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A NECESSARY AND SUFFICIENT CONDITION FOR THE
EXISTENCE OF AN (n, r)-ARC IN PG(2, q) AND ITS

APPLICATIONS

Noboru Hamada, Tatsuya Maruta∗, Yusuke Oya

Abstract. Let q be a prime or a prime power ≥ 3. The purpose of this
paper is to give a necessary and sufficient condition for the existence of
an (n, r)-arc in PG(2, q) for given integers n, r and q using the geometric
structure of points and lines in PG(2, q) for n > r ≥ 3. Using the geomet-
ric method and a computer, it is shown that there exists no (34, 3) arc in
PG(2, 17), equivalently, there exists no [34, 3, 31]17 code.

1. Introduction. We denote by Fq the field of q elements with q ≥ 3.
A linear code over Fq of length n, dimension k is a k-dimensional subspace C of
the vector space F

n
q of n-tuples over Fq. The vectors in C are called codewords.

C is called an [n, k, d]q code if every non-zero codeword has at least d non-zero
entries and some codeword has exactly d non-zero entries [4], [10], [11], [12].

Let A be a set of n points in PG(2, q). If A satisfies the following condi-
tions:

ACM Computing Classification System (1998): E.4.
Key words: (n, r)-arcs, projective plane, linear codes.
∗This research was partially supported by Grant-in-Aid for Scientific Research of Japan

Society for the Promotion of Science under Contract Number 24540138.



254 Noboru Hamada, Tatsuya Maruta, Yusuke Oya

(a) |A ∩ L| ≤ r for every line L,

(b) |A ∩ L| = r for some line L,

then A is called an (n, r)-arc of PG(2, q), where n > r and 2 ≤ r ≤ q − 1. It is
known [3] that if q < n− 3 ≤ 2q, then there exists an (n, 3)-arc of PG(2, q) if and
only if there exists an [n, 3, n − 3]q code.

Problem 1. For an integer r with 2 ≤ r ≤ q − 1, find mr(2, q), the

largest value of n for which an (n, r)-arc exists in PG(2, q).

It is known that mr(2, p) ≤ (r − 1)p + 1 for any prime p and any integer
r ≤ (p + 3)/2 and mr(2, p) = (r − 1)p + 1 for p = 3, 5, 7 and for 2 ≤ r ≤ p − 1.
Problem 1 has been completely solved for 3 ≤ q ≤ 9 [11]. For 11 ≤ q ≤ 19, the
values of mr(2, q) are known as Table 1 [2], [3], [6], [7], [8]. See [11] for r = 2.
See also [12].

There are exactly three (9, 3)-arcs in PG(2, 4) [11], two (11, 3)-arcs and
six (16, 4)-arcs in PG(2, 5) [5]. Marcugini et al. classified (mr(2, q), 3)-arcs in
PG(2, q) using a computer for q = 7, 8, 9, 11, 13 ([13], [14], [15]).

Let A be an (n, r)-arc in PG(2, q). A line L with |A ∩ L| = i is called an
i-line. Let τi be the number of i-lines. The list of τi’s is called the spectrum of A.
An easy counting argument yields the following.

Lemma 1.1. The spectrum of an (n, r)-arc in PG(2, q) satisfies

r
∑

i=0

τi = q2 + q + 1,(1.1)

r
∑

i=1

iτi = n(q + 1),(1.2)

r
∑

i=2

i(i − 1)τi = n(n − 1).(1.3)

Let L = {P0, P1, . . . , Pq} be a line. Let Lk,1, Lk,2, . . . , Lk,q be the q lines
through Pk other than L for 0 ≤ k ≤ q. Let Qi,j be the intersection point of
L0,i and L1,j for 1 ≤ i, j ≤ q. Then L and Lk,j’s are the q2 + q + 1 lines and
P0, P1, . . . , Pq and Qi,j’s are the q2 + q + 1 points of PG(2, q). Let Lk,s(k,i,j) =
〈Pk, Qi,j〉, the line through Pk and Qi,j. Then L0,s(0,i,j), L1,s(1,i,j), . . . , Lq,s(q,i,j) are
the lines through Qi,j for 1 ≤ i, j ≤ q. Hence there is a one-to-one correspondence
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between Qi,j ∈ Qq and [s(0, i, j), s(1, i, j), . . . , s(q, i, j)] ∈ Sq, where

