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THEORETICAL HYPERBOLIC MODEL OF A PARTIAL
AGONISM: EXPLICIT FORMULAS FOR AFFINITY,

EFFICACY AND AMPLIFICATION∗

Peter Milanov, Nevena Pencheva

Abstract. The quantitative analysis of receptor-mediated effect is based on
experimental concentration-response data in which the independent variable,
the concentration of a receptor ligand, is linked with a dependent variable,
the biological response. The steps between the drug–receptor interaction
and the subsequent biological effect are to some extent unknown.

The shape of the fitting curve of the experimental data may give some in-
sights into the nature of the concentration–receptor–response (C-R-R) mech-
anism. It can be evaluated by non-linear regression analysis of the experi-
mental data points of the independent and dependent variables, which could
be considered as a history of the interaction between the drug and recep-
tors. However, this information is not enough to evaluate such important
parameters of the mechanism as the dissociation constant (affinity) and ef-
ficacy. There are two ways to provide more detailed information about the
C-R-R mechanism: (i) an experimental way for obtaining data with new or
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selective or inactive compounds; and (ii) a theoretical way by making addi-
tional assumptions and experimental observations about some elements of
the C-R-R mechanism.

Using the second way and basic postulates of the so-called occupation
theory, a Theoretical Hyperbolic Model (THM) was developed in this study,
in order to justify the nature of partial agonism in in-vitro bioassay studies.
The model could be used for sensitive analysis of the partial agonist’s behav-
ior from the experimental dose-response data. The explicit formulas derived
from the model describe the affinity and relative Stephenson’s efficacy.

Moreover, THM allows estimation of the receptor reserve of the almost
full agonists under the assumption presented. When the design of the in-vitro

bioassay allows assessing the maximal possible effect of a given isolated tis-
sue, the affinity and relative efficacy of the respective partial agonists could
be calculated from the experimental dose-response data. It was proved the-
oretically that the partial agonists have no receptor reserve. This finding
confirms experimental results for partial agonists with varying potency. The
THM is used further to explain the C-R-R mechanism and to understand
more deeply the character of the affinity and efficacy of the agonists by in-
troduction of a new agonist feature called amplification and the parameter
amplifier. The THM is compared with other models related with the occu-
pation theory of agonism. The differences and limitations of the application
of THM are discussed.

Introduction. In-vitro bioassays have the benefit of providing more
precise, quantitative information about relative potency, receptor affinity and
relative agonist efficacy within a given series of chemical compounds [16, 41,
44, 45, 67]. They are used to transform the physiological response measured in
chemical quantity, which we further use to characterize the chemical structure
and eventually its property to be a potential drug [60, 62]. In the case of anal-
gesics for example, agonist efficacy as a function of the maximal response a drug
may produce could not be determined by in-vivo models of nociception, because
it requires noxious stimuli of damaging intensity [45]. Thus the advantages of in-
vitro bioassays in isolated tissue allow appreciating the properties of a chemical
compound to evoke effect on both the drug–receptor and the receptor–response
part of the receptor interaction. In the case of agonist action, the compound ex-
erts effects on both parts of this process, while the antagonist has only a binding
parameter. Both of them interact with the receptors, which are the common com-
ponent of the tissue. However, only the agonist reveals a physiological response.
The agonist–receptor–response interaction could be described quantitatively by
mathematical models, the parameters , which should have a biological meaning.

For the purposes of modeling, the following generally accepted notations
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are used: [A]—concentration of agonist; kA—dissociation constant with dimen-
sions of [A]; R—concentration of receptors of a given type; X—concentration of
a complex between receptors of a given type and agonist (AR complex); ET

m—
potential maximum response of the tissue; EA

m—maximum response produced
by agonist A; EA—measured response that is produced by concentration [A];
S—stimulus, which is dimensionless; eA—efficacy of the agonist A, which is di-
mensionless; εA—intrinsic efficacy, which has the dimensions of the reciprocal
value of the receptor concentration R; ECA

50—concentration of an agonist, which
produces 0.5ET

m; [A50]—concentration of an agonist, which produces 0.5EA
m.

To obtain the parameters with relevant biological interpretation, some of
the traditional models pass through the following main steps: (i) incorporation
of the law of mass action into a receptor theory for agonist action [3, 17, 18, 31];
(ii) introduction of the term “intrinsic activity” [4], to characterize more fully
the receptor–response part of the agonist action and to scale the effect; (iii) in-
troduction of the term “stimulus” [66] as a product of fractional occupancy of
the receptors and the parameter “efficacy”, to characterize the response-eliciting
power of the agonist; and (iv) incorporation of the concentration of free receptors
of the given type, as an explicit parameter, and of the hybrid term “intrinsic effi-
cacy” [30]. Thus, according to these basic assumptions, the agonist action could

be measured by: (i) the affinity constant

(

1

kA

)

, which reflects agonist–receptor

interaction or binding; and (ii) the efficacy eA or the intrinsic efficacyεA, which
characterizes the agonist-dependent part of the receptor–response interaction.

The tissue-dependent part of the receptor–response interaction, which
does not concern the chemical substance, is defined by the receptor concentra-
tion R and by the stimulus-effect relation. So the tissue response possesses its
own, drug-independent mechanism. As pointed out by Black and Leff [14], the
abstract nature of the stimulus concept and the lack of a chemical identity for
eA are limitations of the comparative multiple agonist assays. At the same time,
according to Stephenson [66] the function describing the agonist action toward
the stimulus is unknown.

