Serdica J. Computing 5 (2011), 309-322 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics

A SUPER-DIMENSION APPROACH IN ROLAP
ENVIRONMENTS

Ina Naydenova

ABSTRACT. Often the designer of ROLAP applications follows up with the
question “can I create a little joiner table with just the two dimension keys
and then connect that table to the fact table?” In a classic dimensional
model there are two options—(a) both dimensions are modeled indepen-
dently or (b) two dimensions are combined into a super-dimension with a
single key. The second approach is not widely used in ROLAP environments
but it is an important sparsity handling method in MOLAP systems. In RO-
LAP this design technique can also bring storage and performance benefits,
although the model becomes more complicated. The dependency between
dimensions is a key factor that the designers have to consider when choosing
between the two options. In this paper we present the results of our storage
and performance experiments over a real life data cubes in reference to these
design approaches. Some conclusions are drawn.

1. Introduction. The question of how to represent the dependence
between two or more dimensions without going through the fact table leads the
designer of ROLAP environments to the idea of composite dimension (see [3],

ACM Computing Classification System (1998): H.2.1, E.5.
Key words: combine, composite, dimension, concatenation, OLAP.

310 Ina Naydenova

[4], [6]). Let us imagine that the two dimensions are Product and Market in a
retail setting. Suppose that we have the fact table that records actual sales of
Products in the various Markets over Time. The desire to represent the depen-
dence between the Product and Market dimensions is based on the suspicion that
“Products are highly correlated with Markets in our business”. So when does the
designer choose separate dimensions and when does the designer combine the
dimensions? The theoretical expectations are that the effective composite is a
small one, i.e. with less meaningful dimension value combinations. According to
Ralph Kimball [4], if Products are extremely correlated with Markets, combining
the two dimensions makes eminent sense, but rarely do Product and Market have
such a nice relationship.

Combining dimensions into a single super-dimension is an important spar-
sity-handling method in MOLAP systems, but it is not widely used in ROLAP
environments. It is almost never mentioned as an alternative design technique in
books or papers on data warehousing design. Why is this approach so unpopular
in ROLAP? We tried to find studies dedicated to this technique, experimental
results or comparisons of the two approaches. But we could not find any. There
are publications about decomposition of relationships based on functional de-
pendences, multivalued dependences or other logical constraints. The approach
we are talking about refers to dependences in the widest sense of statistical re-
lationships (the relationship between Market and Product dimensions is really
many-to-many; when most Products are sold in most Markets, it becomes ob-
vious that we need two dimensions because otherwise our combined dimension
looks like a Cartesian product of the original dimensions). Dependences that can
be expressed by normalization of the data model are not of interest to us.

In this paper we present the results of our storage and performance tests
over real-life data cubes in reference to these design approaches. We are aware
that our experiments do not provide scientific evidence on the advantages and
disadvantages of the two approaches, nor are they a statistically valid survey.
The aim here is to share the measurements and the conclusions that we have
made since we have not found other similar studies.

Our tests are based on typical OLAP queries executed repeatedly on
several design schemes: classical scheme in which the dimensions are modeled
independently plus a few schemes that combine 2 or 3 dimensions in a super-
dimension. Because the presence of indices on tables can significantly affect the
execution plans and query performance, tests were made on two widely used index
schemes in ROLAP—indexing of the dimensions by B-tree or bitmap indices.

The paper is organized as follows. Section 2 outlines a multidimensional

A Super-Dimension Approach in ROLAP Environments 311

view of data and different OLAP architectures. Section 3 describes our test
cases—tested design and indexing schemes, platform and queries description.
Section 4 presents the tests results and observations. Finally we make some
conclusions in Section 5.

2. OLAP systems and multidimensional view of data. Multi-
dimensional models lie at the core of OnLine Analytical Processing (OLAP) sys-
tems. Such systems provide fast answers for queries that aggregate large amounts
of detail data to find overall trends, and they present the results in a multidi-
mensional fashion, which renders a multidimensional data organization ideal for
OLAP. Sometimes OLAP and data warehousing are used as synonymous terms.
Thomsen [7] considers them complementary in that data warehousing makes raw
data available to end users and ensures its accuracy and consistency whereas
OLAP focuses on the end user’s analytical requirements [13]. Actually a data
warehouse is a large repository of data integrated from several sources in an en-
terprise for the specific purpose of data analysis and decision support [5]. In a
multidimensional data models, there is a set of numeric measures (facts) that
are the objects of analysis. Each of the numeric measures depends on a set of
dimensions, which provide the context for the measure. For example, the dimen-
sions associated with a sale amount can be the store, the product, and the date
when the sale was made. The dimensions together are assumed to uniquely de-
termine the measure. Often the dimensions are hierarchical; the time of sale may
be organized as a day-month-quarter-year hierarchy, the product as a product-
category-industry hierarchy [5].

