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INTEGER PROGRAMMING APPROACH TO HP FOLDING∗

N. Yanev, P. Milanov, I. Mirchev

Abstract. One of the most widely studied protein structure prediction
models is the hydrophobic-hydrophilic (HP) model, which explains the hy-
drophobic interaction and tries to maximize the number of contacts among
hydrophobic amino-acids. In order to find a lower bound for the number
of contacts, a number of heuristics have been proposed, but finding the op-
timal solution is still a challenge. In this research, we focus on creating a
new integer programming model which is capable to provide tractable input
for mixed-integer programming solvers, is general enough and allows relax-
ation with provable good upper bounds. Computational experiments using
benchmark problems show that our formulation achieves these goals.

1. Introduction. The challenge of inferring a protein’s three-dimen-
sional structure from its sequence is known as the Protein Structure Prediction
(PSP) problem. The primary structure of the protein is the sequence of these
amino-acid residues from amino terminus to carboxyl terminus. Thus the pri-
mary structure is a string over the twenty-letter alphabet of amino-acid types.
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The goal of PSP is to predict the tertiary structure of proteins, which is the
three-dimensional shape of the folded protein. PSP is a problem for which there
is no unique formulation. There are several models of protein folding, and they
generally fall into one of the two categories: off-lattice and on-lattice. Off-lattice
models allow the protein’s components to move, free-floating, in a continuous
space. On-lattice models map the protein’s components to points on a discrete
lattice. The goal of on-lattice models is to confine the size of the energy land-
scape and reduce the protein-folding problem to its simplest form. The HP model
generalizes amino-acids by partitioning them to two sets: hydrophilic (attracted
to water) and hydrophobic (repelled by water). The HP model exploits the dom-
inance of the hydrophobic-hydrophobic contact in the folding event in order to
drastically reduce the problem’s complexity. [5] is a comprehensive survey of com-
binatorial algorithms and theorems about lattice protein-folding models obtained
15 years after the publication in 1995 of the first protein-folding approximation
algorithm with mathematically guaranteed error bounds [3]. The results pre-
sented here are mainly about the HP-protein-folding model introduced by Ken
Dill in 1985 [4] and culminated later in [6].

The HP folding in a lattice differs from other folding approaches in two
points. First, while most approaches rely on the full alphabet of amino-acids
(20 letters), the HP folding uses a simplified two-symbol alphabet, in which each
amino-acid is either Hydrophobic “H” or Polar “P” (as presented in table 1).
Secondly, the 3D space in which the sequence is to fold is discretized (in lattice
models) into a 2D or a 3D lattice (in our case, a 3D cubic lattice). For protein
folding in HP-models, the optimization problem is defined as follows. Given
an HP-model and a protein sequence over the binary alphabet of hydrophobic-
hydrophilic amino-acids, find the protein fold in the model that has the maximum
number of contacts. This optimization problem is indeed NP-complete; however,
a collection of approximation algorithms exists for a variety of HP-models.

Definition 1. In the HP folding in a lattice, a possible fold is called a
self-avoiding walk, and consists of placing the amino-acids ( H/P letters) from
the sequence into the lattice, with the following constraints:

– all amino-acids from the sequence must be placed into the lattice,
– a cell of the lattice can contain at most one amino-acid from the se-

quence,
– two amino-acids that are consecutive in the sequence must be placed in

cells that are neighbors in the lattice.

Definition 2. A hydrophobic contact (h-h contact) occurs when two
hydrophobic amino-acids which are not neighbors in the sequence are placed in
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adjacent cells in the lattice.

Definition 3. An optimal fold is a self-avoiding walk which possesses
a maximum number of hydrophobic contacts.

Table 1. Hydrophobic/Polar classification of the 20 α-amino-acids.