The majority of mathematical approaches used to analyze the concen-
tration–response data obtained by in-vitro bioassays in isolated tissues elimi-
nate Stephenson’s concept of pharmacological stimulus [52–55]. The Operational
model of Black and Leff [14] also avoids this concept. Moreover, authors assume
a particular mathematical form and relation between the response and the con-
centration of the agonist–receptor complex. They further combine this relation
with the occupancy hypothesis to obtain the next relation between the response
and the concentration of the agonist. This relation is used by the same authors
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to define operational affinity and operational efficacy and to obtain them numer-
ically out of concentration–response data. Details about the limitations of these
models are well documented [46, 48–50, 55].

Various mathematical approaches which analyze quantitatively the in-
teraction between ligand and receptors are presented in numerous articles and
reviews [1, 24–26, 28, 34, 35]. Analyses of the dose-response curves and the prob-
lem of the so-called “spare” receptors have a special place in these investigations.

The existence of partial agonists was described by Ariens [4, 5] and
Stephenson [66]. Stephenson’s modification of receptor theory arose from the
need to explain the phenomena of partial agonism and “spare” receptors. His
article [66] was very influential among pharmacologists, but some theoretical pro-
posals in it were slightly wrong [19, 23]. The reason is that Stephenson’s theory
assumes that the two free parameters – eA (measuring efficacy) and kA (measure
of affinity) – must be independent, whereas in fact affinity depends on efficacy
[27]. As a consequence, the methods that have been proposed for measurement
of affinity and efficacy, including that of Fuchgott’s intrinsic efficacy [30, 66], do
not work [19]. This problem was also propagated into the Operational model of
Black and Leff and related approaches of Kenakin [21, 44]. All this stimulated us
to develop a new model of partial agonist action, developing Stephenson’s ideas.

Theoretical hyperbolic model (THM). Our main purposes were:
(i) to express the different parts of the agonist–receptor–response mechanism as
explicit functions based on the appropriate assumptions; (ii) to obtain mathe-
matical evidence of the nature of the physiological response EA as a function of
the stimulus S in a form of explicit expression, where ET

m and C2 (measure unit of
the stimulus S) are parameters; (iii) to obtain explicit formulas for determining
the main parameters of agonist action kA and eA, respectively εA. During the
course of our study it also became important to: (i) specify the necessary and
sufficient parameters which describe agonist action; (ii) characterize the almost
full agonist more specifically to estimate its receptor reserve (RR) if it exists; and
(iii) introduce a new parameter, named “amplifier”, for more precise quantitative
description of the C-R-R mechanism and giving the real interpretation of the
term stimulus introduced by Stephenson [66].

In order to achieve all these purposes, we developed a novel model of phar-
macological agonism, named Theoretical hyperbolic model (THM), which aims
at estimating the agonist parameters and their interpretation, according to the
following main criteria: (1) to reflect the biological mechanism as closely as possi-
ble: it is desirable that the mathematical relationships between the independent
and the dependent variables be based on physical, chemical or biological laws and
observations; and (2) to be as simple as possible: it is preferable for the other,
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more complex model if it describes the biological process and its parameters with
the same accuracy.

The basis of our investigation is mainly Stephenson’s [66] model of a
concentration-occupation-stimulus-response mechanism and some approaches in
the papers by Agneter et al. [1, 2, 3], Barlow et al., [9, 10, 11], Black and Leff
[14, 15], Colquhoun [19–25], Kenakin [43], Mackay [52–55], Furchgott [30], etc.

In general the presented THM follows the classical work of Stephenson,
but with some more profound considerations which allow us to: (1) determine
Stephenson’s unknown function of the biological response as an explicit function
of stimulus; (2) give a proper interpretation of the stimulus character; (3) de-
termine the dissociation constant kA from the experimental data and show its
inherent dependence on the efficacy; (4) determine the efficacy eA from the ex-
perimental data and clear up its biological sense; (5) estimate RR of almost full
agonists, if it exists.

THM-1. Axiomatic. The theory of the partial and almost-full agonism,
which will be postulated here, is based on the axiomatic approach and on the
following well-known suggestions and facts in quantitative pharmacology:

(a) the interaction between a drug and a receptor is bimolecular and obeys

the law of mass action, i.e., Y =
X

R
=

[A]

[A] + kA

;

(b) the occupied receptors X generate stimulus S which is quantitatively

defined as: S = eA
X

R
=

eA[A]

[A] + kA

= εA
R[A]

[A] + kA

= εAX; this stimulus leads to

some observed (measured) effect;
(c) the best approximation function of the experimental concentration-

response data is a function of the type EA =
LA

1 [A]

[A] + LA
2

, where LA
1 and LA

2 are

numerical constants that have a particular significance;
(d) ET

m depends only on the given tissue; there are drugs which produce
this maximum response (full agonist) or one close to it;

(e) the relation between stimulus and response is a property of the tissue
and not of the drug (drug-independent property);

(f) equal stimuli lead to equal tissue responses.
The assumption (a) is a generally accepted relation and follows from the

law of mass action. It describes the equilibrium stage of the process of binding
and gives a quantitative characteristic of the number X of the AR complex. It
does not explain what is going on in the process itself—how many receptors and
molecules are involved to supply the equilibrium state number X. Assumption
(a) is valid only under suggestion R ≪ [A], i.e., X is very small compared to [A].
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Assumption (b) is Stephenson’s parameter S [66], named stimulus, which
can be defined by Stephenson’s efficacy eA or by Furchgott’s intrinsic efficacy εA

[30]. Efficacy eA is a dimensionless proportionality factor denoting the power of

a drug A to produce a response in a tissue. The intrinsic efficacy εA =
eA

R
is a

quantum unit for the capacity of a drug to initiate a stimulus from a receptor.
The biological sense of S may be different for the different tissues and depending
on the kind of effect that is measured. A deep consideration of Stefenson’s theory
and its history is given by Colquhoun [19–23].