Qq = {Qi,j | 1 ≤ i, j ≤ q},(1.4)

Sq = {[s(0, i, j), s(1, i, j), . . . , s(q, i, j)] | 1 ≤ i, j ≤ q}.(1.5)

Let H be a set of x elements in Sq denoted by

H = {[h0,w, h1,w, . . . , hq,w] | w = 1, 2, . . . , x}.(1.6)

For 0 ≤ k ≤ q and 1 ≤ u ≤ q, let

mk,u = |{w ∈ {1, 2, . . . , x} | hk,w = u}|.(1.7)

Theorem 1.2. There exists an (n, r)-arc A in PG(2, q) with τ0 > 0 if

and only if there exists a set H with x = n satisfying the following conditions.

(a-0) mk,u ≤ r for any 0 ≤ k ≤ q and 1 ≤ u ≤ q,

(b-0) mk,u = r for some 0 ≤ k ≤ q and 1 ≤ u ≤ q.

Theorem 1.3. There exists an (n, r)-arc A in PG(2, q) with τ1 > 0 if

and only if there exists a set H with x = n−1 satisfying the following conditions.

(a-1) mk,u ≤ r for any 1 ≤ k ≤ q and 1 ≤ u ≤ q,

(b-1) m0,u ≤ r − 1 for any 1 ≤ u ≤ q,

(c-1) either mk,u = r for some 1 ≤ k ≤ q and 1 ≤ u ≤ q, or m0,u = r − 1 for

some 1 ≤ u ≤ q.

Theorem 1.4. There exists an (n, r)-arc A in PG(2, q) with τ2 > 0 if

and only if there exists a set H with x = n−2 satisfying the following conditions.

(a-2) mk,u ≤ r for any 2 ≤ k ≤ q and 1 ≤ u ≤ q,

(b-2) mk,u ≤ r − 1 for any 1 ≤ u ≤ q and k = 0, 1,

(c-2) either mk,u = r for some 2 ≤ k ≤ q and 1 ≤ u ≤ q, or mk,u = r − 1 for

some 1 ≤ u ≤ q and k = 0, 1.
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Theorems 1.3 and 1.4 can be generalized as follows. Let A be an (n, r)-
arc in PG(2, q) with τz > 0 for some integer z ≥ 3. Then there exists a line
L = {P0, P1, . . . , Pq} such that A∩L = {P0, P1, . . . , Pz−1}. Let U = {1, 2, . . . , q},
T1 = {0, 1, . . . , z − 1} and T2 = {z, z + 1, . . . , q}.

Theorem 1.5. There exists an (n, r)-arc A in PG(2, q) with τz > 0 for

some integer z ≥ 3 if and only if there exists a set H with x = n − z satisfying

the following conditions.

(a-z) mk,u ≤ r for any k ∈ T2 and u ∈ U ,

(b-z) mk,u ≤ r − 1 for any k ∈ T1 and u ∈ U ,

(c-z) either mk,u = r for some k ∈ T2 and u ∈ U , or mk,u = r − 1 for some

k ∈ T1 and u ∈ U .

Remark 1.6. The method using the above theorems is called Hamada’s

method. To apply the theorems, we first need to construct Sq called Hamada’s

set.

Table 1. The known values and bounds on mr(2, q) for 11 ≤ q ≤ 19

q 11 13 16 17 19
r
2 12 14 18 18 20
3 21 23 28–33 28–35 31–39
4 32 38–40 52 48–52 52–58
5 43–45 49–53 65 61–69 68–77
6 56 64–66 78–82 79–86 86–96
7 67 79 93–97 95–103 105–115
8 78 92 120 114–120 126–134
9 89–90 105 129–130 137 147–153

10 100–102 118–119 142–148 154 172
11 132–133 159–164 166–171 191
12 145–147 180–181 183–189 204–210
13 195–199 205–207 225–230
14 210–214 221–225 243–250
15 231 239–243 265–270
16 256–261 286–290
17 305–310
18 324–330

It is known from Table 1 that 28 ≤ m3(2, 17) ≤ 35. Using Hamada’s
method and a computer, it can be shown that the following theorem holds.
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Theorem 1.7. There exists no (34, 3)-arc in PG(2, 17). Equivalently,

there exists no [34, 3, 31]17 code.