Name Symbol Classification Name Symbol Classification
Alanine A Hydrophobic Leucine L Hydrophobic
Arginine R Polar Lysine K Polar
Asparagine N Polar Methionine M Hydrophobic
Aspartic Acid D Polar Phenylalanine F Hydrophobic
Cysteine C Polar Proline P Hydrophobic
Glutamic Acid E Polar Serine S Polar
Glutamine Q Polar Threonine T Polar
Glycine G Polar Tryptophan W Hydrophobic
Histidine H Polar Tyrosine Y Polar
Isoleucine I Hydrophobic Valine V Hydrophobic

Finding the optimal fold even in the simplest case of 2D lattice model
is an NP-hard problem and still far from being efficiently solved. An attempt
towards this end, focused on identifying the efficiently computable upper bound,
is outlined in [2]. They present a new mathematical formulation of the HP model,
which can provide an upper bound using a linear relaxation of the formulation.
Computational experiments using benchmark problems show that the formulation
provides a tight upper bound (see below).

Let E and O represent the sets of H amino-acids in an even position and
an odd position of the sequence, respectively. Since a 2D square lattice is a
bipartite graph, each H amino-acid in an even position can have contacts with H
amino-acids in an odd position. Similarly, each H amino-acid in an odd position
can have contacts with H amino-acids in an even position. If an H amino-acid
is not in the first or last position of the sequence, it can have two HH pairs of
contacts at most. Otherwise, it can have three HH pairs of contacts at most.
Therefore, the following upper bound can be calculated:

UB = 2min{|E|, |O|} + k, where k is equal to 0, 1, 2, depending on the
following characteristics: no H amino-acids are placed in the first and last posi-
tions, one H amino-acid is placed in the first or last position, two H amino-acids
are placed in the first and last positions. The very sophisticated formulation in
[2] provides this bound only experimentally and there are no indications as to the
expense (the time needed to solve the respective linear programming relaxation).
Our goal here is to derive an efficient integer programming model for the HP fold-



362 N. Yanev, P. Milanov, I. Mirchev

ing on lattices and even on graphs. The model is very compact (with respect to
the number of integer variables) and such that the optimal value of the objective
function of its LP relaxation is less than or equal to the above-mentioned bound.

2. Integer programming model. In order to derive the model,
we will pose it as a contact map overlap problem (CMO) [1]. The input HP-
sequence is considered as a graph Seq = {V,A}, with node and edge sets defined
as: V = {v1, v2, . . . , vl}, A = {vi, vi+1}. The nodes are labeled L(v) = ”H/P” in
accordance with the input sequence.

Let Pair = {i, i mod 2 = 0, L(vi) = ”H”}, Odd = {i, i mod 2 =
1, L(vi) = ”H”}. The sets B and B′ will be frequently used below and are
defined as: B = Pair, B′ = Odd if |Pair| ≤ |Odd| and vice versa.

Remark. The sets Pair/Odd are eligible only if HP-folding is on a
2D square or a 3D cubic lattice. The model below is demonstrated on a 2D
square but its extrapolating on a face-centered cubic lattice and/or graph models
is self-evident.

The lattice is modeled as a graph L = {U,E}, U = {uik, i, k = 1, 2, . . . ,m},
E = {(uik, ujl)}, |i − j| + |k − l| = 1. (m is a reasonable estimate of the lattice
size.) Any elementary chain (without cycles) in E is a self-avoiding walk and the
set of those isomorphic to Seq define the set of feasible solutions. If the edge
set A is extended to A + A′, A′ = {eij = (vi, vj)}, i ∈ B, j ∈ B′, |i − j| > 1
then the HP folding becomes the problem of finding a feasible solution having a
maximum of common edges with A′. Formally speaking, if f : V → U maps the
input sequence to a feasible solution (self-avoiding walk) set, then the common
edges are those with eij ∈ A′′ and (uf(i), uf(j)) ∈ E.

The only difference from CMO is that the set U is only partially ordered
and this prevents the direct use of the algorithms for solving it, but at least the
platform created for modeling maps such as f (matching in graphs) could be used
for the purposes of this section.

Let us call an alignment graph the following I × l grid, with |I|, (I =
{1, 2, . . . ,m2}) rows and l columns. Let g : U → I be an arbitrary embedding
of U in I, for instance g(ik) = mk + i. Then the edges in the grid say (ik, jl)
(the two indices are for row-column coordinates of the grid nodes) if k ∈ B/B′,
l ∈ B′/B and (g−1(i), g−1(j)) ∈ E. Notice also that the grid vertices instantiate
the f map. If xik is a binary variable equal to one when the vertex ik is to
be chosen and vice-versa then a self-avoiding walk is a solution of the following
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system:

(1)

m2∑

i=1

xik = 1, k = 1, . . . , l;

(2)

l∑

k=1

xik ≤ 1, i = 1, . . . ,m2;

(3) xik ≤
∑

j∈δ(i)

xjk+1 k = 1, . . . , l − 1, i = 1, . . . ,m2.

