Serdica J. Computing 6 (2012), 163-174 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

A DIGITAL LIBRARY OF FOLKLORE SONGS AND
KEYWORD-BASED SEARCH ENGINE*

Kiril Kirov, Nikolay Kirov

ABSTRACT. We present a full text search engine in a digital library of Bul-
garian folklore songs—in the lyrics and scores of the songs. The deployment
of the digital library on the cloud as well as the technical requirements for
providing our data to Europeana are discussed.

1. Introduction. The Bulgarian folklore music is a valuable resource
of cultural heritage. It is one of the main characteristics of the national identity
of Bulgarian people. Throughout the 20th century the Bulgarian researchers of
musical folklore wrote down hundreds of thousands of folklore songs in text and
scores. Part of these song texts and music notations have been published, another
part is preserved as manuscripts in specialized institutional or personal archives.
The major part of the available music notations with Bulgarian national music
however is on paper. In the second half of the 20th century researchers recorded

ACM Computing Classification System (1998): H3.3, H.5.5, J5.

Key words: digital library, search engine, cloud computing.

*This work is partially supported by Grant of the Bulgarian National Science Foundation
under number DTK-02-54/2009 (see [22]).

164 Kiril Kirov, Nikolay Kirov

— usually on magnetic tapes — performances of these songs by authentic singers.
Today’s information technologies give us the possibility to digitize the existing
manuscripts and musical records [33], [34].

The search engine presented here was implemented in the Ruby program-
ming language |29]. Its source code can be found at [15]. It can be used as a console
or web application for keyword-based search in a library of authentic folklore
songs. The folklore songs are provided as an index of digital content—lyrics,
notes and images. This engine can be used by professionals in the field of folklore
research for search of common motives, characters and similarities between folklore
songs. These can be folklore songs from different parts of Bulgaria, variants of the
same song or simply common keywords.

Hosting the digital library in the Amazon cloud [4] enable easy access from
anywhere in the world. Cooperation with Europeana [9] acquaints a wider audi-
ence with our project and will contribute to promoting folk songs as a significant
Bulgarian heritage.

2. Data Formats and Representation. Four types of files (sources)
are used for representation of the songs in the digital library.

o IATEX lyrics files. The texts of the songs in the library are written in the
BTEX typesetting system [24]. In addition to the song text, each IWTEX file
also contains metadata for the song. This metadata is in the form of KTEX
commands or comments, and could be used both in compiling of the source
and in generating the index.

e LilyPond score files. The scores of the songs are written in the LilyPond
music typesetting system [25].

e MP3 digitized authentic performance files. These performances are digitized
from magnetic tape libraries of the Archives of the Bulgarian Academy of
Sciences. They have been recorded in various rural parts of Bulgaria during
the 60s and 70s.

e JPEG digitized handwritten texts. The handwritten note-books included
in this library were made by experts who worked with the authentic per-
formers and then analyzed the collected data. They are a valuable source
of information about the circumstances and different traditions associated
with the performance of each particular song.

A Digital Library of Folklore Songs and Keyword-Based Search Engine 165

Examples of these file types can be found in [22].

3. Search Engine.

3.1. Input data. The basic data files can be divided into five types—four
file types for representation of the songs in the library and the Ruby configuration
file. The whole system must be configured from a Ruby config file. This file should
contain the paths and file formats of all the content.

3.1.1. The Search Engine Index. The system uses Ferret [14] — a
high-performance, full-featured text search engine library written for Ruby. It is
inspired by Apache Lucene [6] and implemented in the C programming language.
The bin/index command is used for building the search engine index, using the
data provided in the configuration file (see Configuration). The search engine
index has a table structure, with different fields provided by the different types of
input files. The input files for indexing are lyrics and scores. The lyrics files can
contain metadata, which is parsed and treated specially by the indexing engine.
The metadata is preserved in the text fields of the index table, and can be used
to form search queries.

3.1.2. Configuration. The search engine config file is 1ib/folk.rb—
Ruby configuration file. The whole system must be configured from this file. It
should contain the following data:

e Index path—the path to the index directory;

e INTEX commands used for indexing—description of the KXTEX metadata
commands that should be used for building the index;

e Google Maps API key—obtained from Google API access key;

e Number of CPU cores of the system—rebuilding the whole library could be
a slow process. The system can speed it up by using different CPU cores for
parallel recompilation.