Assumption (c) originates from the empirical observation that the best-
fitting curves of the experimental data points (most of them, if not all), are
hyperbolas or semi logarithmic hyperbolas (in a logarithmic scale) [8–14, 30, 32,
43, 68, 70].

In assumption (d) ET
m is a very important tissue characteristic and de-

pends on the pattern of the tissue response. Assumptions (e) and (f) follow
Stephenson’s definition of the stimulus–response mechanism [66] and are gener-
ally accepted in quantitative pharmacology.

Assumptions (a–f) and the relations deriving from them constitute the
THM suggested here.

After a mathematical combination of assumptions (a), (b) and (c) (appen-
dix, point 1), the relation between EA and S in the stimulus-response mechanism
is the following formula:

(1) EA =
CA

1 S

S + CA
2

,

where

(2) CA
1 =

LA
1 kA

kA − LA
2

and CA
2 =

eALA
2

kA − LA
2

.

The relations (1) and (2) are true for any agonist A that acts on a given
tissue and the same type of receptors (assumption (a)) having in mind that the
best fit of the experimental data obeys assumption (c). On the other hand the
stimulus-effect relationship (1) is a drug-independent property (assumption (e)).
That is why there are two constants C1 and C2 such that:

(3) CA
1 = C1, CA

2 = C2 for any agonist A and EA =
C1S

S + C2
.

The constants C1 and C2 are one and the same for a given type of tis-
sue and receptors and do not depend on the agonist A acting on this tissue.
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Consequently, from (2) and (3) it follows:

(4) C=
1

LA
1 kA

kA − LA
2

and C2 =
eALA

2

kA − LA
2

.

Solving the system (4), the parameters kA and eA are expressed in the
following way:

(5) kA =
C1L

A
2

C1 − LA
1

and eA =
C2L

A
1

C1 − LA
1

for any agonist A.

The expressions (5) allow us to calculate or to estimate the dissociation constant
kA, the affinity 1/kA and the efficacy eA, if the parameters LA

1 , LA
2 , C1 and C2 are

known. Stephenson [66] suggests, in his extension of the occupation theory, that
there is an unknown, monotonic and continuous function f(S) of the stimulus S
such that the response EA could be presented as:

(6) EA = ET
mf(S), where f(S) is an unknown function.

In the presented THM, according to our findings (3), the response EA is
a hyperbolic function of S, which is monotonic and continuous by nature, since:

(7) EA =
C1S

S + C2
.

THM-2. A pharmacological interpretation of the parameters
and their calculation. The explicit formulas for LA

1 and LA
2 , as functions of the

experimental data, are presented in the appendix (item 2). From the assumption
(c) it follows that LA

1 ≈ EA
m and LA

2 = [A50]. The values of EA
m and [A50] could be

calculated after the best fitting of the experimental data. The pharmacological
meaning of EA

m and [A50] is a result of their definitions. From the assumption (d)
and (7) it follows that C1 ≈ ET

m (maximum possible effect of the tissue) and the
effectEA could be presented as a function of S as follows:

(8) EA =
ET

mS

S + C2
and Stephenson’s “unknown” function f(S) =

S

S + C 2
,

as a function of the variable S.

The maximum effect of the tissue ET
m can be determined (assumption

(d)). There are cases when ET
m could be derived from the control responses of

the test system. For example the commonly used in-vitro bioassays for testing the
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potency of opioid compounds are guinea pig ileum-longitudinal muscle and mouse
vas deferens. Using a standard experimental procedure, where the parameters of
field electrical stimulation, size of isolated preparations, etc., are unchangeable,
we evoke control contractile responses which have been partially or fully inhibited
by the opioids. In this case these initial contractions in fact could be considered
operationally as ET

m [61].
Following (8), the parameter C2 could be considered as stimulus S , which

elicits 0.5ET
m, because if S = C2 then EA =

ET
mC2

2C2
= 0.5ET

m. So C2 could be

used as a measure (unit) of stimulus S in a given tissue. Thus any stimulus S
could be presented by this measure C2 and a numerical parameter t as follows:

(9) S = tC2, t ∈ [0,+∞) , i.e., the response EA =
ET

mt

t + 1
.

After replacing the coefficients LA
1 , LA

2 and C1 with EA
m, [A50] and ET

m

respectively in formulas (5), we obtain the following explicit expressions:

kA =
[A50]E

T
m

ET
m − EA

m

and
eA

C2
=

EA
m

ET
m − EA

m

.

These formulas are correct only when EA
m < ET

m or EA
m ≈ ET

m. This
means that A is a partial agonist or almost full agonist.

