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TIME–HARMONIC BEHAVIOUR OF A CRACKED

PIEZOELECTRIC SOLID BY BIEM∗

Marin Marinov, Tsviatko Rangelov

Abstract. Time–harmonic behaviour of a cracked piezoelectric finite solid
is studied by nonhypersingular traction Boundary Integral Equation Method
(BIEM). A numerical solution for Crack Opening Displacement (COD) and
Stress Intensity Factor (SIF) is obtained by using Mathematica. Several
examples are presented to demonstrate the dependence of the solution on
the crack position.

1. Introduction. Piezoelectric materials (PEM) have wide applications
in transducers, actuators, wave generators and other smart intelligent systems.
Due to their brittle structure and under dynamic load in service cracks appear
and can cause their failure. Mathematical modeling of PEM with internal cracks
leads to complicated boundary value problems (BVP) that have to be solved
numerically in order to evaluate the wave field and especially its behaviour near
the crack edges. Recently a number of results about the fracture behaviour of the
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piezoelectric solids were reported in the literature. Mostly infinite—piezoelectric
domains are considered, see Shindo and Ozawa [11], Wang and Meguid [15],
Narita and Shindo [9], Chen and Yu [2], Davi and Milazzo [3] where the BVP
is transformed to dual integral equations and SIF is obtained as a solution of
suitable Fredholm integral equations of a second type. For the investigations in
a finite cracked domains, where the influence of the external boundary is taken
into account, BIEM is a powerful tool, see Gross et al. [5], Dineva et al. [4],
Rangelov et al. [10], Sladek et al. [12].

The aim of the work is to solve the BVP for anti–plane linear cracks in
a finite PEM solid under time–harmonic mechanical and/or electrical load. The
BVP is transformed to an equivalent integro–differential equation on the crack
and on the external boundary. For the numerical solution Mathematica code is
created and numerical examples are presented for different crack positions. The
presented results have been reported partially in Marinov and Rangelov [7].

2. Boundary value problem. In a Cartesian coordinate system Ox
in R3 consider a finite transversally isotropic piezoelectric solid Ω ∈ R2, with
boundary S and poled in Ox3 direction. Let Γ = Γ+ ∪ Γ−, Γ ⊂ Ω is an inter-
nal linear crack—an open segment. Assume that Ω is subjected to anti–plane
mechanical and in–plane electrical time–harmonic load. The only non–vanishing
displacements are the anti–plane mechanical displacement u3(x, t) and in–plane
electrical displacement Di(x, t), i = 1, 2, x = (x1, x2). Since all fields are time–
harmonic with frequency ω the common multiplier eiωt is suppressed here and in
the following. Assuming quasi-static approximation of piezoelectricity, the field
equation in absence of body forces and electric charges is given by the balance
equations

(1) σi3,i + ρω2u3 = 0, Di,i = 0,

where the summation convention over repeated indices is applied. The strain–
displacement and electric field–potential relations are

(2) si3 = u3,i, Ei = −Φ,i,

and the constitutive relations, see Landau and Lifshitz [6] are

(3)
σi3 = c44si3 − e15Ei,
Di = e15si3 + ε11Ei.

where subscript i = 1, 2 and comma denotes partial differentiation. Here σi3, si3,
Ei, Φ are the stress tensor, strain tensor, electric field vector and electric potential,
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respectively. Furthermore, ρ > 0, c44 > 0, e15, ε11 > 0 are mass density, the shear
stiffness, piezoelectric and dielectric permittivity characteristics. Introducing (3)
and (2) into (1) leads to the coupled system

(4)
c44∆u3 + e15∆Φ + ρω2u3 = 0,
e15∆u3 − ε11∆Φ = 0.

where ∆ is the Laplace operator. The basic equations (3), (4) can be written in
a more compact form if the notation uJ = (u3,Φ), J = 3, 4 is introduced. The
constitutive equations (3) then take the form

(5) σiJ = CiJKluK,l, i, l = 1, 2,

where Ci33l =

{

c44, i = l
0, i 6= l

, Ci34l = Ci43l =

{

e15, i = l
0, i 6= l

, Ci44l =

{

−ε11, i = l
0, i 6= l

and system (4) is reduced to

(6) L(u) ≡ σiJ,i + ρJKω2uK = 0, J,K = 3, 4,

where ρJK =

{

ρ, J = K = 3
0, J = 4 or K = 4

.