3.1.3. Compilation. The compilation process can be started by
bin/lilypond and bin/latex. It can take a relatively long time depending on
the number of songs in the library, their complexity and the hardware parameters
of the server. The compilation process generates the following output formats:

e LilyPond EPS and PDF engravings;

166 Kiril Kirov, Nikolay Kirov
|CTOF|H| Pasmupeno tepcene
& B TEKECT IO KIICHYOBH AVMH @) B TEKCT, CEMaHTHYHO o B HOTEH 3allHC
TbpceHe
Tepcere 5 1068 GBmrap crku Hap 0 e CHE
Fig. 1. Web interface for searching in the library
e LilyPond generated MIDI music;
e IXTEX PS and PDF lyrics.

3.1.4. Searching. This search engine provides a Google-like web interface

that will be used for searching in the library (Fig. 1). It uses a search phrase
(query) that must be written in the Ferret Query Language [13]. The search
phrase can contain data as well as metadata, as defined in the configuration file.
A short list of possible searches:

code:ba_002_2_04 — A code search. Every folklore song in the library has a
unique code. The “code” is a separate field in the index table, so we specify
a field using the syntax shown above.

Crosur — A simple one word search for “Crosta” — a popular given name in
Bulgaria. This search should return a result with all songs that contain this
word. Note that “Crosu” could be the name of the singer or the name of
the folklore character in the song.

content:"oxamusa cToaH 3a Boma" — A whole phrase search. Should return
songs containing the given words in the given order. “content” is the lyrics
field

cT*an AND area\{smbomckxo\} — A wildcard and boolean search. In the
folklore songs the name “Crosa” is sometimes spelled “Crysin”, so we want
to match both of them. We also only want “sambosicko” municipality, so we
specify a metadata field which describes that area.

notes:fermata — A score search. This search should return all songs which
contains a fermata (an element of the musical notation) in their LilyPond
coding.

A Digital Library of Folklore Songs and Keyword-Based Search Engine 167

3.2. Output data. The system presents data in web using an integrated
Ruby web server stack. This stack includes several Ruby Gems [28]: Thin [32]
(web server); Rack [27| (web server interface); Sinatra [30] (web development
framework); HAML [19] (web page template system).

The output data are in two different categories — search result table and
Google Maps visualization.

3.2.1. Search Result Table.
The search result table contains the songs that match a given search query
(Figs 2, 3). Each song is represented by a row in that table, which contains all

Pesyiratn ot ThpceHe 3a: CToAH

Lilypond PS
. YPond ppp MIDI
Konrexcr Texcr HoTen HoTeH 3mbiHeHue HN3obpaxenus
My3HKa
3ammc 3aImc :

R CoBHajgeHne
Kop Ha mecenta
a

wtag Crosi, (2)
ue paHo parr, Hagor?! \kray
Jopne ApyAIHa Ja cTaHe,
td 097 2 16 0.49 CTosiH HATTOM JiBe... .. JBe BefIpa, txt |y pdf |ps |Lmp3 midi | gpg
CTOSH HATOM -- YETHIL,
moze APy AIHA -- YETIIPIL,
CTOSAH CII CTalo I3Kapa

Fig. 2. The top of the search result table

%Mama CtysHa gymamte %Ha xopo (TTHO
x0po) %o/l ATIIAKeB XOPOROTHIT % %KaTo Ue
TOIIDMA.... ...afife Ta, CIHKO, Mapscaii!

11 Crosin JJadyrmka gymarme:

-- JlroGe Tadymo, Tadmxe,

cA...

£

td 140 2 20 0.11

=
=

dxt Ly pdf ps lmp3

282 namepenn neckn

TbpceHe B pesynratute |
Kapta

Fig. 3. The bottom of the search result table

the metadata in the library about that song. Every song is identified by its unique
code. By default the search result table is sorted by the relevance index given by
the search engine — the best matches are shown first. In addition to that the user
can sort the table by any field (column). This happens in the web browser using

168 Kiril Kirov, Nikolay Kirov

a JavaScript sort table script. The context of the given match is also displayed in
the search result table, so the user can for example see the specific stanzas, that
contain the given word. Links to the lyrics, notes and images are provided. The
user can also hear the authentic performance online, by clicking on the given MP3
link for the specific song in the search results. A compiled, MIDI version of the
Lilypond source file can also be heard. That could be used as a reference between
written scores and the authentic performance.

Because of the specific grammar of the Ferret Query Language [13], form-
ing exact search queries could be difficult. So the user has an option to form a
loose query, which could match a large number of songs, just to see how it works.
Then he can refine the query further and run a new search, but this time not in
the whole library, but only in the results of the first, broader search.

