Oriented Architecture . . . 269

in this segment have begun rapidly expanding the set of tools to include their
complex packets in order to achieve better integration with the whole development
lifecycle.

In other words, the current focus on providing tools to automate various
testing activities is shifting to more fully capture the processes that make up the
quality management.

In support of this statement is the survey by Forrester Research [13],
according to which, chronologically, software companies were initially oriented to
quality assurance—in the 80s and 90s of the last century, then to quality control—
in the late 90s and early 21st century, and nowadays and most likely in the
near future the focus is on software quality management. This determines the
appearance of many tools that offer different types of automated testing, and
some of them even ensure effective management and quality assurance. Before
analyzing their capabilities, we shall note some of the most important prerequisites
for using automated tools to manage software quality:

• possibility to manage the requirements by defining the system requirements
and to track the degree of their implementation in real-time, controlling the
related defects and determining the strategy for risk management;

• reporting, tracking and analyzing key quality indicators;

• providing tools to monitor processes, tasks and project development, and
the possibility of alerts and warnings in case of inconsistencies, delays or
deviations from the chosen strategy and tasks;

• possibility for an automated management of the project—preparing a project
plan, tracking the implementation of individual project tasks and assessing
their compliance with the planned requirements, monitoring and identifying
signs of potential risks;

• possibility to reuse and implement existing test assets on different versions
of the product;

• implementing a large amount of tests more frequently;

• implementing tests that are complicated or even impossible to fully perform
by hand, such as measuring performance, code coverage, etc.;

• automated testing tools provide more reliable methods for debugging and
analyzing results;

• automation contributes to a more rational use of resources—it is a powerful
tool for saving time and human resources.



270 Olga Marinova

Thus it follows that the automation issues of key quality management
processes are becoming more popular and as a result many business leaders in
software engineering have started working towards the development of integrated
software solutions in this area.

Most software packages for quality management offered today provide
tools for automated testing that can be categorized into three major groups—Test
Management; Functional and Regression Testing tools and Performance
and Load Testing tools. Some of the more popular tools in the composition of
the first group are HP Quality Center, IBM Rational TestManager and SilkCen-
tral Test Manager for Micro Focus. The group of functional and regression testing
tools contains respectively HP QuickTest, IBM Rational Functional Tester and
Silk Test. And as examples of the last group we can mention HP LoadRunner,
IBM Rational Performance Tester and Silk Performer.

Beside them, some products provide capabilities for resource planning, risk
and costs management (for example HP Quality Center, IBM Rational Quality
Manager, SilkCentral Test Manager). In other words, first steps are made to
provide solutions that cover more aspects of quality, including functionality to
support test planning, requirements and defects management.

Leaders in the provision of integrated packages for test management and
partly quality management (some to a bigger degree than others) are HP, IBM,
Micro Focus, Oracle and Parasoft. Among the main features that most of them
provide, we can highlight the following ones:

• event tracking and creating reports based on different metrics;

• some of the companies (like IBM) provide opportunities to reuse their al-
ready developed components;

• a unified environment for management of the testing process, integrated
with functional and load testing tools;

• requirements management;

• collaboration work of remote teams and opportunities provided for online re-
views of project development through performance indicators and statistics
for all important events;

• planning tools based on risk assessment;

• partial capabilities to manage and prevent defects.

Let’s look at the functions that the integrated web-based solution for life-
cycle management of applications offered by HP—HP Quality Center provides.



Application of Service-Oriented Architecture . . . 271

According to the company it is a flexible, unified platform for management and
automated building of reliable and high quality applications. HP Quality Center
enables organization and planning of the various stages of an application devel-
opment through systematic control over the processes. On one hand these are
processes associated with managing software products requirements, and on the
other hand, different types of testing, test management, version control and de-
fects tracking. In other words, Quality Center covers most of the stages of the
lifecycle of a software application (see Figure 1).

At each of these stages several functionalities are submitted:

• business analysts can define application requirements and related test tech-
nical specifications according to defined business priorities;

• quality assurance managers can prioritize planned efforts in the direction of
testing, based on established business risk;

• possibilities for designing test plans and developing test scenarios, as well
as their later implementation;

• ability to identify the defect and its sharing between developers in the orga-
nization, including the storage of information about its status, priority and
release in which the defect was detected (defect tracking);

• business analysts and testers can control multiple versions of individual tests
or components, while data integrity is also assured;

• project managers can review defined quality metrics and make decisions
based on them about whether the current version of the product is ready to
be put into operation.

