
Serdica J. Computing 5 (2011), 65–78

SPECIFICS IN APPLYING AGILE SOFTWARE
METHODOLOGIES IN PORTAL SOLUTIONS

Nikolay Todorov, Avram Eskenazi

Abstract. Agile methodologies are becoming more popular in the software
development process nowadays. The iterative development lifecycle, open-
ness to frequent changes, tight cooperation with the client and among the
software engineers are turning into more and more effective practices and re-
spond to a higher extend to the current business needs. It is natural to raise
the question which methodology is the most suitable for use when starting
and managing a project. This depends on many factors—product charac-
teristics, technologies used, client’s and developer’s experience, project type.
A systematic analysis of the most common problems appearing when devel-
oping a particular type of projects—public portal solutions, is proposed. In
the case at hand a very close interaction with various types of end users is
observed. This is a prerequisite for permanent changes during the develop-
ment and support cycles, which makes them ideal candidates for using an
agile methodology. We will compare the ways in which each methodology
addresses the specific problems arising and will finish with ranking them ac-
cording to their relevance. This might help the project manager in choosing
one or a combination of the methodologies.

ACM Computing Classification System (1998): D.2.9, K.6.3.
Key words: agile methodologies, XP, Scrum, ASD, FDD.



66 Nikolay Todorov, Avram Eskenazi

1. Introduction.

1.1. Agile methodologies. Agile methodologies are intended for use
in developing software projects [1]. Several major methodologies exist—Extreme
Programming (XP) [2], Scrum [3], Feature-Driven Development (FDD) [4], Adap-
tive Software Development (ASD) [5] and others. They try to reduce the risks by
developing the projects in short periods of time called iterations, which usually
last between one and four weeks. Each iteration is like a separate software project
including all of the phases necessary to develop and deliver a new functionality—
planning, analysis, design, coding, testing and documentation.

Agile methodologies prefer real time communication to written documen-
tation. In most cases the whole team working on such a project is located at the
same place. This includes the developers as well as their “customers” or “clients”
(the people that define the product requirements).

Agile methodologies consider the creation of working software as a major
success criterion. This goal combined with the preference for face-to-face com-
munication generates as a result much less documentation compared to other
methods, which sometimes is the reason to call them non-disciplined.

The common thing between the agile methodologies is that they always
try to adapt the software process to the constantly changing conditions and re-
quirements. All of them are a set of well-known practices combined in a way
leading the project to a successful end. Not each of them covers the whole de-
velopment lifecycle. Some concentrate only on particular phases. The same
methodology is not always universally applicable in every domain where a soft-
ware solution is needed. The same methodology is not even always appropriate
in the same domain in two different cases. The successful application of a com-
bination of different methodologies and their practices might result in building a
successful process for a particular software project.

Each methodology is in a different phase of development. XP and Scrum
are already completely built methodologies that are well documented and much
material and feedback about them exists. Therefore we can define them as “Ac-
tive”. We define FDD and ASD as “In construction” as there is still scarce
information about them and there is no detailed information or feedback about
their application.

Although they are all based on similar concepts and principles, each of the
agile methodologies looks upon the software development from a different angle.
By using [6] we will make a comparison (Table 1) between them in the following
aspects—key points that define the basic aspects and concept of the methodol-
ogy, characteristics that differentiate them from the rest and disadvantages

identified for them.



Specifics in Applying Agile Software Methodologies in Portal Solutions 67

Table 1. Comparison of methodologies

Metho-
dology

Key points Characteristics Disadvantages

XP Oriented to the client
development process,
small teams, daily
builds

Refactoring—constant
improvement of the
system to achieve bet-
ter performance and
adaption to changes

Although individual
practices are suitable
in most cases, the
overall project man-
agement practices are
incompletely covered

Scrum Independent, small,
self-organized develop-
ment process. 30-day
development lifecycle

The idea is moved
from “defined and re-
peatable” to the “new
vision of Scrum for the
product development”

Scrum describes in de-
tail how to manage the
30-day cycle but does
not focus enough on
integration and accep-
tance testing.

FDD Five-phase, object ori-
ented, component based
development process.
Short iterations be-
tween a few hours and
two weeks.