Using notations λA =
EA

m

ET
m

(λA < 1, because A is a partial or almost full

agonist) and µA =
λA

1 − λA

, the dissociation constant kA and the relative efficacy

eA

C2
are expressed as follows:

(10) kA =
[A50]

1 − λA

,
eA

C2
=

λA

1 − λA

= µA,

kA =
µA

λA

[A50] , λA =
µA

µA + 1
and kA = (µA + 1) [A50] .

The parameters EA
m and [A50] could be calculated from the experimental

data; ET
m (respectively λA and µA), by using the experimental data of some full

agonist or apriority. The parameters λA and µA are important for explaining
the C-R-R mechanism and allow a sensitive analysis of the agonist behavior in a
given tissue.

The parameter µA does not depend on the measure unit C2 and gives
an absolute quantitative characteristic of the ability of agonist A to produce a
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biological effect. The type of biological effect (the tissue’s answer to the agonist
action on the receptors) measured depends on the character of the experiment
and the tissue. This defines the biological content of EA

m and ET
m.

The parameter kA characterizes not only the process of binding, but the
conformation stage as well. The parameter [A50] describes what we see but does
not tell us what is going on underneath. The parameter kA through µA tells
us what is going on. The value of X strongly depends on kA (assumption (a)).

The dissociation constant is defined as kA =
k2

k1
, where k1 and k2 characterize

association and dissociation parts of the drug–receptor interaction. A high kA

means that the dissociation dominates the association and consequently a large
part of the total number of receptors and molecules are involved in the process
of binding, supplying the necessary level of occupancy X at any moment of the
equilibrium state. The formulas (10) concerning kA show its strong dependence

on the efficacy eA since
eA

C2
=

λA

1 − λA

= µA and according to the last part of (10)

kA = (µA + 1) [A50].
In some cases under investigation it is interesting to compare the action of

agonists in a given tissue through their numerical parameters of agonist activity.

For any two partial agonists A1 and A2 their ratio efficacy
eA1

eA2

and ratio affinity

kA1

kA2

could also be determined by (10) as functions of λA and µA as follows:

eA1

eA2

=
λA1

(1 − λA2
)

λA2
(1 − λA1

)
=

µA1

µ2
,

kA1

kA2

=
[A1

50].(1 − λA2
)

[A2
50].(1 − λA1

)
=

λA1

λA2

µA1

µA2

[

A1
50

]

[

A2
50

]

These and formulas (10) allow a sensitive analysis of the behavior of
agonists with respect to λA and µA.

THM-3. The C-R-R mechanism. The stimulus–response (S-R) rela-
tion in the tissue which is described by equation (8) depends on the parameters
ET

m and C2 and on the variable S. The specific feature of the C-R-R mechanism
needs additional parameters to analyze a stimulus–response process. Combin-

ing (8) and (10) with the assumption (b)

(

S = eA
X

R

)

, the stimulus S and the

response EA are connected as follows:

(11) S =
C2

R
µAX and EA =

ET
mµAX

µAX + R
.

Let us introduce the term “intrinsic stimulus” c2 (this measure is condi-
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tional), defined as:

(12) c2 =
C2

R
.

It is a quantum unit for the stimulus initiated by one receptor of a given

type in the tissue. The ratio µA =
λA

1 − λA

noted in (10) should be termed

“amplifier”. It needs to be pointed out that µA is just the relative efficacy eA/C2

(relative, because the measure unit is C2, described in THM-2). In these terms
the first equation in (11) can be rewritten as:

(13) S = (µAX)c2 =

(

µA

X

R

)

Rc2.

From (13) it follows that µA is the number of bindings of one receptor
with molecules of drug A for any equilibrium state X. Therefore, the stimulus
S = µAXc2 imported to the tissue by a given concentration of an agonist A
is the sum of the quantum stimuli c2 of all responding units µAX. It could
be suggested that µAX reveals the “number of activations” of all receptors of
the tissue, because: (a) X is the number of receptors which are involved in the
equilibrium state of the process of binding (at any moment of the equilibrium
state the receptors supplying the quantity X may be different); and (b) amplifier
µA shows how many times one receptor is “activated” at any equilibrium state
of the process.

Note to THM-3. The processes at the equilibrium stage of the binding
can be described mathematically precisely by using a special type of a partial
differential equation, but this is a subject of another consideration.

The tissue processes the total stimulus into a tissue response EA =
ET

mµAX

µAX + R
(the second part of (11)) and this response does not depend on the

measures C2 and c2 of the stimulus S. From (13) it follows that the stimulus S
depends on two parameters—c2 and µA, and the variable X. The parameter c2

together with parameters ET
m and R (see (12)) define exactly the S–R relations

of the tissue and appear to be a receptor property. It depends on the type of
the receptor and on how it acts. The variable X depends on R, [A] and kA and
therefore is a drug-tissue dependent. The parameter µA depends on ET

m and EA
m

and reflects drug and tissue properties. The following relation between µA and
the intrinsic efficacy εA is also valid: εA = µAc2. This is a precise expression of
intrinsic efficacy as a classical parameter which depends on parameters c2 and
µA. Since c2 is a constant measure unit for a given tissue (it depends on the
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tissue and the type of receptors), µA defines the power of the agonist to produce
a tissue response by one receptor. All this allows us to give some insight into the
nature of the C-R-R mechanism.