Corollary 1.8. 28 ≤ m3(2, 17) ≤ 33.

Note that the codes obtained from (n, 3)-arcs are near-MDS (NMDS)
codes [9]. Since the dual codes of NMDS codes are also NMDS [9], we get the
following.

Corollary 1.9. There exists no NMDS [34, 31, 3]17 code.

In Section 2, the proofs of Theorems 1.2–1.5 are given. In Section 3, a method
how to construct the set Sp is given for prime p. In Section 5, the algorithm for
searching a (34, 3)-arc in PG(2, 17) to prove Theorem 1.7 by means of Theorem
1.4 is given.

2. The proofs of Theorems 1.2–1.5.
P r o o f o f T h e o r em 1.2. (1) Assume there exists an (n, r)-arc A in

PG(2, q) with τ0 > 0 and that L = {P0, P1, . . . , Pq} is a 0-line. Then A can
be expressed as A = {Qcw,dw

| 1 ≤ w ≤ n} using some integers cw and dw in
{1, 2, . . . , q}. Let Lk,hk,w

be the line through the two points Pk and Qcw,dw
and

let

H = {[h0,w, h1,w, . . . , hq,w] | w = 1, 2, . . . , n}.(2.1)

Then L0,h0,w
, L1,h1,w

, . . . , Lq,hq,w
are the q + 1 lines through Qcw,dw

. Let mk,u be
the number of integers w with 1 ≤ w ≤ n such that hk,w = u for 0 ≤ k ≤ q and
1 ≤ u ≤ q. Then mk,u gives the number of points in A on the line Lk,u. Hence it
follows from (a) and (b) that the conditions (a-0) and (b-0) hold.
(2) Assume there exists a set H, given by (2.1), consisting of n elements in Sq

which satisfies the conditions (a-0) and (b-0). Then there exists a point, denoted
by Qcw,dw

, corresponding to [h0,w, h1,w, . . . , hq,w] in H for 1 ≤ w ≤ n. Let
A = {Qcw,dw

| 1 ≤ w ≤ n}. Then L is a 0-line for A. It follows from (a-0) and
(b-0) that the conditions (a) and (b) hold. This implies that A is an (n, r)-arc A
in PG(2, q) with τ0 > 0.

P r o o f o f T h e o r em s 1.3 – 1.5. Let z be a positive integer.
(1) Assume there exists an (n, r)-arc A in PG(2, q) with τz > 0 and that L =
{P0, P1, . . . , Pq} is a z-line. Without loss of generality, we may assume that
A∩L = {P0, P1, . . . , Pz−1} and that A = {P0, P1, . . . , Pz−1} ∪ {Qcw,dw

| 1 ≤ w ≤
n − z}. Let Lk,hk,w

be the line through the two points Pk and Qcw,dw
and let

H = {[h0,w, h1,w, . . . , hq,w] | w = 1, 2, . . . , n − z}.(2.2)
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Then L0,h0,w
, L1,h1,w

, . . . , Lq,hq,w
are the q + 1 lines through Qcw,dw

. Let mk,u be
the number of integers w with 1 ≤ w ≤ n − z such that hk,w = u for 0 ≤ k ≤ q
and 1 ≤ u ≤ q. Then mk,u gives the number of points in A on the line Lk,u.
Hence it follows from (a) and (b) that the conditions (a-z), (b-z) and (c-z) hold.