Simplified methods, de-
sign and implementa-
tion based on function-
alities, object oriented
modeling.

FDD is focused mainly
on design and im-
plementation but
additional support-
ive processes are also
needed.

ASD Adaptive, collaborative,
component based, with
a mission, iterative
process

Organizations are per-
ceived as adaptive sys-
tems. It creates an or-
der in a network of indi-
viduals.

It is oriented rather con-
ceptually and to the or-
ganization culture than
to the software prac-
tices.

1.2 Portal Projects. Portal projects are web applications that aggre-
gate information from different sources in a unified way. They offer services like
news, stock and products prices, information, e-mail, databases, entertainment,
etc. Their development (especially for the public ones) is characterized by the
fact that it starts with a certain base of requirements but they begin changing
and evolving very quickly. This is due to several factors:

• Unclear vision at the beginning of the project, which starts only with
an idea or basic direction of development

• When the first versions of the product are released, the feedback from
the real users requires new functionalities or changes to the current ones

• Concurrent products with their specifics, which the portal should take
into account.

The constant changes as well as the uncertainty of the success of the future
product (will it be accepted by the users) may seriously damage the software



68 Nikolay Todorov, Avram Eskenazi

development lifecycle of the product. That is why for these types of starting
portals (as well as the companies that develop them) the agile methodologies
give an ideal opportunity to answer the arising problems by offering a process
which might lead to a successful end of the project in an adaptive way. There are
various types of problems that may appear and the different methodologies offer
different approaches to handle them. Ketuunen and Laanti [7] have done a split
of potential problems when developing embedded software systems and how each
methodology addresses them. We will use their ideas as a base for identifying the
problems that portal solutions are facing and will make a corresponding analysis.
We will list a large set or potential issues without having a concrete portal project
in mind. However, it should be taken into account that not all of them may be
applicable in an actual project environment and only a subset of them should be
considered.

2. Problems in developing portal solutions and approaches
offered by the agile methodologies for their solution. The manage-
ment of modern software projects for development of portal solutions requires
very good control over the potential problems, the expected as well as the un-
expected situations. Portal projects face many specific problems compared to
the other types of software. A powerful tool every project manager should have
in order to handle these challenges is the opportunity to choose and eventually
later on review the software process. Recently the agile principles have often
been pointed out as methodologically suitable for developing projects in this do-
main. These methodologies put special emphasis on key practices like constant
improvement of the project, its initiation, short development cycles, regular feed-
back and close customer interaction. Their main principles are laid down in the
“Agile Manifesto” [8].

We mentioned 4 major methodologies—XP, Scrum, FDD and ASD. The
problem faced by the project manager is which of them to choose. We will try to
propose a systematic approach in selecting a concrete methodology and practices
which would be most suitable under certain conditions. More precisely, we are
interested in how the different agile methodologies handle the various problems
that appear during the development of portal projects.

We will decompose the software development of a project in three phases—
initiation, execution and closure. For each of them we will review the potential
difficulties which might be met and how each methodology addresses it. In the
classification of the potential problems and their description we will try to give
examples of concrete situations and how such issues might appear in a portal
project.



Specifics in Applying Agile Software Methodologies in Portal Solutions 69

2.1. Project Initiation.

• Under/Over-estimation in planning. Very often the beginning
companies who want to break through with their own portal solution have a
limited budget and tend to underestimate the price of software development:

— XP is based on continuous planning. Plans are reviewed and adapted
according to the last achieved results, the metrics’ results shown and the changes
in the customer’s requirements. It recommends planning at most 2–3 weeks
ahead.

— Scrum—the planning is made only before the first iteration based on
the requirements already known. At the end of each iteration the results are
summarized (Sprint Review) and the next one is planned.

— FDD—overall project planning is not considered. However, FDD still
pays attention to the systematic building of the functionalities list and the devel-
opment plan is based on it. The duration is not estimated as the development of
each functionality lasts no more than 2 weeks. The progress of each of them is
systematically tracked.

— ASD—the short time boxed development cycles “freeze” the require-
ments one by one.