There are two types of OLAP storage options: Relational OLAP (RO-
LAP) and Multidimensional OLAP (MOLAP). In ROLAP, the data themselves
are stored in a relational database, whereas with MOLAP, a large multidimen-
sional array is built with the data [2]. One difficulty with MOLAP systems is that
the array is often sparse. These typically include provisions for handling sparse
arrays, and they apply advanced indexing and hashing to locate the data when
performing queries. ROLAP systems also employ specialized index structures,
such as bit-mapped indices, to achieve good query performance [9].

In ROLAP it is beneficial to view data in terms of a dimensional model
which is composed of a central fact table and a set of surrounding dimension
tables, each corresponding to one of the components or dimensions of the fact
table. Conceptually this leads to a star-like data structure, which is called a
star scheme (see Fig.1 below). Star schemes do not explicitly provide support
for attribute hierarchies. They can be refined into snowflake schemes providing
support for attribute hierarchies by allowing the dimension tables to have sub-

312 Ina Naydenova

dimension tables. There is a debate on the benefits of having such sub-dimension
tables, since it will, in general, slow down query processing, but in some cases
it provides a necessary logical separation of data [14]. In snowflake schemes
the dimensional hierarchy is explicitly represented by normalizing the dimension
tables. This leads to advantages in maintaining the dimension tables, but the
de-normalized structure of the dimensional tables in star schemes may be more
appropriate for browsing the dimensions [5]. To avoid unnecessary complications
in our tests we used the star scheme design.

3. Test cases. We are going to execute typical OLAP queries against
7 design schemes and two indexing schemes. We will measure the query timing
and the allocated disk storage for every scheme. The RDBMS used for these ex-
periments is Oracle Database (Release 11 g Enterprise Edition Release 11.2.0.1.0
64 bit) as one of the most popular RDBMS (48.1% of the market share according
to Gartner 2010) .

Our base test cube is an extract from an enterprise data warehouse of
an international holding company. It has 46 593 527 nonempty cells and the
following structure:

Cube: LAB_TEST

Dimensions Facts
Time (26 members) Number of clients
Products (437 members) Number of contracts

Sales Channels (12 members)
Organization units (349 members)
16 more dimensions that are out of the test scope

Dimension hierarchies

Products Sales Channels Organization units Time

— Industry — Channel Groups — Parent unit — Month
— Business Lines — Base Channels — Base units — Quarter
— Product Lines — Year

— Products

As was mentioned above, the approach of combining dimensions into a sin-
gle superdimension is a well-known technique in MOLAP systems. To determine
which dimensions are suitable for concatenation, MOLAP designers use special-
ized software or manually calculate the sparsity of data. The sparsity of data is

A Super-Dimension Approach in ROLAP Environments 313

the ratio of empty cells in a cube to the total number of cells in a cube. Data is
said to be 5% dense (or 95% sparse) if only 5% of the possible combinations of
the cells in a multidimensional measure actually contain data. We will apply the
same approach to estimate the sparsity of the composite of dimensions. Let’s as-
sume that a super-dimension “Products — Channels” is formed on the base of the
dimension “Products” and the dimension “Channels”. The super-dimension con-
tains only combinations of products and channels that have a business meaning.
For example if product “a” is offered by channel “b”, the combination between
“a” and “b” is part of the dimension “Products — Channels”. If a channel “b”
is not relevant for a product “c” then the combination between “c” and “b” is
not an element of the super dimension. We estimate the sparsity % of dimension
“Products — Channels” as a ratio between the number of elements of the super-
dimension “Products — Channels” and the number of elements of the Cartesian
product of dimensions “Products” and “Channels”.

A super-dimension with high sparsity percentage is a better candidate
than others, because it will be smaller than others, its processing will be faster and
more storage will be saved. Note that we expect to save storage not only because
the dimension itself takes less space, but mainly because a superdimension scheme
will reduce the size of the fact’s foreign key columns. The size of the foreign key
columns depends linearly on the number of dimensions and logarithmically on
the number of dimensions’ elements involved in the concatenation.