The boundary conditions on the outer boundary S are given as a pre-
scribed traction t̄J

(7) tJ = t̄J on S,

where tJ = σiJni and n = (n1, n2) is the outer normal vector. The boundary
condition along the crack is

(8) tJ = 0 on Γ+

and this means that the crack is free of mechanical traction as well as of surface
charge, i.e. the crack is electrically impermeable.

Following Akamatsu and Nakamura [1] it can be proved that the BVP
(6)–(8) admits a continuously differentiable solution if the usual smoothness and
compatibility requirements for the boundary data are satisfied. Consider the
following BVPs:

(9)

∣

∣

∣

∣

L(u1) = 0 in Ω,
t1J = t̄J on S,
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(10)

∣

∣

∣

∣

∣

∣

L(u2) = 0 in Ω\Γ,
t2J = −t1J on Γ+

t2J = 0 on S.

Since BVP (6)–(8) is linear, its solution is a superposition of BVPs (9), (10), so
uJ = u1

J +u2
J and tJ = t1J +t2J . The fields u1

J , t1J are obtained by the dynamic load
on S in the crack free domain Ω, while u2

J , t2J are produced by the load t2 = −t1J
on Γ+ and zero boundary conditions on S.

3. Non–hypersingular BIEM. Following Wang and Zhang [14], Rangelov
et al. [10] the system of BVPs (9), (10) is transformed to an equivalent system
of integro–differential equations on S ∪ Γ.

(11)

1

2
t1J(x) = CiJKlni(x)

∫

S

[(σ∗

ηPK(x, y)u1
P,η(y) − ρQP ω2u∗

QK(x, y)u1
P (y))δλl

−σ∗

λPK(x, y)u1
P,l(y)]nλ(y)dS − CiJKlni(x)

∫

S

u∗

PK,l(x, y)t1P (y)dS, x ∈ S,

(12)

tcJ(x) = CiJKlni(x)

∫

Γ+

[(σ∗

ηPK(x, y)∆u2
P,η(y)

−ρQP ω2u∗

QK(x, y)∆u2
P (y))δλl − σ∗

λPK(x, y)∆u2
P,l(y)]nλ(y)dΓ

+CiJKlni(x)

∫

S

[(σ∗

ηPK(x, y)u2
P,η(y) − ρQP ω2u∗

QK(x, y)u2
P (y))δλl

−σ∗

λPK(x, y)u2
P,l(y)]nλ(y)dS, x ∈ S ∪ Γ.

Here tcJ(x) =

{

−t1J(x), x ∈ Γ+

t2J(x), x ∈ S
, u∗

JK is the fundamental solution of Eq. (6),

σ∗

iJQ = CiJKlu
∗

KQ,l is the corresponding stress, and ∆u2
J = u2

J |Γ+ − u2
J |Γ− is

the generalized COD on the crack Γ, x = (x1, x2) and y = (y1, y2) denote the
position vector of the observation and source point, respectively. The functions
uJ , tJ , u∗

JK , σiJQ additionally depend on the frequency ω, which is omitted in
the list of arguments for simplicity. Equations (11), (12) constitute a system of
integro–differential equations for the unknown ∆u2

J on the line Γ, t1J on Γ+ and
u1

J , u2
J on the external boundary of the piezoelectric solid. From its solution the

generalized displacement uJ at every internal point of G can be determined by
using the corresponding representation formulae, see Wang and Zhang [14] and
Gross et al. [5].