The first step of this mechanism (C-R or concentration–receptor) is the
interaction between the receptors and the molecules of the agonist, according to
assumption (a). The process is dynamic and it involves many more receptors
(some of them many times) as compared with X on the condition that R ≪ [A].
All this allows a sufficient number of molecules of the drug A to supply the
equilibrium stage X which depends on the period of interaction between the
molecule of the agonist and the receptor. The number of occupied receptors X at
any moment of the equilibrium state strongly depends on kA. The bigger kA, the
shorter this period is (lower affinity) and therefore many receptors, more than X,
react with the molecules many times. According to (13) (kA = (µA + 1) [A50]),
the affinity may be presented as a function of kA and [A50] (appendix, item 5).

The second step R-R (receptor–response) has two stages:
– receptors process a stimulus S = µAXc2;

– this stimulus is transformed into an effect EA =
ET

mµAX

µAX + R
, which is a

function of the variable X and parameters ET
m, R and µA.

The stimulus S has a clear meaning, because µA and X are well defined,
and µAX is the number of “activated” receptors of X in the equilibrium state.
The measure c2 is conventional and depends only on the tissue and the type of
receptors.

The biological effect EA =
ET

mµAX

µAX + R
depends on two parameters of the

tissue, R and ET
m. They define the following two constraints on X:

– when EA
m < ET

m (µAis not too large) the equilibrium level X = R
processes the maximum response EA

m;
– when EA

m ≈ ET
m, the equilibrium level X < R may process the maximum

response EA
m.

The second possibility depends on the dissociation constant kA and as-
sumes the existence of a receptor reserve (RR). The influence of kA on the exis-
tence of RR is the matter of a separate investigation.

The amplifier µA (respectivelyλA) could be considered as a quantitative
measure of a drug biological activity. It allows a precise classification of drugs as
antagonists, partial agonists and full agonists.

For µA ≥ 1 (λA ≥ 0.5) the parameter ECA
50 is well defined and the

following equation holds:

(14) kA = (µA − 1) ECA
50.
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Combining (13) and (14), the two location parameters ECA
50 and [A50]

are connected by the relation:

(15) ECA
50 =

(

µA + 1

µA − 1

)

. [A50] .

This is true only for the cases when µA > 1 (EA
m > 0.5ET

m).

THM-4. Receptor reserve (spare receptors). Substituting (13)
in (8), the response EA is described as a function of the receptors R, occupied
receptors X and the receptor reserve RR = (R − X) as follows:

(16) EA =
λAX

R − λA (R − X)
ET

m =
µAX

µAX + R
ET

m.

Let XA
m be the value of the AR complex that elicits EA

m. Using (16), the
following equation holds:

(17) (R − XA
m) = λA(R − XA

m).

When λA < 1, the equation (17) is possible, if and only if:

XA
m = R.

This means that all partial agonists do not have a receptor reserve, which
confirms the experimental observations [5, 6] that partial agonists have no RR.
When λA ≈ 1, equation (17) may be true for R−XA

m > 0. This means that those
agonists which are close to full agonists as biological activity behavior may or
may not have a receptor reserve. The main problem is: is it possible to recognize
the existence of RR from the experimental dose-response data? The answer of
this question shall be given in our further investigations.

If RR exists ((R−XA
m) > 0), byintroducing the variable λ =

EA

ET
m

(0≤ λ ≤

λA), the RR and any equilibrium state X of the AR complex can be estimated
as functions of λ:

(18) (R − X) = (1 −
λ

µA(1 − λ)
)R and X =

1

µA

λ

(1 − λ)
R.

The relations (18) are interesting only for the case when λA ≈ 1 (agonist

A is an almost full agonist). For λ =
n

n + 1
, n = 1, 2, . . ., let XA

n denote the
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concentration of AR complex supplying
EA

ET
m

=
n

n + 1
response. Then the RR in

this case is

(

1 −
n

µA

)

R and XA
n =

n

µA

R.

THM-5. The case of non-classical hyperbolic E/[A] curves. In
the case of Tallarida and Jacobs [68] when n molecules of agonist A react with
one molecule of R:

X

R
=

[A]n

[A]n + kA

.

The assumption that EA is directly proportional to X leads to

EA =
EA

m [A]n

[A]n + kA

.

Having this in mind this and the observation that in many cases the
experimental E/[A] curves are steeper or flatter than the classical hyperbola, the
experimental data could be fitted by the following function:

(19) EA =
EA

m[A]P

[A]P + [A50]P
,

which have three parameters EA
m, [A50] and p, where the parameter p denotes

the steepness of the curve [70]. We developed THM for pharmacological agonism
on the basis of axioms (a–f). This theory can be extended for the experimental
curves formulated as in (19). Since the classical hyperbola is a special case of
(19), when p = 1, we introduced the following steps to comprise the general case:

(i) Let us choose n points p1, p2, . . . , pn from the interval [a, b];
(ii) Let us fit the experimental data by the following family of curves:

EA =
EA

m[A]Pi

[A]Pi + [A50]Pi

i = 1, . . . , n;

(iii) Choose the curve giving the best fit of the experimental data. Let i0
be the index of the optimal fitting curve:

(20) EA =
EA

m[A]
P

i0

[A]pi0 + [A50]
pi0

.

Using (20) in assumption (c), it is not difficult to show that there exists
a function f(S, pi0, eA) such that

(kA)pi0 =
f(S, pi0 , eA). [A50]

1 − λA

and

(

eA

C2

)pi0

=
λA

1 − λA

= µA.
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The function f(S, pi0 , eA) is continuous and decreasing with respect to S
and lim f(S, pi0 , eA) = 1 when S → eA.