In the equations above: each v is aligned, each u is aligned with one v at
most, neighbors in Seq are aligned to neighbors in L (in (3) neighbors of i are
denoted as δ(i)).

Let now tik, k ∈ B denote the number of contacts in a self-avoiding walk,
if the k−th H in a sequence is aligned with the i−th row of the alignment graph.
Then

(4) 2xik ≥ tik;

(5)
∑

j∈δ(i)

∑

k∈B′

xjk ≥ tik i = 1,m2.

Finally, the objective function to be maximized is:

(6) zip = max
∑

i∈B

∑

k∈B′

tik.

Remark. Equation (4) is a bit simplified to avoid tedious notations.
More precisely, if k = 1 or k = l and L(vk) = H the multiplier is 3 instead of 2.
In a 3D lattice the multiplier is 4 and in a graph, the node degree minus 2.

Let zlp be the optimal value of the linear programming relaxation of the
mixed integer programming problem defined by (6) under constraints (1–4) and
x binary. Then the following is true:

Proposition. zlp ≤ UB.

P r o o f. If x∗, t∗ is the optimal LP solution then by summing on (4) we
obtain the result.
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3. Computational results. We present here computational results
based on the benchmarks used in [2] to demonstrate the quality of LP bounds
provided by their model (in fact several models aiming at approaching UB). In
Table 2, we emphasized how easily these bounds are attained and not their values
because due to the Proposition they are always equal to LB. The first column
indicates the problems we used, where Hn (Pn) means n successive H amino-acids
(P amino-acids).

Table 2. Computational results for the benchmark problems

Sequence length non-zeros time
HPHP2H2PHP2HPH2P2HPH 20 14144 0.1
H2P2HP2HP2HP2HP2HP2HP2H2 24 20214 0.7
P2HP2H2P4H2P4H2P4H2 25 23000 0.8
P3H2P2H2P5H7P2H2P4H2P2HP2 36 65856 2.15
P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 146315 4
H2PHPHPHPH4PHP3HP3HP4HP3HP3HPH4PHPHPHPH2 50 170940 10
P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 513792 128
H12PHPHP2H2P2H2P2HP2H2P2H2P2HP2H2P2H2P2HPHPH12 64 791120 157

The length is in the second column, the number of non-zero elements is
given to demonstrate the size of the respective LP problem, and the time (in
seconds) to solve it is in the last column. All experiments were run on a Server
IBM, 2X Quad-Core, 4C, 2.26 GHz, 2× 2 GB. We used CPLEX as optimization
software. From table 2, we can find that the proposed model is a good candidate
to use in a dedicated branch-and-bound (cut) algorithm at least for problem with
lengths up to 100. Small problems (like the first one) could be solved by a direct
call to “mipopt” in CPLEX. For this problem, the lower bound 9 is found in more
than 10 hours in [2] with Xpress MP2007a software on AMD Athlon 64 X2 Dual
Core (2.70 GHz) with 2 GB Ram. With our model, this bound was found in 8
sec. and proven to be optimal in 525 sec. An optimal solution is shown in fig. 1.

For the last demonstration of the comparative efficiency of the proposed
model we run to optimality the 12H problem as one with a big duality gap. In
[2] the bound UB = 13 was reduced to 6 in 9429 sec. by requiring integrality
for only some of the integer variables. In our model this value is proven to be
optimal in 17 sec.

Note. In all runs the parameter m was set to 2
√

l.

4. Conclusions. In this research, we suggested a mathematical for-
mulation of the HP model for the PSP problem, which can be used in lattices
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Fig. 1. Optimal solution for HPHP2H2PHP2HPH2P2HPH

of various kinds, including arbitrary graphs. Our mathematical formulation pro-
vides the best known upper bound on the optimal value of the HP model when
used as LP relaxation. The size of instances created in respect to the number of
variables is O(lm2), which allows using general purpose mixed integer program-
ming solvers not for toy problems only but also for a large class of real problems.
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