• Lack of skills. Starting a new project with a new customer and
developing a solution for which it is still not known if it will be accepted by the
end users is a risk for the developing company. For this reason it is not always
inclined to commit its best software engineers in the project, at least not before
progress becomes visible:

— XP expects the people to be at an expert level. Only some of them
may be junior. If the appropriate personnel is not available XP should not be
used.

— Scrum depends a lot on the team skills. The staff members should
be selected according to their skills and knowledge. The team is responsible for
self-organizing the work in the most effective way they see.

— FDD does not address this particular problem. The functionalities are
given priorities based on the needs and expectations of the customer and therefore
the implementation may still require the technical skill at the phase of defining
the project.

— ASD encourages active collaboration in the team and education through
iterative product development. Additionally, every team member should develop
his/her own skills.

• Underestimation of the size, complexity and new technologies
in the project. In many cases it happens that not everything has been predicted
at the beginning of the project or the requirements turn out to be more complex



70 Nikolay Todorov, Avram Eskenazi

than initially expected:
— XP—new duration estimation is needed. Pre-planning is a part of XP.

The client is always involved in this.
— Scrum—the estimations are often reviewed during the Pregame phase.

The project is re-estimated at each Sprint. If it turns out that the expected
delivery date is far from the initially envisioned the team should coordinate its
activities (Product Backlog) with the customer (Product Owner).

— FDD—a new estimation is needed if it appears that the functionalities
are more complex than initially envisioned for finishing the project. Therefore
their duration should be short—no more than 2 weeks.

— ASD—portal project are unsure by nature. Everybody should be aware
of this since the very beginning. Additional estimations and planning is done after
each iteration when more has been learned.

• New technology. Very often the development of public web applica-
tions requires knowledge of new cutting edge technologies in order to cover the
increasing vision, functionality and ease of use requirements:

— XP—this often does not fit into XP philosophy for quick planning and
simplified design. Knowledge in new technologies is gained “as the project moves
on”.

— Scrum does not address technology problems specifically. It is possible
to have research and prototypes during the planning. The team should self-
organize its work so it may approach external experts in order to achieve its
goals.

— FDD does not cover this problem.
— ASD—as this is one of the uncertainty points in the project, ASD

emphasizes on better knowledge by iterative development.

• The project is too big for “at once”. The project starts with a
basic set of requirements, which are too wide scoped and there are many ideas
which need to be explored and implemented. Unfortunately there are business
deadlines and not everything can be finished on time:

— XP usually deals with small sized projects. The team should not be
over 10 developers by definition. Therefore it is difficult to use XP for a bigger
scope.

— Scrum—each iteration is fixed at 30 days. This restricts the volume
of work to be done. However the number of the iterations is not fixed. Another
option is having more than one team working on the project. In this case their
work should be coordinated.

— FDD—the project should be split into functionalities that are imple-
mented in steps. All bigger functionalities should be split so as not to exceed 1–2



Specifics in Applying Agile Software Methodologies in Portal Solutions 71

weeks.

— ASD does not cover this problem.

• Extreme project—high speed, many changes. Usually it is neces-
sary to complete many tasks and offer the end users a lot of new functionality
in short time frames. Very often also changes in the initial requirements and the
working process are possible:

— XP is by design created to handle exactly this kind of projects.

— Scrum is oriented towards constant changes but not so much to a high
speed. The assumption is that the team is isolated from external pressure. The
work expected to be done is agreed in advance and cannot be changed during the
Sprint.

— FDD is not intended for extreme cases but a reasonable amount of
changes can be accepted. The speed may be increased by developing several
functionalities in parallel.

— ASD is by design created to handle exactly such kind of projects.

2.2 Project execution.

• Incomplete requirements. As is well known requirements very often
happen to be not sufficiently clear, specific and detailed in the initial phase of
the project. They depend on the operational start of the portal and the feedback
from the real users:

— XP expects stable communication with the client. The latter should be
on site with the developers including the weekly planning sessions. He is expected
to control to what extent the plans correspond to the expectations.

— Scrum expects the client to be on site for the Pregame phase. The
Product Owner is responsible for all requirements to be reflected in the Product
Backlog. Unclear definition of the requirements in the Backlog might inflict risks
to the project.