(2) Assume there exists a set H, given by (2.2), consisting of n−z elements in Sq

which satisfies the conditions (a-z), (b-z) and (c-z). Then there exists a point,
denoted by Qcw,dw

, corresponding to [h0,w, h1,w, . . . , hq,w] in H for 1 ≤ w ≤ n−z.
Let A = {P0, P1, . . . , Pz−1} ∪ {Qcw,dw

| 1 ≤ w ≤ n − z}. Then L is a z-line for
A. It follows from (a-z), (b-z), (c-z) that the conditions (a) and (b) hold. This
implies that A is an (n, r)-arc A in PG(2, q) with τz > 0.

3. How to construct Sp for prime p. In this section, we consider
the case when q is a prime p for simplicity. Let L be a line in PG(2, p) with
L = {P0, P1, . . . , Pp}. Let Lk,1, Lk,2, . . . , Lk,p be the p lines through Pk other
than L for 0 ≤ k ≤ p. Let Qi,j = L0,i ∩ L1,j for 1 ≤ i, j ≤ p as in Section 1. A
point P with homogeneous coordinate (a, b, c) is referred to as P (a, b, c). Without
loss of generality, we may assume

1. P0(1, 0, 0), P1(0, 1, 0), Q1,1(0, 0, 1) and Pk(1, k − 1, 0) for 2 ≤ k ≤ p,

2. Qi,1(0, 1, i − 1), Q1,j(1, 0, j − 1) for 2 ≤ i ≤ p, 2 ≤ j ≤ p,

3. Lk,u = 〈Pk, Q1,u〉 for 2 ≤ k ≤ p, 1 ≤ u ≤ p,

where 〈Pk, Q1,u〉 stands for the line through the points Pk and Q1,u. Since L0,i =
〈P0, Qi,1〉 and L1,j = 〈P1, Q1,j〉 for 1 ≤ i, j ≤ p, We get the following.

Lemma 3.1. For 2 ≤ i ≤ p, 2 ≤ j ≤ p, the coordinate of the point Qi,j

is Qi,j(1, x, (i − 1)x) for some x ∈ Fp with (i − 1)x ≡ j − 1 mod p.

Recall that Lk,s(k,i,j) = 〈Pk, Qi,j〉 for 0 ≤ k ≤ p, 1 ≤ i ≤ p, 1 ≤ j ≤ p. We
can construct Sp of (1.5) from the next lemma.

Lemma 3.2. s(k, i, j) is determined as follows:

(1) s(0, i, j) = i for 1 ≤ i ≤ p, 1 ≤ j ≤ p,

(2) s(1, i, j) = j for 1 ≤ i ≤ p, 1 ≤ j ≤ p,

(3) s(k, 1, j) = j for 2 ≤ k ≤ p, 1 ≤ j ≤ p,

(4) s(k, i, 1) ≡ i + k − ik (mod p) for k ≥ 2, i ≥ 2,
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(5) s(k, i, j) = 1 for k ≥ 2, i ≥ 2, j ≡ (i − 1)(k − 1) + 1 (mod p),

(6) s(k, i, j) ≡ (i− 1)(j − 1)(k − 1)((i − 1)(k − 1)− (j − 1))−1 + 1 (mod p) for

k ≥ 2, i ≥ 2, j ≥ 2 with j 6≡ (i − 1)(k − 1) + 1 (mod p).

P r o o f. (1), (2) and (3) follow from L0,i = 〈P0, Qi,1〉, L1,j = 〈P1, Q1,j〉
and Lk,j = 〈Pk, Q1,j〉 for k ≥ 2.
(4) Assume Lk,u = 〈Pk, Qi,1〉. Since Pk, Qi,1 and Q1,u are collinear, we get

∣

∣

∣

∣

∣

∣

1 k − 1 0
0 1 i − 1
1 0 u − 1

∣

∣

∣

∣

∣

∣

= 0

giving u = 1 − (i − 1)(k − 1) ∈ Fp as desired.
(5) Since Lk,1 = 〈Pk, Q1,1〉 = [k − 1,−1, 0], where [a, b, c] stands for the line in
PG(2, p) defined by the equation ax+by+cz = 0 with (a, b, c) ∈ F