In terms of µA

(21) (kA)pi0 = (µA + 1) [A50] f(·) and

(

eA

C2

)pi0

= µA.

From (21) it follows that only kA depends on f(·).
For the full calculations leading to (21), see the appendix (item 3).

Discussion. The roots of the presented THM lie at the assumptions
(a–f). The questions related with (a–f) concern the identity and accessibility of
the parameters contained in the model used to describe partial and almost-full
agonism. The basic idea in this study was to develop Stephenson’s model and
extend its application.

Assumption (a) is well known and follows the law of mass action. Under
the condition R ≪ [A] the equilibrium concentration of the agonist equals the
initial applied concentration. This condition is not necessary but leads to a simple
and realistic expression of the number of AR complexes. It is true that (a) is
used in almost all theoretical papers [4, 13, 14, 28, 30, 42, 52, 54, 65, 66, 68]
concerning drug interaction and is widely applied in all methods discussed in the
introduction.

Assumption (c) defines the character of the fitting curves of the exper-
imental data. This can be considered as a law of dose–response action. The
shape of concentration–response curves may give some insights into the nature
of the relation between receptor occupancy and ensuing response. Hyperbolic
curves and curves indistinguishable from them are an important subclass of the
curves used in the best approximation of the concentration–response data. They
cover a wide range of C-R-R interaction with different receptors in different tis-
sues [14, 15]. Many experimental results prove that around 70% of the fitting
curves in the considered cases are hyperbolic or close to them [1, 11, 28]. Let us
mention that the various forms of the logistic curves have been used for analysis
of concentration-response data [26, 32, 36–41]. Finally, it is necessary to note
that the hyperbolic curves in the case of a logarithmic scale are named sigmoid
(appendix, point 4), semi logarithmic or S-shape functions.

Assumptions (b), (d) and (e) are commented together because they con-
cern the stimulus–response mechanism on the whole. These assumptions are
introduced by Stephenson [66] in his basic model. They are accepted in their
entirety in the THM, because they allow us to explain the behaviour of the
full agonists. According to them the maximal response might be obtained with
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only a very small fraction of the receptors occupied [4, 66], which underlines
the differences between full and partial agonism. However, many authors avoid
Stephenson’s model, because the nature of the stimulus S introduced in his model
is ill-defined. In the THM (especially THN-3), the nature of stimulus S obtains
a clear interpretation, which is in accordance with the suggestions of Barlow et
al. [13].

Assumption (d) is discussed by many authors [14, 30, 42, 49, 52, 54, 64,
66]. This assumption (the definition of ET

m is given by Furchgott [30]) raises the
following question: when might the response be measured? In the case of muscle
contraction the response might be the isometric tension produced, or the change
in length of the tissue under isotonic conditions. Alternatively, changes in the
electrical properties or membrane permeability of the cells might be used as a
measure of the response. It seems very unlikely that all these various types of
response would be related in the same way to the fraction of receptors occupied
by the agonist [23, 54]. In quantitative pharmacology there is no clear answer
when a drug is a full agonist, and this is because the definition of full agonist uses
ET

m. On the other hand ET
m is defined as a maximum potential effect produced by

a full agonist [14, 42, 53, 68, 69]. From this it follows that ET
m could be defined

only by using the properties of the tissue (muscle contraction, electric properties
and so on). Experimental confirmations of the assumption (d) are: the method
of competitive bioassay [7] and the irreversible elimination method [30].

Assumption (e) concerns the stimulus–response mechanism in a given
tissue which is fully determined by Stephenson’s so-called “unknown” function
f(S) and this function is the same for different agonists acting on the same tissue.
This is mentioned on many occasions in the literature [14, 23, 30, 42, 48, 52–55,
66, 68]. The use of special forms of f(S) [14, 30, 42] leads to different models of
stimulus–response relationships. Formula (8) shows that in the considered THM
the function f(S) appears to be hyperbolic. The measured biological effect EA as
a function of X is presented by (11). This is quite different from such functions
considered until now [14, 42]. These functions are usually postulated and there
are no arguments why they are considered. The skepticism with respect to the
stimulus-response mechanism is formulated by Kenakin [42]: “However, the clear
indication that a tissue response cannot be used as a direct measure of receptor
events (binding and quantal stimulation) necessitate the use of null techniques in
receptor pharmacology”. Mackay shares the same view [54, 55].

Assumption (f) is generally accepted in quantitative pharmacology and
will not be commented upon. Let us only mention that the null methods are
based on the idea: equal stimuli should produce equal responses. The same is
used in the methods for determining the dissociation constant of competitive
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antagonists [68].
Finally, according to our view, concerning assumptions (a–f), assumptions

(b), (c), (d) and (e) are the most important and lead to obtaining the explicit
formulas (10) and (11). Indeed, (c) defines the law of dose-response relation
and together with (b), (d) and (e) supplies an explicit expression of affinity,
efficacy and effect of partial agonists through the parameters EA

m, [A50] and ET
m,

calculated from the experimental data for a given tissue.
Maybe the most detailed mathematical model for describing and quanti-

fying pharmacological agonism is the pre-eminent operational model of Black and
Leff [14], which according to Kenakin [43] avoids the inclusion of ad hoc terms for
efficacy. Different sides of this model are discussed, compared and criticized with
another models by many authors [1, 2, 33, 55]. The operational model is based
on the observation that the relationship between agonist concentration and tissue
response is most often hyperbolic. The main differences between the operational
model and the THM, presented in this paper, are as follows:

– in the operational model the main postulate is that EA is a hyperbolic
function of the receptors occupied, while in the THM EA is a hyperbolic function
of the concentration of the compound applied; so assumption (c) in the THM
could be verified by fitting the experimental data, which allow us to realize the
applicability of the model.