Specify Releases

↓

Specify Requirements

↓

Plan Tests

↓

Execute Tests

↓

Track Defects

Fig. 1. Lifecycle stages of a software application development
within the scope of HP Quality Center [8]



272 Olga Marinova

For its part, IBM Rational Quality Manager is a component of a scal-
able web-based platform through which Collaborative Lifecycle Management can
be provided. In this integrated environment, IBM offers the use of individual
products or several combinations of them, depending on the needs of the software
organization. This in turn is a significant advantage because it allows greater flex-
ibility and lower costs, in case we do not need certain functionality. Because of the
open and scalable platform IBM Rational Jazz, additional tools such as IBM Ra-
tional Team Concert (teamwork management, versions control and maintenance
of planned iterations), IBM Rational Requirements Composer (tool for project re-
quirements analysis and requirements management) and a series of external tools
can always be installed if necessary [2].

The main functionalities offered by Quality Manager are in the field of
testing and very few of them overlap the requirements definition and their man-
agement. The most essential among them are:

• testing based on identified risks, which allows to set priority to tests de-
pending on the risk degree and the extent of their impact;

• identifying duplicate defects in order to minimize the repetition in staff
actions;

planning the lifecycle of the testing process, defining the roles, processes
and responsible testers, as well as the ability to create test scenarios and to
link them to specific test plans;

• importing project requirements from external tools (for example IBM Ra-
tional Requirements Composer), storage of these requirements and their
association with specific test scenarios or even a specific test plan, in order
to allow tracking its coverage and execution;

• the ability to connect different environments (browsers, databases, operating
systems, etc.) that are maintained and controlled within a defined test plan
and use this relationship to generate test configurations and to track the
execution of tests;

• ensuring interaction between remote teams by using an interface based on
Web 2.0;

• the chronology of the methods and testing templates used with data for the
specific version is stored in a central repository (data warehouse), and their
reuse is ensured.

As a positive side of the IBM Requirements Composer tool, which can be



Application of Service-Oriented Architecture . . . 273

used together and is tightly integrated with IBM Quality Manager, we can note
the good possibilities for requirements analysis, which we consider an essential pre-
requisite for ensuring high software quality during its development. On the other
hand the main criticisms against this instrument in relation to the requirements
management are security, imperfect collaboration and limited reporting [9].

If we look at the scope of the Silk software package, which is owned by
the company Micro Focus, we will observe again an insufficient coverage of all
activities relevant to the software quality management. However, the company
defines the tools in the group Silk as a complete solution for quality management,
including an integrated testing suite to ensure that software is comprehensively
tested and developed on the basis of the highest quality standards [10]. In this
suite of solutions several products are included that provide different functionality
as in the IBM suite mentioned above—SilkCentral Test Manager, SilkPerformer
CloudBurst, SilkPerformer and SilkTest. SilkCentral Test Manager has the ambi-
tion to ensure quality from the beginning of a project by requirements and tests
collaboration and provides continuous monitoring of quality actions and meth-
ods to achieve it. However, we think that the possibilities offered for planning
and defining the processes for quality assurance as well as change control during
software development are limited.

Based on the analysis presented of the reviewed tools’ main features, we
can summarize the extent of their implementation by the comparison shown in
Table 1.

After analyzing the several popular tools and integrated test management
and partly quality management suites, we can conclude that in fact they provide
a solid base for building quality software applications and continue to evolve in
this direction. However, it cannot be said that they provide a complete and
comprehensive system of quality management. We will focus on key problems
and barriers that should be solved and overcome.

In many existing applications for project and/or quality management,
change management is only used by developers as the information is kept only
for versions of individual fragments of code. To achieve higher productivity and
control of the overall work on a project, we believe it is necessary to track and
store history about other equally important components such as contracts, user
requirements, quality plans, associated defects with specific version and risks.