Design schemes
The design schemes involved in our tests are the following;:
e base scheme—a classical design star scheme:

DI SALES CHANNELS DI ORGANIZATION UNITS
SCHN_ID # ORG_ID

* SCHANMNEL_NAME * NAME

* SCHANMNEL_GROUP * PARENT_NAME

FACTS DIM PRODUCTS

PROD_ID
DiM TIME * TIME_ID # _
TIME_ID * PROD_ID PRODUCT_NAME

* MONTH * BCHN_ID * PRODUCT_LINE

* QUARTER * ORG_ID * BUSINESS_LINE
* YEAR * NUMBER_OF_CLIENTS INDUSTRY

* MUMBER_OF_COMTRACTS

Fig. 1. Star scheme in ROLAP systems

This scheme must participate in our experiment as a representative of the

314 Ina Naydenova

standard approach of ROLAP data modeling.

In the test cases we have included the best and worst combinations (in

terms of sparsity %) among the possible combinations of two dimensions.
e p-schn scheme—this is a scheme with a superdimension constructed on

the basis of a concatenation of dimensions of products and sales channels:

Qi SALES CHAMMELS — O PRODUCTS
SCHN_ID # PROD_ID
* SCHANNEL_MNAME * PRODUCT_NAME
* SCHANNEL_GROUP * PRODUCT_LINE
* BUSINESS_LINE
DIM_PRODUCT_SCHANMNELS * INDUSTRY
PS_ID
* SCHN_ID
* PROD_ID
FACTS
DIM TIME * TIME_ID DIM ORGANIZATION UNITS
TME_ID * PS_ID # ORG_ID
7 MONTH ~ * ORG_ID * MAME
QUARTER * MUMBER_OF_CLIENTS * PAREMT_MAME
T YEAR * NUMBER_OF_CONTRACTS

Fig. 2. Normalized scheme with concatenated dimensions of products and sales
channels

All possible combinations are 5 244, the actual ones are 950. The sparsity
is approximately 82 %. The new dimension dim_product_schannels (see
Fig. 2) references only primary key columns of the dimensions of products
and sale channels;

e p-schn denormalized scheme—this is a modification of the p-schn scheme.
The new dimension includes all product and sale channels columns and
completely replaces the original dimensions (see Fig. 3);

Our theoretical expectation is that the allocated storage in the case of the
classic design scheme will be greater than in the case of super-dimension
scheme. What is more interesting for us is whether the performance will be
better.

We include this denormalized scheme in out tests, because the de-normaliza-
tion of superdimensional hierarchies will lead to better performance without
significantly increasing the allocated storage.

e p-org scheme—a scheme with superdimension constructed on the basis
of a concatenation of dimensions of products and organization units. All
possible combinations are 152 513, the actual ones are 15 731, the sparsity
is approximately 90%. The new dimension references only primary key
columns of the dimensions of products and organization units;

A Super-Dimension Approach in ROLAP Environments 315

i ™
OiM_PRODUCT_SCHAMMELS_1
PS_ID
* PROD_ID
* PRODUCT_MAME
* PRODUCT_LINE
* BUSINESS_LINE
* INDUSTRY
* BCHN_ID
* BCHANMEL_MNAME

| " SCHANNMEL_GROUP

FACTS_PS
Ditt TIME * TIME_ID DM ORGANIZATION UNITS
fTIME_ID * PS_ID # ORG_ID
: MOMTH * ORG_ID * MNAME
QUARTER * NUMBER_QF_CLIENTS * PARENT_NAME
* YEAR * NUMBER_OF_CONTRACTS

Fig. 3. Denormalized scheme with concatenated dimensions of product and sales
channels

e p-org denormalized scheme—this is a modification of the p-org scheme.
The new dimension includes all columns with products and organization
units and in such way completely replaces the original dimensions;

e p-org-schn scheme—this is a scheme that concatenates 3 dimensions
—products, organization units and sale channels. The sparsity here is ap-
proximately 99%. All possible combinations are 1 830 156, the actual ones
are 22 728;

e p-org-schn denormalized scheme—this is a modification of the p-org-
schn scheme. The new dimension includes all columns with products, or-
ganization units and sale channels and completely replaces the original di-
mensions.