— FDD—the domain experts work with the functional team in order
to explain all problems. Requirements reviews are organized in order to clarify
unclear points.

— ASD—ambiguity and lack of initial understanding is considered nat-
ural. The goal is to learn more through an iterative development and frequent
feedback. It is important to move in the right direction.

• Unstable, frequently changing requirements. The huge diversity
of the potential uses of the portal may result in constant changes in the require-
ments even for already implemented functionalities:

— XP responds to the changes as something normal. The plan may be
changed every week.



72 Nikolay Todorov, Avram Eskenazi

— Scrum also accepts the changes as normal. They are reflected in the
Product Backlog, which is re-estimated prior each new iteration. However, no
changes are allowed during the sprint.

— FDD—a single functionality may be replaced with another, a more
complex one. Requirements should be ordered by priority. Up to 10% change is
acceptable for a single functionality.

— ASD—development cycles are restricted in time. For the cases with
higher uncertainty they should be shorter and unclear items have to be addressed
in the beginning.

• Constantly changing end date. The customer sometimes tends to
“postpone” the end date of a release in order to be able to include as much
functionality and fixed defects as possible:

— XP—the iterations are fixed in time. If there is a need for a delay new
iterations may be added if requested by the client.

— Scrum balances functionalities rather than time. Each Sprint is fixed
to 30 days but the number of sprints is not. However, adding a new Sprint is
risky.

— FDD— it is expected that functionalities are small and adding new or
removing existing ones is easy.

— ASD—the project is fixed in time and the dates of the cycles may not
be changed. If it is necessary to change the end date a new planning of the cycles
may be negotiated.

• Bad/improper architecture. In many cases it turns out that the
architecture selected in the beginning is inadequate to the constantly expanding
scope of functionalities, which may be quite diverse:

— XP does not address specifically this problem. However small changes
can be done by using the practice of refactoring, which is a part of XP.

— Scrum—the architecture is defined during the planning phase. The
team resolves on its own the uprising technical issues. A mistake in the design
may result in a loss of some iteration.

— FDD does not consider this problem. It will be difficult to change the
architecture in the middle of the project when most of the functionalities have
already been implemented.

— ASD does not cover the architecture design.

• Difficulties in integration. Every developer in the project may work
on a separate part of the code and introduce a problem in the integration with
the code of the others:

— XP—all team members should be responsible for the integration, which
XP recommends doing on a daily basis.



Specifics in Applying Agile Software Methodologies in Portal Solutions 73

— Scrum—each Sprint should deliver a working (integrated and tested)
package. It is recommended to have daily builds in order to discover early po-
tential communication problems.

— FDD does not explicitly define integration. The developers are respon-
sible for testing their own functionalities. Continuous integration leads to shorter
integration steps and therefore the continuous integration becomes easier.

— ASD does not pay special attention to the integration but expects each
cycle to end with a working version.

• Bad progress tracking. It is not always visible to the client what the
current progress of the project is:

— XP—this should not be an issue at all as the client is close to the
development all the time.

— Scrum—again there is no problem here as the team discusses the
progress at the daily meetings and estimates the remaining effort. The Sprint
Backlog is updated according to this.

— FDD gives a good visibility of the progress because the delivery of
new functionality can be monitored. Progress is tracked based on how much
functionality is completed.

— ASD does not give specific practices for tracking the progress of the
project as it relies on the collaboration. The only thing that matters is the end
result.

• Communication gap. Whenever there are different people partici-
pating in the project it is normal that every one of them has a different level of
knowledge, communication skills or is at a different level in the hierarchy com-
pared to his/her colleagues. Differences in the understanding of the requirements
between the client and the developers are possible:

— XP is based on frequent and open communication. Gaps in this direc-
tion are crucial.

— Scrum is extremely dependent on the team’s performance. Therefore
it recommends constant communication and exchange of knowledge. For this
purpose there are daily meetings within the team. If there is more than one
Scrum team special attention should be paid to this.

— FDD domain experts work in close cooperation with the functional
teams and this should improve the communication.

— ASD emphasizes on close cooperation. Groups oriented to the client
as well as specific inspections are techniques used for learning during the project.