3
p\{(0, 0, 0)}, it

holds that Qi,j(1, (j−1)(i−1)−1 , j−1) ∈ Lk,1 if and only if k−1−(j−1)(i−1)−1 =
0, that is, j = (i − 1)(k − 1) + 1 ∈ Fp.
(6) Assume Lk,m = 〈Pk, Qi,j〉. Since L0,i ∩ L1,j = Qi,j(1, (j − 1)(i − 1)−1, j − 1)
and Lk,m = 〈Pk, Q1,m〉 = [(k−1)(m−1),−(m−1),−(k−1)], we have Qi,j ∈ Lk,m

if and only if m = (i − 1)(j − 1)(k − 1)((i − 1)(k − 1) − (j − 1))−1 + 1 ∈ Fp. �

In the case i = p, we have the following as a consequence of the above
lemma.

Corollary 3.3. The values s(k, p, j) satisfy the following conditions:

(1) s(k, p, 1) = k for 1 ≤ k ≤ p.

(2) s(k, p, j) = s(j, p, k) for 1 ≤ k ≤ p, 1 ≤ j ≤ p.

(3) s(j, p, j) = (j + 1)/2 for j = 1, 3, 5, . . . , p.

(4) s(j, p, j) = (p + j + 1)/2 for j = 2, 4, 6, . . . , p − 1.

(5) If k + j = p + 2 with 2 ≤ k ≤ p, then s(k, p, j) = 1.

(6) If k + j 6= p + 2 with 2 ≤ k ≤ p and 2 ≤ j ≤ p, then

s(k, p, j) ≡ (jk − 1)/(k + j − 2) (mod p).

Corollary 3.4. For 2 ≤ i ≤ p − 1 and 1 ≤ j ≤ p, [s(1, i, j), s(2, i, j), . . . ,
s(p, i, j)] is obtained from [s(1, p, j), s(2, p, j), . . . , s(p, p, j)] by the permutation on
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the entries such that s(k, i, j) = s(c(k, i), p, j) for k = 1, 2, . . . , p, where c(k, i) ≡
p + k − (k − 1)i (mod p).

P r o o f. We have s(1, i, j) = s(c(1, i), p, j) = j by part (2) of Lemma 3.2.

Assume k ≥ 2, i ≥ 2, j ≥ 2 with j 6≡ (i − 1)(k − 1) + 1 (mod p) so that
part (6) of Lemma 3.2 holds. Then s(k, i, j) = d ∈ {1, 2, . . . , p} such that

((i − 1)(k − 1) − (j − 1))(d − 1) ≡ (i − 1)(j − 1)(k − 1) (mod p).

Since (p − 1)(c(k, i) − 1) − (j − 1) ≡ (i − 1)(k − 1) − (j − 1) and (p − 1)(j −
1)(c(k, i) − 1) ≡ (i − 1)(j − 1)(k − 1) (mod p), we get s(k, i, j) = s(c(k, i), p, j).

Next, assume k ≥ 2, i ≥ 2 and j = 1 so that part (4) of Lemma 3.2 holds.
Then s(k, i, 1) ≡ i + k− ik and s(c(k, i), p, 1) ≡ p + c(k, i)− p · c(k, i) ≡ i + k− ik
(mod p). This implies s(k, i, 1) = s(c(k, i), p, 1).

Finally, assume k ≥ 2, i ≥ 2 and j ≡ (i − 1)(k − 1) + 1 (mod p) so
that part (5) of Lemma 3.2 holds. Then s(k, i, j) = s(c(k, i), p, j) = 1 since
(p − 1)(c(k, i) − 1) + 1 ≡ (i − 1)(k − 1) + 1 ≡ j (mod p). Thus s(k, i, j) =
s(c(k, i), p, j). �

Since there is a one-to-one correspondence between [s(0, i, j), . . . , s(p, i, j)] ∈
Sp and Qi,j ∈ Qq, Qi,j is also referred to as Qi,j[s(0, i, j), . . . , s(p, i, j)].