In order to solve the system (11), (12) it is necessary to know the fun-
damental solution u∗

JK and corresponding stress σ∗

lQK in a closed form. The
fundamental solution of Eq. (6) is defined as the solution of the equation

(13) σ∗

iJM,i + ρJKω2u∗

KM = −δJMδ(x, ξ),
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where δ is the Dirac distribution, x, ξ are source and field points respectively
and δJM is the Kronecker symbol. The fundamental solution for piezoelec-
tric solids under anti–plane mechanical and in–plane electrical loading is de-
rived in Rangelov et al. [10] using the Radon transform, see also Marinov and
Rangelov [8].

4. Numerical solution. The numerical procedure for the solution
of the boundary value problem follows the numerical algorithm developed and
validated in Rangelov et al. [10] and Dineva et al. [4]. The outer boundary S
and the crack Γ are discretized by quadratic boundary elements (BE). In order
to model the correct asymptotic behavior of the displacement (like

√
r) and the

traction (like 1/
√

r) near the crack tips a special crack–tip quarter–point BE
is used. Applying the shifted point scheme, the singular integrals converge in
Cauchy principal value (CPV) sense, since the smoothness requirements of the
approximation ∆uJ ∈ C1+α(Γ) are fulfilled. Due to the form of the fundamental
solution as an integral over the unit circle, all integrals in (11), (12) are two-
dimensional. In general there appear two types of integrals–regular integrals and
singular integrals, the latter including a weak “ln r” type singularity and also a

strong “
1

r
” type singularity. The regular integrals are solved using a Quasi-Monte

Carlo method, while the singular integrals are solved with a combined method–
partially analytically as CPV integrals. After the discretization procedure an
algebraic linear complex system of equations is obtained and solved.

The program code based on Mathematica 8 has been created following
the procedure outlined above.

The mechanical dynamic SIF KIII , the electrical displacement intensity
factor KD and the electric intensity factor KE are obtained directly from the
traction nodal values ahead of the crack-tip, see Suo et al. [13]. In a local polar
coordinate system (r, ϕ) with the origin the crack edge the formulae are

(14)

KIII = lim
r→±0

t3
√

2πr, KD = lim
r→±0

t4
√

2πr,

KE = lim
r→±0

E3

√
2πr, E3 =

1

e2
15 + c44ε11

(−e15t3 + c44t4),

where tJ is the generalized traction at the point (r, ϕ) close to the crack-tip.
The Mathematic’s code consists of the following parts:
(i) Definition of the material parameters, S and Γ geometry, BE and

quadratic approximation;
(ii) Definition of the fundamental solution, its derivatives and the asymp-

totic for small arguments;
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(iii) Definition of the integro–differential equations (11), (12) and the
anti–plane load;

(iv) Solution of the integrals and forming the system of linear equations
for the unknowns u1

J , t1J ,∆u2
J ;

(v) Solution of the linear system;
(vi) Formulae for the solution in every point of Ω;
(vii) Evaluation of the SIF–the leading coefficients in the asymptotic of

the solution near the crack edges.
The main points in the solution procedure are (iv) and (v). In (iv) the

integrals over the BE are two-dimensional (in the intrinsic coordinates in the
domain (z, ϕ) ∈ [−1, 1] × [0, 2π]) with regular and singular kernels: with weak
singularity as O(log r) and with strong singularities O(1/r). The regular integrals
are solve a using the AdaptiveMonteCarlo Method with 300 points. The singular
integrals are solved analytically with respect to r and numerically with respect
to ϕ, see Dineva et al. [4]. The difficulties in (v) (due to the fact that the
material parameters vary in the rate of 1010: for mechanical stiffness c44, 10 for
the piezoelectric parameter e15 and for the dielectric parameters ε11 in the rate
of 10−10) are resolved using functions Solve or FindInstance.
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Fig. 1. Cracked rectangular finite solid