Indexing schemes

Database indices provided today by most relational database systems use
BT-tree indices to retrieve rows of a table with specified values involving one or
more columns. The leaf level of the B-tree index consists of a sequence of entries
for index key values. Each key value reflects the value of the indexed column
in one or more rows in the table, and each key value entry references the set of
rows with that value [10]. Another commonly used index type in RDBMS is the
bitmap index. Bitmap indices are known as the most effective indexing methods
for range queries on append-only data, and many different bitmap indices have
been proposed in the research literature (see [8], [10], [11], [12]).

The queries in our test will be executed against the described design

316 Ina Naydenova

schemes in two indexing versions—the first one uses B-tree indices on the di-
mension table, while the second one adds a bitmap indices on the fact tables.
For simplicity we will refer to these schemes below as B-tree and Bitmap index
scheme.

Test queries

Typical OLAP operations include rollup (increasing the level of aggre-
gation) and drill-down (decreasing the level of aggregation or increasing detail)
along one or more dimension hierarchies, slice and dice (selection and projection),
and pivot (re-orienting the multidimensional view of data) [5].

Our tests include 5 queries, which provide the typical OLAP operations.
Of course, if we include more types of queries we will be closer to the real OLAP
application working process. But we aim to test simple queries, because we
want to reduce the influence of side factors as heuristics implemented in the
database optimizer, system parameters and others, that would prevent us from
assessing the impact of scheme design on system productivity and therefore do
not interest us.

Slice and Dice operation

Slicing takes a d-dim cube and returns a (d— k)-dim cube. We specify one
fixed value for each of k dimensions. According to some definitions dicing refers
to range selection in multiple dimensions (the dimensionality is not reduced)
[1]. People usually talk about “slice-and-dice” together and do not make such a
distinction.

The following query gives us a slice for a specific month and product
industry:

select
products.product_name,
organization_units.name,
sales_channels.name,
sum(cnt_contracts) cnt_contracts,
sum(cnt_clients) cnt_clients
from lab_test
join time
on time.time_id = lab_test.time_id
join products
on products.prod_id = lab_test.prod_id
join organization_units
on organization_units.unit_id = lab_test.unit_id
join sales_channels
on sales_channels.schn_id = lab_test.schn_id

A Super-Dimension Approach in ROLAP Environments 317

where time.year_no = 2010 and
time.month_no = 05 and
products.industry = ‘INSUARANCE’
by products.product_name,
organization_units.name,

sales_channels.name;

group

The query output contains information about dimensions of products,
organization units and sales channels and cube measures.

Drill Down and Rollup operation

The two basic hierarchical operations when displaying data at multiple
levels of aggregations are the ”drill-down” and ”roll-up” operations. Drill-down
refers to the process of viewing data at a level of increased detail, while roll-up
refers to the process of viewing data with decreasing detail [1]. Many RDBMS
now support a ROLLUP command that computes a single result table for a
collection of related GROUP-Bys:

select
products.industry,
products.busline,
products.prodline,
products.product_name,
sum(cnt_contracts) cnt_contracts,
sum(cnt_clients) cnt_clients

from lab_test

join time

on time.time_id = lab_test.time_id

join products
on products.prod_id = lab_test.prod_id
where time.year_no = 2010 and
time.month_no = 06
group by rollup (products.industry,
products.busline,
products.prodline,

products.

product_name) ;

A rollup list should contain the different levels of one dimension, ordered
by decreasing granularity, for example industry, business line, product line and
product levels for Products dimension. The above rollup operation will lead to
5 group-bys: (industry, business line, product line, product), (industry, business
line, product line), (industry, business line), (industry), (nothing = grant total).

In such a way all levels of aggregations needed for roll-up and drill-down
shifting are returned by a single SQL query.

318 Ina Naydenova

e Pivot operation

Pivoting is concerned with information display. Pivot is an option to
choose which dimensions to show in a (usually) 2-d rendering: choose some di-
mensions X1, ..., Xi to appear on the x-axis and some dimensions Y1, ..., Yj to
appear on the y-axis. Pivot deals with presentation of data and although there
are pivot/unpivot operators in sql, OLAP tools generate ordinary select queries
(GROUP BY X1, ..., Xi, Y1, ..., Yj) and display the values in a different
grid representation. This is why a query using the pivot operator will not be
included in our test.

e Description of queries
Let us summarize what the 5 testing queries actually do:
— SQL1 return data for a specific month and industry (see the above slice and
dice example);
— SQL2 rollup the product dimension for a specific month (see the Drill
Down/Roll up example above);
SQL3, 4 and 5 represent the dice operation over different dimensions. They
all return information about a month, year, product name, sales channel name,
organization unit name and fact number of clients and number of contracts. Also:
— SQL 3 has a range filter over products and sales channels;
— SQL 4 has a range filter over products and organization units;
— SQL 5 has a range filter over sales channels and organization units.