In software development, the actions of the quality assurance team and
testers are seldom automatically linked to the actions of developers. This is
obvious in the abovementioned popular solutions for quality management and
software testing. For example, a defect that is identified by a tester or by a



274 Olga Marinova

Table 1. Comparison of tools according to their functionalities / modules

Functionality/Module
SilkCentral

Test Manager
IBM Quality

Manager
HP Quality

Center

Requirements
Management

yes
yes, but an

additional tool
must be used

yes

Risk based testing yes yes yes
Test plan yes yes yes
Specification
Management

no no no

Risk Based Quality
Management

no no yes

Defect Management no
yes, but an

additional tool
must be used

yes

Reuse of components no yes

there is no precise
data on the

presence of such
a possibility

Control project against
defined quality assurance
metrics and procedures

no
there is no precise

data on the presence
of such a possibility

partly

person responsible for QA will be stored in a repository such as that offered by
HP Quality Center, but it does not automatically connect to the development
cycle which should work with it. On the other hand, when the developers release
a new version of a program segment and send it to the quality assurance and
testing departments, the status of each corrected defect cannot be synchronized
automatically with the new code, i.e., it is not available for inspection, as there is
no close coordination between the processes. This lack of integration in terms of
tracking defects and their associated requirements cause unnecessary effort and
a number of questions such as: what defects have been corrected and in which
compilation (build); where they were registered and to which components of the
software under development they are relevant.

Although the process of tracking defects is described in Fig. 1, after the
analysis of the proposed application functionality was conducted, we found that
it does not cover the automatic connection mentioned above or integration of
defects controlling with requirement management processes.

Another significant disadvantage of the reviewed instruments is that none
of them provide automatic and intelligent creation of tests, based on what the



Application of Service-Oriented Architecture . . . 275

respective software is designed to execute. In most of the available tools scenarios
are developed based on the actions that testers perform during the product testing,
i.e., on the principle of “recording” and “reproduction” of test scenarios. In this
case, the reliability and amount of coverage depend on how well and through how
many different and possible scenarios the tester will go. Also, the results generated
by the system must be evaluated by the tester to determine whether a test is
passed or not, based on his understanding and knowledge of the specifications.
In other words, none of the existing tools for automated software testing provide
possibilities for the automatic generation of test scenarios. The main reason for
this is the lack of means to present the specifications, requirements and design, so
that they can be interpreted, understood and used by an intelligent tool for test
generation.

All these issues require a more complex approach to the software qual-
ity management as well as the provision of a suitable environment for quality
building and maintenance as an integral part of the entire product lifecycle. The
undisputed fact is that the development of such a complex quality management
system, covering all aspects, requires a serious software engineering team and
years of work. This in turn requires the implementation of flexible architecture
that allows necessary improvements to be made relatively easily and without sig-
nificant modifications and investments.

3. Integrated system for software quality management. In
the existing integrated quality management suites, testing and quality specialists
are able to send information about any detected defect, but not to receive feedback
on the results from Units tests and analysis of defects.

A system of software quality management requires the implementation
of complex and diverse functions, including mapping data from different sources;
making data consistent; transformation and upload into a repository of data (data
warehouse); extraction of analytical information; implementation of a regulated
reporting; maintenance of tools for execution of random queries; multidimensional
analysis and many others. This in turn most often requires the use of different
products, which leads to complication of the system architecture, because of the
need for integration of heterogeneous instrumental environments, additional ad-
ministration costs, problems with the coordination of data and metadata across
multiple servers and/or applications.

At the same time, it is necessary for IT professionals to simplify and auto-
mate the process of business application development in the new hybrid world of
virtual and cloud computing and to increase the benefits that modern technology
brings to businesses, without taking unnecessary risks at the same time.



276 Olga Marinova

From everything said here, we can conclude that it is necessary to build
an integrated architecture that allows process coordination and synchronization
in the software organization in such a way as to allow different departments to
work as one. Integration should be at both the consistency of activities among
all participants and the level of IT systems used. In order to satisfy the need to
manage the entire lifecycle of developed applications that provide possibilities for
distribution of responsibilities, modularity, reusability, loose but also flexible cou-
pling of various applications and resources as well as high scalability, we consider
it appropriate to use Service-oriented Architecture (SOA).

SOA is defined as a model for integrating business processes and main-
tenance of information technology infrastructure through secure, standardized
components—services that can be reused and combined, in order to address chang-
ing business priorities [1]. The main part of the concept is that the different ser-
vices communicate in a standardized way and can be accessed, without requiring
knowledge of the technologies and platforms through which they are realized.