– in THM the affinity and the efficacy have a classical meaning; in an
operational model it is necessary to define the so-called “transducer ratio” τ
as a measure of efficacy. The connection between parameters [A50], kA and τ
according to Black and Leff [14] is:

(22) [A50] =
kA

τ + 1
or kA = (τ + 1) [A50] .

The correct connection between the above parameters, however, is:

(23) [A50] =
kA

τ − 1
or kA = (τ − 1) [A50] .

The relation (23) holds if and only if τ > 1. This is a strong restriction
on drugs acting on a given tissue. (23) is derived in the appendix (item 6).

Relation (22) and other questions arising around the operational model
are discussed by Agneter [3], Geraldo [33] and others [59]. Equation (23) limits the
application of operational model only for partial agonists and similar suggestions
are presented in various papers [47, 48, 51]. From the definition of τ it follows that
the operational model is applicable if τ is greater than one, i.e., it is incorrect to
analyze partial agonists with low maximal effect by using the operational model.
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The reason is the suggestion that there is a value of AR complex (named KE in
the paper) that elicits half-maximal effect.

The lack of an operational model is a result of an unclear definition of
Em. If Em equals EA

m, then kA = (τ − 1) [A50]; if Em equals ET
m, then kA =

(τ − 1) [EC50]. In the first case, the operational model does not allow us to
compare the agonist’s action of different drugs in a given tissue.

Such faults, or similar ones, raise the skepticism of Agneter et al., [2],
Colquhoun [23] and others concerning the models of Furchgott [30] and of Black
and Leff [14].

An approach different from Stephenson’s was proposed by Del Castillo
and Katz [27] to explain partial agonism. They wrote down a simple explicit
reaction scheme known as the “Del Castillo-Katz mechanism”. This scheme pre-
dicts two steps: (1) ability to bind and (2) isomerisation between inactive and
active receptors. The concentration–stimulus-response mechanism presented in
the THM (according to THM-3) could also be considered in two steps: (1) occu-
pation of receptors and (2) activation and amplification of receptors to stimulus

S which produces a response EA =
ET

mµAX

µAX + R
, presented as a function of the

number of occupied receptors X.
The second formula in (11) illustrates another essential difference between

THM and the operational model of Black and Leff [14].
A very important fact in quantitative pharmacology is the observation

that ET
m may be achieved when only a relative small fraction of receptors is

occupied, i.e., when a full or (almost) full agonist interacts with receptors. In
several papers [1–3, 28, 29] the concept of “spare” receptors is considered in detail.
There a receptor reserve is quantified from experimental data using “mechanistic
general response functions” (nonsymmetrical sigmoid) developed to reflect the
existence of “spare” receptors. This model recognizes the existence of RR using
a slope parameter [28]. Thus they avoid the faults of the previous models of
Black and Leff [14] and Furchgott [30]. The THM presented in this study gives
quantitative details (THM-4.) for RR and its estimation (formula (18)), if RR
exists. Moreover, THM proposes that RR exists only for almost full and full
agonists. For partial agonists RR does not exist (THM-4.).

Agneter [1] mentions that previous theories usually consider only func-
tions transforming binding into response. Therefore, they theoretically exclude
congruence of a concentration-binding curve and the corresponding concentration-
response curve, except in the case of direct proportionality. Formulas (1–7) and
(10–11) and their explanation show that the initial binding reaction and result-
ing response are not independent processes, i.e., they unite these processes. This
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dependence reflects into affinity and efficacy of drugs. The agonist affinity (for-
mula (10)) measures dependence on the characteristics of both, not only on the
initial binding. This confirms the suggestion of Colquhoun that affinity strongly
depends on the efficacy of the drug, which is discussed many times [19–23].

On the other hand, THM allows interpretation of the relationship between
occupancy of receptors and induced response, discussed in (THM-3). According
to formula (11) the response depends on the tissue parameters ET

m and R, the
drug-tissue parameter µA and the variable X, but does not depend on the measure
c2. This statement is correct, because assumption (c) is observed to be true for
different tissues and type of receptors [14] and the law (11) serves all these cases.

Conclusion. After the first suggestions of the THM [56], some further
results [60, 62] showed that [A50] or EC50 cannot characterize completely agonist
behaviour of compounds with various potency in different tissues. This stimulated
us to undertake experiments with isolated tissues where ET

m could be well defined
[57, 58, 61, 63]. Together with the fitting curves of the experimental data, affinity
and efficacy of the tested compounds were calculated, applying formulas similar to
(10). Numerical results for kA and eA confirm the biological and pharmacological
properties of the drugs investigated in these papers. So all these steps stimulate
us to develop THM as a whole as an evolution of Stephenson’s idea and this
complete model is the object of the present study. Let us mention that formulas
(10) were incorporated into a scheme of an artificial neural network architecture,
proposed for investigation of quantitative structure–activity relationship [5].