3.2.2. Google Maps Visualization. In every step of the search process
a link that can visualize the resulting songs in Google Maps [18] is provided. The
system extracts the relevant metadata from the index and forms a series of Google
Maps queries that should return the exact location (or locations) associated with
each given song. These queries are formed as strings containing the name of the
town or village, where the song was performed or that it is associated with, and the
municipality in which that town or village is located. Since Google uses keyword
based search, that pair should be enough to distinguish between names of villages
located in different municipalities (which is a common occurrence in Bulgaria).
Google Maps queries return GPS coordinates and a JavaScript based map, on
which each song location is visualized. By using this technique a user could figure
out how a given song motive is spread across rural areas of Bulgaria. It can also
be used to track the locations associated with different singers (Fig. 4).

4. Development and Deployment on the Cloud. This appli-
cation could be deployed to a cloud computing platform. The Ruby web server
stack presented above is supported on many cloud computing providers, for ex-
ample it could run on Google App Engine [17|, Heroku [20]|, Engine Yard |[§]
and etc. Maintaing a dedicated server hardware for this application is not cost
effective. The nature of the application and the problem field prove that it is
difficult, but not impossible to adapt it for the Cloud. Several deployment and
development schemes were analyzed. It turned out that a combination between
Amazon EC2 [4] and Amazon EBS [2] would be optimal solution, both technical
and cost effective.

4.1. Amazon EC2. Amazon Elastic Compute Cloud (EC2) is a central
part of Amazon.com’s cloud computing platform, Amazon Web Services (AWS).

A Digital Library of Folklore Songs and Keyword-Based Search Engine 169

CaemeH
MpaieHnk

MecHenod

HMeax
Baloao
. Poadhe
Orey Crprerop el
MNawncwueso
Mopxa Eall
b 3

Maxana .

Lonxa Bupben ’ \ Yexnape
sMaxana Eeropo Cyxosem AnaTocen
Jenexnroao i
Crpenywx Kanwo
MapuHoso
YepHO3EMEH
[paxroso
Pryeso Fe
- r@ Orey
Pheso Nuadbeke Bopey Kupwunoso Bpezoso .
Kowape i~ lNpasocnas

Inaearap }

Fig. 4. Google Maps visualization

EC2 allows users to rent virtual computers on which to run their own computer
applications. EC2 allows scalable deployment of applications by providing a Web
service through which a user can boot an Amazon Machine Image to create
a virtual machine, which Amazon calls an “instance”’, containing any software
desired. A user can create, launch, and terminate server instances as needed,
paying by the hour for active servers, hence the term “elastic”. EC2 provides users
with control over the geographic location of instances that allows for latency
optimization and high levels of redundancy [5].

This application currently uses one micro instance running Ubuntu.

4.2. Amazon EBS. Amazon Elastic Block Storage (EBS) provides raw
block devices that can be attached to Amazon EC2 instances. These block devices
can then be used like any raw block device. In a typical use case, this would include
formatting the device with a filesystem and mounting said filesystem. In addition
EBS supports a number of advanced storage features, including snapshotting and
cloning. Currently EBS volumes can be up to 1TB in size. EBS volumes are built
on replicated back end storage, so that the failure of a single component will not
cause data loss [3].

This application currently uses two 8 GiB instances.

170 Kiril Kirov, Nikolay Kirov

4.3. Lilypond and IATEX. Since Lilypond and IKTEX can be run on
the cloud computing platform, this is not required. The application can use the
local computer for compilation of the input files. However Amazon EC2 provides
unlimited CPU usage, even for micro instances. That allows the compilation
process to run inside the EC2 instance.

4.4. Scalability. Developed in the presented way, this project could scale
infinitely. The computing resources provided by Amazon EC2 could be expanded,
based on the application usage and needs. The storage devices on Amazon EBS
could provide multiple terabytes. Developers and users could work in parallel,
developing new features of the system, and domain experts could create and add
new content. The application now have 6.7 Gb of data for about 1080 folk songs
that consist of:

e EPS files — 1 Gb

MIDI files — 1 Mb

PDF files - 1 Gb

MP3 files — 4 Gb

JPG files — 500 Mb

5. Europeana. Europeana.eu [9] is an internet portal that acts as an in-
terface to millions of books, paintings, films, museum objects and archival records
that have been digitised throughout Europe. Mona Lisa by Leonardo da Vinci,
Girl with a Pearl Earring by Johannes Vermeer, the works of Charles Darwin and
Isaac Newton and the music of Wolfgang Amadeus Mozart are some of the high-
lights on Europeana. More than 2000 institutions across Europe have contributed
to Europeana. These range from major international names like the Rijksmuseum
in Amsterdam, the British Library and the Louvre to regional archives and local
museums from every member of the EU. Together, their assembled collections
let users explore Europe’s cultural and scientific heritage from prehistory to the
modern day [11].