A significant advantage of the chosen architecture is its ability to achieve
perfect integration of the new quality management system, which we submit
should be built with the existing applications in the organization and achieve
the desired level of integration of different modules. This can be done because
the SOA architecture enables the connection of miscellaneous applications, sys-
tems and services in a heterogeneous environment which, frankly, any software
organization usually presents. For these reasons it is the right choice for architec-
ture to serve as a basis for developing a system for software quality management,
which should cover all levels of an organization and also allow for a high flexibility
and scalability.

In terms of modules and subsystems of the innovative solution we offer,
its scope and the processes that it should serve can be represented most fully by
its functional structure (see Figure 2).

The figure shows that the proposed quality management system will seek
to cover all planning quality activities in an organization, as well as all activities
that are necessary for meeting the goals of achieving quality through the man-
agement and control of the project development, test planning and management,
requirements management, risk, defects and configuration management. The de-
tailed description of each of these subsystems and their components is not covered
by this article.

Developing such a system that integrates various processes such as qual-
ity planning, planning and project control, management of testing, risks, require-
ments, configuration and defects undoubtedly poses some risks. One of them



Application of Service-Oriented Architecture . . . 277

Fig. 2. Functional structure of the software quality management system



278 Olga Marinova

is the complexity resulting from the need large data flows between systems to
be transferred, transformed to a certain extent and synchronized. On the other
hand such a decision will be linked to serious investments and the participation of
highly qualified specialists, which would make it costly and unprofitable for the
small and most medium-sized software firms.

It is known that for many of the listed processes companies use some
software or automated tools. Their integrity, however, requires the considera-
tion of many factors when choosing an appropriate integration strategy and also
the availability of great technological competence and skills. Therefore, such an
approach to integrated quality management would not be so suitable for small
software companies because of its complexity, the requirement of specific skills
and last but not least the requirement for established quality management prac-
tices and procedures. The latter condition is essential, because unfortunately
software quality management is not strictly established and not laid down as a
factor to be controlled during each of the processes listed above in small and even
some medium-sized software companies. It can even be said that it is most often
served only in the test phase. Thus we can conclude that implementing the pro-
posed system may be too complicated and generally would not be of significant
interest for such companies.

SOA architecture, as we emphasized, in turn provides excellent opportu-
nities for integration of different subsystems, and it also saves a lot of costs in the
long run. In other words, the initial investment of time and money necessary to
develop a system based on SOA can be large, but the return is high [11]. As any
approach, SOA imposes some limitations. The first is the complexity resulting
from the fact that the transition to SOA is slow, requiring organizational and
technological changes in the firms that have not yet developed this kind of appli-
cations. The second concerns the need to maintain high security of a system that
connects several software components accessible from many participants over the
Internet. Finally, the potential high cost of training, a highly skilled workforce
and implementation of loose coupling that requires a large initial investment could
make development significantly more costly in the short run.

Still the concept of building a unified and coordinated system of quality
management that integrates all processes in the development lifecycle is highly
topical. The findings in many studies support this, such as [3], according to which
the close collaboration between teams will be of bigger and bigger importance to
the quality management in an organization, the possibility of coordination and

synchronization of activities so that different departments function as a whole.
To reinforce the validity of the proposed concept of integration through SOA we



Application of Service-Oriented Architecture . . . 279

can give as an example some authors’ belief that the trends toward the realization
of many innovative software solutions through SOA and the move to SOA can be
a catalyst for change in the culture of Quality Management [5].

4. Software quality management system based on SOA ar-

chitecture. Service-oriented architecture allows for separate logic units (ser-
vices) to exist independently, but not isolated from each other. It is required that
the services be able to satisfy certain principles which allow them to evolve inde-
pendently, while maintaining significant community and standardization. One of
the most commonly used systems for SOA solutions building are IBM WebSphere
[15], TIBCO ActiveMatrix BusinessWorks [12], Microsoft BizTalk [4], Oracle SOA
Suite [7].

In the presence of integration the links between the code and problems as
well as between changes and the test plan module can be viewed and analyzed
(see Figure 2). The result is much better planning and realistic deadlines.