5. Numerical results. The
material used in the numerical examples
is PZT-4, whose data are c0

44 = 2.56 ×
1010 N/m2, e0

15 = 12.7 C/m2, ε0
11 = 64.6 ×

10−10 C/Vm and ρ0 = 7.5 × 103 kg/m3.
The length of the linear crack Γ is 2c =
5 mm, while the rectangular domain Ω has
dimension 20 mm×40 mm. The crack is in-
clined with angle α with respect to the Ox1

axis and its center is at the point A(a1, a2).
It is discretized by 7 BE with lengths lj :
l1 = l7 = 0.375 mm, l2 = l6 = 0.5 mm, l3 =
l5 = 1.0 mm, l4 = 1.25 mm. The bound-
ary S is discretized by 20 BE. The time–
harmonic load is uniform electromechanical
tension in Ox2 direction with amplitudes
σ0 = 400× 106N/m2 and D0 = 10−5C/m2,
see Figure 1.

Validation of the numerical code for
the finite solid Ω is done using truncation
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method. The problem (11), (12) is solved in the center cracked square Ωa with
a side 2a with a > 10c. In this case the outer boundary Sa does not influence
the result significantly in the considered frequency range and a comparison of
the SIF with those in in Wang and Meguid [15] for the cracked plane gives good
coincidence, see Dineva et al. [4].

In the presented examples the normalized frequency is

Ω = c

√

ρ0/(c44 +
e2
15

ε11

)ω. In the figures there are plotted the absolute values

of the normalized SIFs K∗

III =
KIII

σ0

√
πc

and K∗

E =
KE

σ0

√
πc

.
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Fig. 2. Normalized mechanical SIF versus normalized frequency under electromechanical
load with amplitudes σ0 = 400×106 N/m2, D0 = 10−5 C/m2 for different crack positions

with center A in mm and angle α = 0

In Figure 2 the BIEM solution for K∗

III versus Ω ∈ (0, 1.0) is given for
different crack positions with α = 0. It is observed that the first peak is around
Ω = 0.18, which corresponds to resonance frequency of the considered BVP and
shows the influence of the boundary S on the SIF. The second peak is around
0.6 and the third peak is around 0.95. The peak–value depends on the crack
position–the highest value of 33.8 is for the case of A(0,−10)–the crack is close
to the lower boundary. Note that in the truncation domain the peak is around
Ω = 0.71 and its value is 1.31 with comparison with the peak of 28.11 for crack
with center A(0, 0) in the finite domain.

Figure 3 presents the dependence of SIFs K∗

III and K∗

E for fixed normal-
ized frequency Ω = 0.2 on the position of the crack with center at the origin and

inclined with angle α =
π

10
k, k = 0, . . . , 5 with respect to Ox1 axis. Due to the
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Fig. 3. Normalized SIFs versus inclined crack angle α = π

10
k, k = 0, . . . , 5 at nor-

malized frequency Ω = 0.2 and under electromechanical load with amplitudes σ0 =
400 × 106 N/m2, D0 = 10−5 C/m2: a) K∗

III
, b) K∗

E

symmetry of the crack with respect to the applied load, SIFs in the left and right

crack–tips are equal. The maximum values are for k ∈ (2, 3), around α =
π

6
while

for a crack parallel to the direction of the applied tension, i.e. α =
π

2
, both SIFs

are zero.

Figure 4 shows SIF K∗

III versus the normalized frequency Ω ∈ (0, 1.0) for
different crack’s inclined angles α = 0, π/3, π/4, π/6 and crack’s center A(0, 0).
The maximum value of SIF is for α = 0 and with α increasing the peaks of the
SIF decreases.
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Fig. 4. Normalized mechanical SIF versus normalized frequency for different angles α of
the inclined crack with center A(0, 0)
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6. Conclusion. The time–harmonic anti–plane crack problem for piezo-
electric finite solid is solved numerically by means of non–hypersingular traction
BIEM and Mathematica code is developed. Numerical examples for SIF compu-
tation are presented and analyzed. The proposed numerical solution and program
code can be applied for solution of crack interaction problems in finite PEM as
well as for solution of the corresponding inverse problems.
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