5.1. Technology. Europeana provides a metadata format that should be
used for providing collections of items for their site. This metadata contains the
identifier, description, location and the type of the item. It is in XML format,
validated with the Europeana Semantic Elements schema [12]. A collection of

A Digital Library of Folklore Songs and Keyword-Based Search Engine 171

record tags should be contained within the metadata tag. Each record has a text,
image, sound or video type. We have a collection of folk songs. A folk song in our
collection could be described like this [23]:

<?xml version=’1.0’ encoding=’UTF-8’7>

<metadata xmlns="http://www.europeana.eu/schemas/ese/"
xmlns:europeana="http://www.europeana.eu/schemas/ese/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:dcterms="http://purl.org/dc/terms/">

<record>
<dc:identifier>BA,001,2,09</dc:identifier>
<dc:title xml:lang="bg">Cmomu oTmmox, MamMo</dc:title>
<!-- <dc:alternative xml:lang="en">Bulgarian folklore song</dc:alternative>
--> <dc:subject xml:lang="bg">Bbarapcka HapozHa IeceH</dc:subject>
<dc:description xml:lang="bg">llazapcka HapogmHa meceH (TercT)</dc:description>
<dc:contributor xml:lang="bg">Tomop Ixumxes (3amucpau)</dc:contributor>
<dc:contributor xml:lang="bg">Crosr VBaHoB Bamzos (u3mbiHETEN)
</dc:contributor>
<dc:coverage xml:lang="bg">KopTern</dc:coverage>
<dc:coverage xml:lang="bg">CmuBercko</dc:coverage>
<dc:publisher>Magrathea Information Technologies</dc:publisher>
<dc:type>Text</dc:type>
<dc:format>text/pdf</dc:format>
<dc:date>1908</dc:date>
<dc:rights xml:lang="bg">{HCTUTYTHT 3a €THONOTHA X (OIKIOPHUCTHKA C
EtHOorpadcku myseii</dc:rights>
<dc:language>bg</dc:language>
<europeana:object>https://folk.magrathea.bg/pdf/ba_001_2_09/0
</europeana:object>
<europeana:provider>Bulgarian Academy of Sciences</europeana:provider>
<europeana:type>TEXT</europeana:type>
<europeana:rights>http://www.europeana.eu/rights/unknown/</europeana:rights>
<europeana:dataProvider>Institute of Ethnology and Folklore Studies
with Ethnographic Museum</europeana:dataProvider>
<europeana:isShownAt>https://folk.magrathea.bg/pdf/ba_001_2_09/0
</europeana:isShownAt>
</record>
</metadata>

This XML metadata catalog is compiled using a Rakefile [26] task from
the internal metadata representation of the projects. Since Europeana does not
provide a dynamic site integration infrastructure, this task must be run and the
compiled file sent to them every time a new song is added, or an existing song
changed. Because our object folklore song consists of three parts — text, score

172 Kiril Kirov, Nikolay Kirov

and sound, we can describe each part separately, for example in three XML files
of the above type. Thanks to the robustness of Europeana Semantic Elements,
there are many ways of describing our metadata. Different possibilities will be
evaluated in the future. The above example is only one of the possible ways of
system integration that passe the Europeana Content Checker [10] validation.

5.2. Searching Europeana. Users of Europeana can form search queries
based on the provided metadata. The collection of search results is structured
and visualized in the context of the Europeana site. There is a separate web
page for each item, which provides a link to our system. None of the song data
are hosted within Europeana. Currently the intelectual rights on folklore songs
in Bulgaria are undefined, so we use the “Unknown” license field in Europeana
Semantic Elements, and the data files are password protected. We believe that
upon clarification of the intelectual right issues, we could provide open access to
the folklore songs and license them to the general public using some version of
Creative Commons License [7].