The systems built on the service base (SOA) are characteristically com-
posed of independent software objects whose functionality and metadata are ac-
cessible through a unified interface. Most often this access is realized using web
services, which ensure the use of different functional components through the
global Internet network. This type of systems represent a new generation of com-
plex distributed systems that allow remote users (outside the organization) to
interact with each other and to work with the same information in real time.

In the context of the proposed software quality management system, this
unified access to data from multiple sources with different formats and degree
of structuring would be extremely useful. This is especially true when many
external developers are employed for a project (outsourcing) or even in order
for the opportunity for direct communication with contractors and clients to be
provided. Thereby each participant in the development of a software product
would have uninterrupted access to the resources needed to perform the tasks in a
place convenient to him/her and regardless of the device used—desktop PC, laptop
or mobile device (smartphone, tablet, etc.). All this implies some difficulty in
building such systems as well as special attention and consideration of all possible
risks in terms of security. The complexity of the SOA systems is due to the new
architectural approach to integration of program units that operate in different
environments, in other words use and interaction between services regardless of
the programming language and technology they were built upon [17].

The key aspects of SOA are services, components, service composition and
choreography. An SOA-based system consists of different layers that are presented
in Figure 3.



280 Olga Marinova

user

Fig. 3. Extended architecture model of a SOA system based on [18]

The first layer includes the existing enterprise applications (both custom
and packaged ones), databases and data warehouses, which despite their diversity
can be accessed by users or service consumers in the form of shared services over
the Internet. This layer forms all information assets that can be reused. The next
layer (2) provides program units or components that provide specific functionality,
but are not designed to solve business problems. Subsequently, these components
can be connected or integrated in a certain order, so as to meet specific business
needs.

Moreover, if the business changes a requirement, thanks to the loose cou-
pling between the components in SOA, the necessary changes will be implemented
much faster and easier.

Any decision to automate specific activities includes the definition of ap-
propriate processes. The business process consists of logic that determines the
actions that must be taken. Each task is encapsulated in a particular service,
which represents a step in a process. A service can be atomic or composite—to
cover the logic provided by other services. On the other hand, a process can be
composed of several services (for example business transactions) and that process
can be presented as a service.



Application of Service-Oriented Architecture . . . 281

One of the key principles in the SOA architecture is precisely the loose cou-

pling of services, which we will discuss later. Typical of services is that they must
interact with each other, although they are loosely coupled. In other words, a spe-
cific type of medium must be provided to allow communication between different
services and applications. This is ensured by the so-called Enterprise Service
Bus—ESB. Each service connects to a common bus through an adapter that
transforms data to a common format. In this way data from different sources can
be accessed even if they are supported in different systems, on different platforms
or different DBMS (Oracle, DB2, SQL server, Informix, MySQL or PostgreSQL).
The service bus provides many other functionalities such as intelligent routing
of messages, data and message transformation, reliability and security control,
service governance, monitoring and logging [14].

SOA allows both integration of applications that actually are providers of
certain functions or operations (services) and business process integration across
the entire enterprise. This means coordination between different departments
within the organization and its partners, i.e. all stakeholders work in a unified
environment. In the context of the idea of developing an integrated software qual-
ity management system, the SOA approach will allow close communication and a
possibility for the coordination of activities among all units involved in the devel-
opment of a particular application. To achieve effective management and control
of the processes, a tool should be provided that can seamlessly communicate with
the service bus. It should see all services related to it and allow their calling in a
specific sequence. It shall thereby implement the choreography of processes.

Once processes are developed, a mechanism for their use must be pro-
vided. The presence of interfaces is needed in order to enable users to interact
with business services and processes developed on their basis. The focus is on pro-
viding web-based access, as there will be many participants in a business process
within the system that should be developed, so they will require a different access
method. Also, the process implementation most often requires the use of several
applications.

Having in mind all these considerations, when designing a system, it is nec-
essary to provide portal interfaces that allow interaction between users through
portals, information dashboards and various types of mobile devices. Services
are characterized by attributes that define the service quality or policies on how
interfaces can be used by their consumers. These interfaces are based on stan-
dard protocols (usually those of web services, but this is not the only possible
implementation) [16].