• Inadequate documentation. Because of the long duration of the
portal projects and the variety of participants in them as well as the frequent



74 Nikolay Todorov, Avram Eskenazi

changes in the team members and their roles, the documentation becomes an
important part of the project. To what extent is it reasonable to focus on it?

— XP prefers working software over documentation.
— Scrum does not prescribe preparation of any documentation. The team

is free to document whatever it thinks is necessary without going into details.
— FDD is not oriented towards project documentation. It leaves this do

be decided by the project manager according to the specific needs. It puts more
attention to the user documentation.

— ASD does not focus on documentation either.

• Loss of (key) team members. Public portals may be developed and
supported for years. It is normal that in such cases some of the people that have
started the project or even managed it leave or move to other projects:

— XP—changes in the team reduce the speed of project execution. The
departure of a key person is a serious problem.

— Scrum does not consider this a problem as it relies on team members’
extreme dedication to their work. This could be a big risk if the team is not able
to reorganize after the loss.

— FDD—it may be difficult to replace one class owner with another.
Some functional teams may have to be planned again.

— ASD—the review or each cycle pays special attention to the current
states of the resources against the goals.

• Low motivation. New technologies and always pressing end dates
require from the people constant adaptation and work under pressure. This
may not be to every developer’s liking and may result in a decrease of his/her
motivation to work:

— XP pays special attention to the motivation of the developers. Avoid-
ing overtime of the 40-hour week is a mandatory measure. Also pair programming
may be fun.

— Scrum does not talk about this problem as it expects that the team
members are extremely motivated. If this is not the case this may ruin the project
as it relies very much on the dedication of the participants.

— FDD recommends using visual tracking of the progress of the func-
tionalities. Presentation of tables and graphics using different colors according
to their status may be motivating.

— ASD—building of united groups is one of the cornerstones of ASD.
Assuring a suitable environment for this may motivate the people.

2.3 Project Closure.

• Problems with acceptance of the system. Every project has at the
end a phase of User Acceptance Testing. This is the moment at which some of



Specifics in Applying Agile Software Methodologies in Portal Solutions 75

the issues that have not been properly resolved in the previous steps may pop up
as a problem:

— XP develops automated test scenarios which are periodically started.
This brings to a better quality and easier integration. These tests are defined
and run by the client.

— Scrum is oriented to the client. The results are assessed together with
the client (Product Owner) after each Sprint. It may be a problem if unstable
versions have been accepted in previous Sprints or if there are multiple teams
that encounter difficulties in integrating their work.

— FDD recommends design and code inspections as well as unit testing.

— ASD—technically the quality is controlled during development. It is
partially covered by software inspections.

• Next version. Sooner or later every project or at least some version
of it ends. In portal solutions almost always next versions with new functionality
are launched. The question is how to use the end of the current phase as a good
starting point for the next one:

— XP—the delivery of working software is for sure a good starting point
but only this is not enough. XP relies on good knowledge of the project and a
change or dismissal of the team may be a serious problem for further development.

— Scrum does not directly discuss this problem. There is a Project
Closure phase but the documentation there is not mandatory. This is usually
done during the Postgame phase.

— FDD—tables and graphics for tracking the progress of the functionali-
ties give a rough overview of what has been done till the moment. After finishing
a certain functionality it may be necessary to prepare user documentation.

— ASD encourages a “strong final” which should be a ground to continue
with further versions.

3. Results and comparison. Based on the aforementioned problems
faced by the portal solutions we propose a summary of which agile methodology
is best at handling each of them. It is contained in Table 2, which lists all the
problems discussed, the methodology that best addresses them and the basis on
which this decision is made. The different phases have different backgrounds.

The following Table 3 shows for how many of the problems each method-
ology is suitable:

It appears that Extreme Programming (XP) provides the biggest number
of practices that may be worth using in a portal project in order to handle in an
optimal way the potential problems which may appear during the development
lifecycle. However, the rest of the methodologies also offer some solutions to this.