Example 3.5. For p = 5, we get the following by Lemmas 3.1 and 3.2:

P0(1, 0, 0), P1(0, 1, 0), P2(1, 1, 0), P3(1, 2, 0), P4(1, 3, 0), P5(1, 4, 0),

Q1,1(0, 0, 1) = Q1,1[1, 1, 1, 1, 1, 1], Q2,1(0, 1, 1) = Q2,1[2, 1, 5, 4, 3, 2],

Q1,2(1, 0, 1) = Q1,2[1, 2, 2, 2, 2, 2], Q2,2(1, 1, 1) = Q2,2[2, 2, 1, 3, 5, 4],

Q1,3(1, 0, 2) = Q1,3[1, 3, 3, 3, 3, 3], Q2,3(1, 2, 2) = Q2,3[2, 3, 4, 1, 2, 5],

Q1,4(1, 0, 3) = Q1,4[1, 4, 4, 4, 4, 4], Q2,4(1, 3, 3) = Q2,4[2, 4, 2, 5, 1, 3],

Q1,5(1, 0, 4) = Q1,5[1, 5, 5, 5, 5, 5], Q2,5(1, 4, 4) = Q2,5[2, 5, 3, 2, 4, 1],

Q3,1(0, 1, 2) = Q3,1[3, 1, 4, 2, 5, 3], Q4,1(0, 1, 3) = Q4,1[4, 1, 3, 5, 2, 4],

Q3,2(1, 3, 1) = Q3,2[3, 2, 3, 4, 1, 5], Q4,2(1, 2, 1) = Q4,2[4, 2, 5, 1, 4, 3],

Q3,3(1, 1, 2) = Q3,3[3, 3, 1, 5, 4, 2], Q4,3(1, 4, 2) = Q4,3[4, 3, 2, 4, 5, 1],

Q3,4(1, 4, 3) = Q3,4[3, 4, 5, 3, 2, 1], Q4,4(1, 1, 3) = Q4,4[4, 4, 1, 2, 3, 5],

Q3,5(1, 2, 4) = Q3,5[3, 5, 2, 1, 3, 4], Q4,5(1, 3, 4) = Q4,5[4, 5, 4, 3, 1, 2],

Q5,1(0, 1, 4) = Q5,1[5, 1, 2, 3, 4, 5],

Q5,2(1, 4, 1) = Q5,2[5, 2, 4, 5, 3, 1],

Q5,3(1, 3, 2) = Q5,3[5, 3, 5, 2, 1, 4],

Q5,4(1, 2, 3) = Q5,4[5, 4, 3, 1, 5, 2],

Q5,5(1, 1, 4) = Q5,5[5, 5, 1, 4, 2, 3].
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As for the correspondence between Qi,j ∈ Qq and [s(0, i, j), s(1, i, j), . . . , s(q, i, j)] ∈
Sq for q = 7, 11, 13, 16, 17, 19, see [16].

Example 3.6. It is known that m3(2, 5) = 11. It follows from Lemma 1.1
that there exists a (11, 3)-arc in PG(2, 5) with τ2 > 0. Let A = {P0, P1, Q1,1, Q2,2,
Q2,4, Q3,3, Q3,5, Q4,3, Q4,5, Q5,2, Q5,4}, see the previous example for the coordi-
nates of the points in A. Then the corresponding set H⊂S5 is H = {[1, 1, 1, 1, 1, 1],
[2, 2, 1, 3, 5, 4], [2, 4, 2, 5, 1, 3], [3, 3, 1, 5, 4, 2], [3, 5, 2, 1, 3, 4], [4, 3, 2, 4, 5, 1],
[4, 5, 4, 3, 1, 2], [5, 2, 4, 5, 3, 1], [5, 4, 3, 1, 5, 2]} and the values mk,u corresponding
to H are given by

(m01,m02,m03,m04,m05) = (1, 2, 2, 2, 2),
(m11,m12,m13,m14,m15) = (1, 2, 2, 2, 2),
(m21,m22,m23,m24,m25) = (3, 3, 1, 2, 0),
(m31,m32,m33,m34,m35) = (3, 0, 2, 1, 3),
(m41,m42,m43,m44,m45) = (3, 0, 2, 1, 3),
(m51,m52,m53,m54,m55) = (3, 3, 1, 2, 0).