Appendix.
1. Using the assumption (b), after simple mathematical operations, [A]

can be expressed by S as follows

(∗) [A] =
kAS

eA − S
.

Combining assumption (c) with (∗) the response EA is presented as a
function of S:

EA =
LA

1 [A]

[A] + LA
2

=

LA
1

(

kAS

eA − S

)

kAS

eA − S
+ LA

2

=
LA

1 kAS

S(kA − LA
2 ) + eALA

2

=

LA
1 kA

(kA − LA
2 )

S

S +
eALA

2

(kA − LA
2 )

=
CA

1 S

S + CA
2

,
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where CA
1 =

LA
1 kA

(kA − LA
2 )

and CA
2 =

LA
2 eA

(kA − LA
2 )

.

2. The experimental data points (Ei, [Ai]), i = 1, . . . , N , are fitted by the
hyperbola

EA =
LA

1 [A]

[A] + LA
2

(assumption(c)).

The constants LA
1 and LA

2 are obtained by using the least square method

in the following form: let Ei = εi

LA
1 [Ai]

[Ai] + LA
2

, i = 1, . . . , N .

Minimize the function

F (LA
1 , LA

2 ) =
N
∑

i=1

(εi − 1)2 =
N
∑

i=1

((

Ei

LA
1

+
Ei

[Ai]

LA
2

LA
1

)

− 1

)

2

,

with respect to LA
1 and LA

2 .

From the necessary and sufficient conditions
∂F

∂LA
1

= 0,
∂F

∂LA
2

= 0 it follows

the explicit formulas for LA
1 and LA

2 from the experimental data:

LA
1 =

(

N
∑

i=1

Ei

)(

N
∑

i=1

(

Ei

[Ai]

)2
)

−

(

N
∑

i=1

E2
i

[Ai]

)2

(

N
∑

i=1

Ei

)(

N
∑

i=1

(

Ei

[Ai]

)2
)

−

(

N
∑

i=1

Ei

[Ai]

)(

N
∑

i=1

E2
i

[Ai]

)

LA
2 =

(

N
∑

i=1

Ei

)(

N
∑

i=1

E2
i

[Ai]

)

−

(

N
∑

i=1

Ei

[Ai]

)(

N
∑

i=1

Ei

)

(

N
∑

i=1

Ei

)(

N
∑

i=1

(

Ei

[Ai]

)2
)

−

(

N
∑

i=1

Ei

[Ai]

)(

N
∑

i=1

E2
i

[Ai]

) .

3. Let the best-fitting function be

(∗∗) EA =
EA

m[A]
P

i0

[A]pi0 + [A50]
pi0

.

Substituting (∗) in (∗∗), EA is expressed as a function of S as follows

(∗∗∗) EA =
LA

1 (kAS)pi0

(kAS)pi0 + LA
2 (eA − S)pi0

.
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If f(S, pi0, eA) =
(eA

S

)pi0

−

(eA

S
− 1
)pi0

then (eA − S)pi0 = e
pi0

A −

f(S, pi0, eA)Spi0 . Using this, (∗∗∗) can be rearranged in the form EA =
CA

1 Spi0

Spi0 + CA
2

,

where

CA
1 =

LA
1 k

pi0

A

k
pi0

A − f(.)LA
2

and CA
2 =

LA
2 e

pi0

A

k
pi0

A − f(.)LA
2

.

Solving the equations with respect to kA and eA, the following expressions
are true

(kA)pi0 =
f(S, pi0 , eA). [A50]

1 − λA

and

(

eA

C2

)pi0

=
λA

1 − λA

= µA;

(kA)pi0 = (µA + 1) [A50] f(·) and

(

eA

C2

)pi0

= µA

4. The hyperbola (∗) in the logarithmic scale has a sigmoidal shape

because EA =
LA

1 [A]

[A] + LA
2

=
LA

1 10log[A]

10log[A] + 10log LA
2

with a mean point log LA
2 = p[A50].

The parallel shift of the curve is equivalent to the irreversible blockade, which is
equivalent to the increasing of LA

2 (which is equal to [A50]). Irreversible blockade
produces parallel rightward displacement of the curve of the full agonist and this
reduces the efficiency of the stimulus-response mechanism.

5. The ratio 1/kA as a measure of the affinity of drugs. Let 1/kA < 1/kB

for two drugs A and B acting on the same receptor on the same tissue. For equal

concentrations [A] and [B]XA =
R [A]

[A] + kA

=
R [B]

[B] + kA

<
R [B]

[B] + kB

= XB , be-

cause 1/kA < 1/kB implies kB < kA. The inequality XA < XB means: the drug
A occupies a smaller number of receptors than drugB, acting on the receptors

with the same concentration. If XA = XB (XA =
R [A]

[A] + kA

=
R [B]

[B] + kB

= XB)

and kB < kA, then [B] < [A]. This means that drug A needs higher concentration
[A] than the concentration [B] of drug B to supply the same level of occupancy.

6. Following Black and Leff [14] and using their notations, equation (5)
from this article can be rewritten in the form:

E

Em

=
τ [A]

(τ + 1) [A] + kA

.

For [A50]
E

Em

=
τ [A50]

(τ + 1) [A50] + kA

= 0.5 and [A50] =
kA

τ − 1
, or kA = (τ−1) [A50].
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