On the other hand the communication protocols used for interaction be-



282 Olga Marinova

Fig. 4. Interaction through the Enterprise Service Bus

tween the services must be compatible with a wide range of platforms. Therefore
protocols such as HTTP, HTTPS, JRMP, IIOP, and JMS are used here. Thanks
to the enterprise service bus, individual applications are able to easily connect and
interact with each other, even when their interfaces and protocols do not match
completely (see Figure 4).

As already noted, it is very important that the individual modules and
subsystems are able to communicate with each other. The service bus will play a
major role in the exchange of messages between components in the system. In this
way an integrated management of requirements is provided both between teams
and between different phases of the project.

The enterprise service bus enables a two-way communication among all
components in the processes of extraction, transformation, loading, integration
and recording of information. It improves the sharing of services and their
reusability while reducing the number, size and complexity of the interfaces used.

The main tasks performed by ESB can be summarized as follows:

• defining the service, which must accept the inquiry and its redirection to
respond to the relevant request;

• transforming the transport protocols between the source of inquiries (re-
quests) and related services;

• transforming the format of messages between the data source and data con-
sumer;

• event management across the different data sources.



Application of Service-Oriented Architecture . . . 283

When we talk about services, it should be noted that in the basis of
service-oriented architecture there are three main web standards—SOAP, WSDL
and UDDI. SOAP is an XML-based protocol for defining the rules for exchange
messages between the web services and is independent of the network, transport
and the programming language. WSDL provides the basic information that iden-
tifies the service and enables its calling. In other words, it provides a standard
way for interface specification and details about the service—operations, location,
linking method (i.e., how the service is called—most commonly SOAP/HTTP and
SOAP/JMS). UDDI maintains a central register of all existing services. Through
it they can be searched, published or used for information. That is why through
the use of such common standards as XML and HTTP, web services can access
various Internet applications, in order to enable the realization of business to
business (B2B) solutions, to integrate multiple applications inside and outside
the organization.

The advantages of SOA architecture for the implementation of the concept
of automated software quality management can be summarized in the following
areas:

• Integration which is not dependent on the programming lan-
guages used. The wide distribution and application of web standards creates
exceptional conditions for cooperation and integration that will continue to im-
prove with the development of service-oriented architecture. The foundation of
the modern standards that use the web services to communicate with each other
is the XML language, which is designed in order to standardize, unify and simplify
the storage and transfer methods of different kinds of data. In other words, it
provides developers with an opportunity to model data regardless of the source,
language and platform.

• Reuse of components. The possibility of developing a software com-
ponent in the organization and its presentation in the form of service with possibil-
ity of reuse would help achieving much higher efficiency. With the right approach
to the service design, such a service interface could be built that allows service
application in more than one decision and so avoids the duplication of functions.
Creating components that can be reused, such as algorithms, methods, processes,
documentation requirements, tests and so on, helps improving the efficiency and
quality of any software application development. When various reuse scenarios
are planned, the services disclose their potential for building key components
of the quality management system, which then can be shared between different
teams in the organization as well as individual projects that have the same or
similar components. Also, many components can be combined to provide better



284 Olga Marinova

functionality, which in the terminology of SOA is called “orchestration”.

• Organizational flexibility. SOA allows for the building of indepen-
dent functional blocks that can be accessed through standard Internet protocols.
If necessary, they can be rebuilt, used together or integrated into an application
easily and quickly enough. Their flexibility is determined by the loose coupling

of various tools and resources and reflects the concept of minimal dependencies.
This in turn means that the modifications have minimal effect and the systems
can still operate even when some of the services are made of incompatible tech-
nologies, or have suffered damage.

• Better transparency—better management. Web services are more
visible and therefore more manageable when compared to web applications. By
better visibility we mean that the status of a service can be monitored and con-
trolled at any time. To achieve this the realized transparency plays a key role in
allocating services in SOA architecture by using registers of services, brokers of
services or other mediators, located between providers and consumers of services
[16].

It is not accidental that the focus of many software engineers moves from
object-oriented programming to one that separates the interface technology from
the technology of implementation. Service orientation is focused on integration
by using different interfaces to achieve the same advantages that are the goals of
object orientation, but at an organizational level.

5. Conclusion. Considering the facts stated above, we can conclude
that the SOA architecture meets the requirements specified in the beginning,
aimed at defining a new approach to building a comprehensive, integrated and
scalable system, consolidating heterogeneous data and processes into a unified
environment for software quality management.