6. Future Development.

6.1. AST Analysis. During the LilyPond compilation, an Abstract Syn-
tax Tree [1] is generated, based on the syntax of the input file. This syntax tree is
interesting, because it provides all the necessary information for a possible auto-
mated song analysis and additional metadata generation. Luckily the LilyPond
provides access to the AST by the means of a Scheme programming language API
[31]. The system could provide a way to load an externally supplied Scheme script
for automated analysis of the compiled LilyPond scores.

6.2. Use on the Internet. In its current state the folklore songs search
engine library is highly experimental and meant to be used only by experts
and folklore professionals. The web interface of the system could be improved
and redesigned according to web standards. Such improvement would make the
system easier to use for professionals in the field and also usable to the interested
communities on the Internet. The system is in no way limited specifically for
Bulgarian folklore songs. It could be used for archiving, digitizing and indexing
of different collections of authentic folklore art in the world at large.

A Digital Library of Folklore Songs and Keyword-Based Search Engine 173

[

2l
13l

4]
[5]

[6]
17l
18]
19]
[10]

[11]
[12]

[13]

[14]
[15]
[16]
[17]
18]
[19]
20]
[21]
[22]

REFERENCES

Abstract Syntax Tree.
http://en.wikipedia.org/wiki/Abstract_syntax_tree

Amazon EBS. http://aws.amazon.com/ebs/

Amazon EBS from Wikipedia.
http://en.wikipedia.org/wiki/Amazon_EBS

Amazon EC2. http://aws.amazon.com/ec2/

Amazon EC2 from Wikipedia.
http://en.wikipedia.org/wiki/Amazon_EC2

Apache Lucene. http://lucene.apache.org/java/docs/index.html
Creative Commons. http://creativecommons.org/

Engine Yard. http://www.engineyard.com/

Europeana.eu. http://www.europeana.eu

Europeana Content Checker.
http://europeana-contentchecker.isti.cnr.it:8080/portal/

Europeana from Wikipedia. http://en.wikipedia.org/wiki/Europeana

Europeana Semantic Elements.
http://www.europeana.eu/schemas/ese/ESE-V3.4.xsd

Ferret Query Language.
http://www.davebalmain.com/api/classes/Ferret/QueryParser.html

Ferret Search Engine. http://www.davebalmain.com/trac
GitHub repository. https://github.com/kirilk/folk

Git. http://git-scm. com/

Google App Engine. http://code.google.com/appengine/
Google Maps, GIS. http://maps.google.com/

HAML, HTML templates. http://haml-lang.com/

Heroku. http://www.heroku.com/

Heroku from Wikipedia. http://en.wikipedia.org/wiki/Heroku

Information technologies for presentation of Bulgarian folk songs with music,
notes and text in a digital library. http://nikolay.kirov.be/2010/folk

174 Kiril Kirov, Nikolay Kirov

[23| Kiril Kirov’s Weblog. http://blog.kirov.be/2012/02/04/europeana/
[24] IATEX typesetting system. http://www.latex-project.org/

[25] Lilypond music engraving program. http://lilypond.org/

[26] Rake, A software task management tool. http://rake.rubyforge.org/
[27] Rack, web server interface. http://rack.rubyforge.org/

[28] Ruby Gems. http://rubygems.org/

[29] Ruby, Programming language. http://www.ruby-lang.org

[30] Sinatra, web framework. http://www.sinatrarb.com/

[31] The Scheme Programming Language. http://www.scheme.com/tspl3/
[32] Thin, web server. http://code.macournoyer.com/thin/

[33] PEYCHEVA L., N. KiIrROv, M. NISHEVA-PAVLOVA. Information Technologies
for Presentation of Bulgarian Folk Songs with Music, Notes and Text in a
Digital Library. In: Proc. of the Fourth Int. Conf. “Information Systems &
Grid Technologies”, Sofia, Bulgaria, May 28—29, 2010, 218-224.

[34] PEYCHEVA L., N. KIrov. Bulgarian Folk Songs in a Digital Library. In:
Proc. of the Int. Conf. Digital Preservation and Presentation of Cultural
and Scientific Heritage (Eds R. Pavlov, P. Stanchev), 11-14 September 2011,
Veliko Tarnovo, 60-68.

Kiril Kirov
Magrathea Ltd.,
e-mail: kiril@kirov.be

Nikolay Kirov

Department of Informatics

New Bulgarian University,

21, Montevideo Str.

1618 Sofia, Bulgaria Received March 2, 2012
e-mail: nkirov@nbu. bg Final Accepted April 19, 2012