Since H satisfies the conditions (a-2), (b-2), (c-2) of Theorem 1.4, it follows that
A is a (11, 3)-arc in PG(2, 5) with (τ0, τ1, τ2, τ3) = (4, 4, 7, 16). It is known that
there are exactly two (11, 3)-arcs in PG(2, 5) up to projective equivalence, see
[17].

4. The basic algorithm for searching (n, 3)-arcs. In this section,
an outline of the basic algorithm used in the search is presented. The program
accomplishes an exhaustive search for (n, 3)-arcs in PG(2, q) from some fixed
points. It is based on a backtracking algorithm. Let Kn be a set of n points in
PG(2, q). The condition |Kn ∩ L| ≤ 3 for any line L in PG(2, q) is called 3-ARC
for Kn. The points of the plane are labeled as R0, R1, . . . , Rq2+q (the particular
order does not matter). The program retains the 3-ARC and tries to extend the
starting set Ks until it reaches the length S. In doing the extension, the program
exploits the information of the set Tj obtained by Hamada’s method after each
choice, where Tj = {Ri ∈ PG(2, q) | Kj ∪ {Ri} satisfies 3-ARC, i > m} for
m = max{i | Ri ∈ Kj}. At the choice of the jth point, the program selects
a point in Tj−1 which has a larger index than the previous choice. After each
extension, it computes the set Tj+1 for the current (j + 1, 3)-arc.

The program backtracks in three cases:

• After the choice of the Sth point;
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• After the choice of the jth point Rk ∈ Tj−1, if |{Ri | k ≤ i ≤ q2+q}∩Tj−1| <
S − (j − 1);

• After the extension of the jth point, if |Tj | < S − j for the current Tj.

In these cases, exploiting Lemma 3.2, the program can restore the correct status
after the backtracking step without previous information.

Algorithm for searching (S, 3)-arcs

INPUT: Ks: the set of s fixed points
OUTPUT: {KS}: set of arcs

const max = q(q + 1);
var J:integer;

T:array[1..S] of set of points;
// T[i][j] means j-th point of i-th set;
Tree:array[1..S] of integer;

1 begin
2 J:=s+1; Find solution(T[J]);Tree[J]:= |T[J]|;
3 while (J>s) do
4 begin
5 if (Tree[J]> 0) and ( J <max) then
6 begin
7 Tree[J]:=Tree[J]−1;
8 J:=J+1; Find solution(T[J]);
9 if J= S then print:
10 Ks∪ T[1][Tree[1]]∪ T[2][Tree[2]] ∪ · · · ∪ T[J][Tree[J]];
11 if |T[J]| < (S−J) then
12 Tree[J]:= 0
13 else Tree[J]:= |T[J]|;
14 end
15 else
16 J:=J−1;
17 end;
18 end.

5. The algorithm for searching (2q, 3)-arcs in PG(2, q). The
basic algorithm just presented was not capable of showing Theorem 1.7 in a rea-
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sonable time, so we considered how to fix as many points as possible in the (n, 3)-
arcs. Let L be a line in PG(2, q) with L = {P0, P1, . . . , Pq}. Let Lk,1, Lk,2, . . . , Lk,q

be the q lines through Pk other than L for 0 ≤ k ≤ q. Let Qi,j = L0,i ∩ L1,j for
1 ≤ i, j ≤ q as in Section 1.

Let ci be the number of i-lines on a fixed point. The vector (c0, c1, c2, c3)
for a point in the (n, 3)-arc A is called the point-type of A. As a shorthand, we
denote by ici the point-type.

Lemma 5.1. The possible point-types pi of points on a (2q, 3)-arc in

PG(2, q) are

p1 = 11213q−1, p2 = 233q−2.