It will provide flexibility for different applications and resources, and an
ability to monitor, control and synchronize the work of all teams in a software
organization. Flexibility is expressed in minimal dependences of software compo-
nents and their reusal, which will be increasingly valued in the field of software
engineering, because they help to reduce development time, to achieve higher
productivity of developers and higher quality of the developed applications.

At the same time it should be noted that such an approach to software
quality management at the whole development lifecycle is a complex process re-
quiring a gradual transition from the software organizations which would have
implemented it. The complexity is due to the fact that an overall change is needed
from a technological, methodological and organizational perspective in terms of



Application of Service-Oriented Architecture . . . 285

software quality management. At the same time the idea that was presented –
to build the system as a service-oriented solution – requires the reporting of a
number of potential problems. Among them we can highlight the following:

– how the complexity of the proposed system based on SOA could be reduced
or limited;

– need to define requirements and instructions on how to build high quality
components;

– assessment of the scope of software services poses risks;

– how to minimize technological risks;

– how to build the right strategy to phased move towards quality management
as an integral part of the software development lifecycle.

However the opportunities that SOA provides and the trends to its rapid
development in the future are a valid premise for assuming that it is a suitable
basis for building a system for managing software quality.

R EFER EN CES

[1] Bieberstein N., S. Bose, M. Fiammante, K. Jones, R. Shah. Service-
Oriented Architecture Compass: Business Value, Planning, and Enterprise
Roadmap. Pearson Education, Upper Saddle River, 2006.

[2] Cho A., C. Pampino. Collaborative Lifecycle Management “New and Note-
worthy” in 2011. http://jazz.net/library/article/655, 16.02.2012

[3] Development Testing: A New Era In Software Quality. Forrester Research,
Inc., 2011, 11–12.

[4] Fuel Innovation, Boost Business Agility and Get higher Return on Invest-
ments. http://www.microsoft.com/biztalk/en/us/soa.aspx, 2012

[5] Kaufman M., R. Dorin. Adopting a Lifecycle Approach to Software Qual-
ity Management. Hurwitz & Associates, 2007.

[6] Murphy T. Magic Quadrant for Integrated Software Quality Suites.
http://www.gartner.com/technology/media-products/reprints/

microfocus/vol4/article1/article1.html?loc=hpfeature2, 2011



286 Olga Marinova

[7] Oracle SOA Suite 11g.
http://www.oracle.com/us/technologies/soa/soa-suite/index.html,
2012.

[8] QC testing process.
https://www.akshayiyer.com/testmngtoverview.asp, 2012

[9] Schwaber C., M. Gerush. The Forrester Wave
TM

: Requirements Manage-
ment, Q2 2008. Forrester Research, Inc., 2008.

[10] Silk Software Test Management, Test Automation and Performance Testing.
http://www.microfocus.com/products/silk/index.aspx, 2012.

[11] SOA: The Benefits and Challenges of Shared, Reusable Services,
http://www.thebrookfieldgroup.com/news_story40.php, 2012

[12] TIBCO ActiveMatrix BusinessWorks. http://www.tibco.com/products/

soa/composite-applications/activematrix-businessworks/, 2012

[13] Visitacion M., M. Gualtieri. The Testing Tools Landscape: 2010. For-
rester Research, Inc., 2010.

[14] Waseem R. SOA-Based Enterprise Integration: A Step-by-Step Guide to
Services-Based Application Integration. McGraw-Hill, 2009.

[15] WebSphere software. http://www.ibm.com/software/websphere/, 2012

[16] Димитров В. Ориентирана към услуги архитектура. “ТехноЛогика”,
2009. (in Bulgarian)

[17] Илиева С., Вл. Лилов, И. Манова. Подходи и методи за реализация
на софтуерни системи. “Св. Климент Охридски”, София, 2010. (in Bul-
garian)

[18] Сервисно-ориентированная архитектура (СОА). Теория и практика
интеграционных проектов. IBM Corporation, 2008. (in Russian)
http://www.gsom.spbu.ru/files/upload/career/presentations/

IBM_28_04_08.ppt, 2012

Olga Marinova

University of Economics – Varna

77, Kniaz Boris I Blvd

9000 Varna, Bulgaria

e-mail: olga_tuleshkova@abv.bg

Received March 20, 2012

Final Accepted July 19, 2012