76 Nikolay Todorov, Avram Eskenazi

Table 2. Suitable methodologies

Problem AM Reason
Under/Over-estimation in
planning

Based on constant planning

Lack of skills ASD Encourages active collaboration and
training

Underestimation of the
size, complexity and new
technologies in the project

Based on constant planning

New technology — No methodology covers this problem
sufficiently

The project is too big for
“at once”

Scrum May define more than one team
working on the project

Extreme project—high
speed, lots of changes

XP, ASD Both methodologies are created to
handle precisely this kind of projects

Incomplete requirements XP The client is monitoring the project
on a weekly basis

Unstable, frequently
changing requirements

XP, Scrum Both methodologies are open to
changes and can handle them

Constantly changing end
date

FDD Functionalities are small and it is
easy to add new ones

Bad/improper architec-
ture

— No methodology covers this problem
sufficiently

Difficulties in integration XP, Scrum Daily builds are recommended
Bad progress tracking XP, Scrum,

FDD
Progress is tracked using the corre-
sponding practices for these method-
ologies like on-site customer, daily
meetings and number of functional-
ities completed

Communication gap XP, Scrum Based on frequent and open commu-
nication, on-site customer, pair pro-
gramming, daily meetings

Inadequate documenta-
tion

— No methodology covers this problem
sufficiently

Loss of (key) team mem-
bers

ASD The review or each cycle pays special
attention of the current states of the
resources against the goals

Low motivation XP, FDD 40-hours week, pair programming,
tracking of progress using graphics

Problems with acceptance
of the system

Tests are defined and run by the cus-
tomer

Next version FDD Progress graphics are a basis for fu-
ture development



Specifics in Applying Agile Software Methodologies in Portal Solutions 77

Table 3. Number of applicable practices

It is important to consider which phase of the project execution each methodology
covers.

4. Conclusion. We chose two most widely used (XP, Scrum) and
two more theoretically developed (FDD, ASD) agile methodologies for software
development and went over the opportunities for their use in the implementation
of portal solutions.

We tried to show in a systematic way the concrete problems that may
appear with portal projects and to what extent each of the methodologies handles
them.

Certainly, each project is individual and all of the potential problems may
appear in different situations. It is a responsibility of every project manager to
try to identify the risks and threats since the very beginning. He/she should con-
sider that not all of the before mentioned problems may be applicable to his/her
project. He/she should select the appropriate subset of them or extend it. After
that he/she may use the comparative analysis of the agile methodologies offered
by us and its results in order to choose the methodology he/she considers best
for implementing the project. Each of them provides opportunities for successful
management of the process and a good knowledge of them as well as experience
in the development of portal solutions should lead to an optimal choice. However,
the project manager is not restricted to selecting a single methodology and can
use a combination of practices from all of them in order to implement his/her
own agile process.

We consider that the approach proposed by us is generally applicable to
other types of software projects as well.



78 Nikolay Todorov, Avram Eskenazi

REFERE NC ES

[1] Artesia—agile methodology definition,
http://www.artesiagroup.com/agile-101.html

[2] Beck K. Extreme Programming Explained: Embrace Change. Reading,
Mass., Addison-Wesley, 1999.

[3] Schwaber K., M. Beedle. Agile Software Development with Scrum. Upper
Saddle River, NJ, Prentice Hall, 2002.

[4] Palmer S. R., J. M. Felsing. A Practical Guide to Feature-Driven Devel-
opment. Upper Saddle River, NJ, Prentice-Hall, 2002.

[5] Highsmith J. A. Adaptive Software Development: A Collaborative Approach
to Managing Complex Systems. New York, NY, Dorset House Publishing,
2000.

[6] Abrahamsson P., O. Salo, J. Ronkainen, J. Warsta. Agile Software
Development Methods Review and Analysis, VTT Electronics, Oulu, Finland,
2002.

[7] Kettunen P., L. Maarit. How to Steer an Embedded Software Project:
Tactics for Selecting Agile Software Process Models”, ICAM 2005 Interna-
tional Conference on Agility, Helsinki, July 27–28, 2005.

[8] Agile Manifesto. http://agilemanifesto.org/

Nikolay Todorov, Avram Eskenazi

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 8

1113 Sofia, Bulgaria

e-mail: nikolai.todorov@musala.com

e-mail: eskenazi@math.bas.bg

Received November 19, 2010

Final Accepted January 5, 2011