P r o o f. The point-type p = (c0, c1, c2, c3) on a (2q, 3)-arc satisfies c0 = 0
and

3
∑

i=2

(i − 1)ci = 2q − 1,

3
∑

i=1

ci = q + 1. �

Given sets S1, . . . , Sn, if it is possible to choose a different element from
each set Si, then the chosen elements are called distinct representative of the sets.
We use Hall’s following theorem to prove a lemma.

Theorem 5.2 ([1]). The sets A1, . . . , An have a system of distinct repre-

sentatives if and only if, for all k = 1, . . . , n, any k Ais contain at least k elements

in their union.

Lemma 5.3. Let A be a (2q, 3)-arc in PG(2, q) with a point of type p2.

Assume P0, P1, Q1,1 ∈ A and that P0 is a point of type p2. If L and L0,1 are

2-lines, then a (q − 1)-set {Qi,wi
| 2 ≤ i ≤ q, 1 ≤ wi ≤ q} ⊂ A with distinct

w2, . . . , wq exists.

P r o o f. Assume there exists a (2q, 3)-arc A in PG(2, q) with P0 a point
of A of type p2, P1, Q1,1 ∈ A and that L and L0,1 are 2-lines. Since there exist
three 2-lines through P0 by Lemma 5.1, without loss of generality, we may assume
L0,2 is a 2-line through P0 other than L and L0,1. Then, for all 3 ≤ i ≤ q, L0,i

is a 3-line. Let Bi = {j | L0,i ∩ L1,j ∩ A 6= ∅, 1 ≤ j ≤ q}. Then |B2| = 1
and |Bi| = 2 for 3 ≤ i ≤ q. Since L1,j\{P1} has at most two points of A for
1 ≤ j ≤ q, for any k sets Bi1, . . . , Bik ∈ {B3, . . . , Bq} and B2, it holds that
| ∪k

l=1 Bil ∪ B2| ≥ (2k + 1)/2 = k + 1/2 for any k. By Theorem 5.2, B2, . . . , Bq

have a system of q − 1 distinct representatives w2, . . . , wq so that 1 ≤ wi ≤ q for
any i. �
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Lemma 5.4. A (34, 3)-arc in PG(2, 17) has a point of type p2 = 233q−2.

P r o o f. Let A be a (34, 3)-arc in PG(2, 17). Since n = 34, r = 3 and
p = 17, the possible spectrum of A is (τ0, τ1, τ2, τ3) = (69+a, 51−3a, 3a, 187−a)
for some integer a with 0 ≤ a ≤ 17 from Lemma 1.1. By Lemma 5.1, the points
of A are of type p1 = 11213q−1 or p2 = 233q−2. Let xi be the number of points of
type pi in A. Then x1 + x2 = n = 34. Since τ1 = x1, we have τ1 = 51 − 3a ≤ 34.
Since a is an integer, τ1 = x1 ≤ 33. Hence x2 > 0. �

Exploiting these lemmas, we introduce the improved program doing an
exhaustive search for (34, 3)-arcs in PG(2, 17) to show Theorem 1.7 in reasonable
time. Let A be a (34, 3)-arc in PG(2, 17). Without loss of generality, we may
assume that P0, P1, Q1,1, Q2,2 ∈ A and that L and L0,1 are 2-lines. By Lemma 5.3,
A has q − 1 points Q2,w2

, . . . , Qq,wq with distinct w2, . . . , wq ∈ {1, . . . , q} such
that w2 = 2. First, the program sets K4 = {P0, P1, Q1,1, Q2,2} as the starting set
and extend it to K19 containing the q − 1 points using the algorithm in Section
4. Next, the program regards K19 as the starting set and tries to extend it to
K34. Thus we divide the search into two stages. When the program finished
searching (34, 3)-arcs which contains K19, it backtracks from K19 to find a new
K19. Repeating this procedure, the program tries to extend every K19 which has
4 points P0, P1, Q1,1, Q2,2 to K34.

Our program verified that (34, 3)-arcs in PG(2, 17) do not exist. Hence
m3(2, 17) ≤ 33. At the end of the exhaustive search the program found 2372866546
cases for K19. And the execution of the program took about 3 days.
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