Test procedure

For every design and index scheme we run the queries in series of 6 con-
secutive executions. Also before every series (the series is tied to a specific type of
query—for example SQL1) we clean up the database instance memory structures
related with the query execution (as database buffer cache and shared pool).

Table 1. The average time of the query series with a B-tree index scheme

SQL 1| SQL2 |SQL 3|SQL 4 |SQL 5| Total | Average

(slice) | (roll up) | (dice) | (dice) | (dice) | time time
base scheme 39.07 | 248.03 | 36.37 | 30.05 | 36.71 | 390.22 78
p-org scheme 40.45 | 245.71 | 36.22 | 27.07 | 28.12 | 377.57 76
p-org denormalized 35.86 | 244.75 | 33.83 | 26.71 | 28.16 | 369.31 74
p-sch scheme 35.58 | 249.22 | 32.51 | 27.26 | 27.46 | 372.03 74
p-schn denormalized 34.43 | 245.67 | 33.15 | 26.53 | 26.71 | 366.49 73
p-org-schn 30.66 | 223.07 | 28.85 | 23.39 | 23.18 | 329.15 66
p-org-schn denormalized | 30.25 | 225.83 | 29.23 | 23.34 | 23.48 | 332.12 66

A Super-Dimension Approach in ROLAP Environments 319

Then we remove a first execution from our test and estimate an average time for
the series.

4. Results. In Table 1 and Figure 4 the average times of the 5 series
with a B-tree index scheme are presented. The last 2 columns show the total and
average time for all queries.

In Table 2 and Figure 5 the average times of the 5 series with a Bitmap
index scheme are presented.

In Table 3 the allocated storage for every scheme is presented.

On the basis of the above results we can make the following observations:

e The bitmap indexing scheme is more efficient than the B-tree;

e The sparsity does not impact the percentage of saved storage. The size of
the concatenated superdimension is significantly less than the size of the fact
table, so the saved storage depends mainly on the number of concatenated

78+

76+

= I
M‘}//////////

W base scheme
W p-org scheme
[p-org denormalized

74

72+

70+ m p-sch scheme

68 p-schn denormalized

D TN

m@ p-org-schn

66+

O p-org-schn denormalized

64+

62+

60

Fig. 4. Average time for the queries and B-tree index scheme

Table 2. The average time of the query series with a Bitmap index scheme

SQL 1| SQL 2 |[SQL 3|SQL 4|SQL 5| Total | Average

(slice) | (roll up) | (dice) | (dice) | (dice) | time time
base scheme 11.34 | 221.31 | 36.54 | 2.21 2.32 | 273.71 55
p-org scheme 12.63 | 224.89 | 36.32 | 3.16 3.18 |280.18 56
p-org denormalized 11.11 | 220.13 | 36.30 | 1.16 3.18 | 271.87 54
p-sch scheme 10.19 | 225.55 | 32.54 | 191 2.12 | 272.30 54
p-schn denormalized 9.16 222.30 | 3249 | 1.77 1.95 | 267.66 54
p-org-schn 10.57 | 218.58 | 29.81 | 2.86 3.07 |264.89 53
p-org-schn denormalized | 9.32 217.53 | 31.01 | 1.95 1.15 | 260.96 52

320 Ina Naydenova

564
mbase scheme
55
W p-org scheme
541 m p-org denormalized
-sch sch
53l O p-sch scheme
0 p-schn denormalized
52 [p-org-schn
514 p-org-schn denormalized
50

Fig. 5. Average time for the queries and Bitmap index scheme

Table 3. Allocated and saved storage for different design and indexing schemes

Btree Sheme % saved Btimap Sheme|% saved storage
storage size |storage towards| storage size towards base
(MB) base scheme (MB) scheme

base scheme 1665 1801
p-org scheme 1474 13% 1597 13%
p-org denormalized 1481 12% 1604 12%
p-sch scheme 1474 13% 1600 13%
p-schn denormalized 1474 13% 1600 13%
p-org-schn 1335 25% 1447 24%
p-org-schn denormalized 1347 24% 1459 23%

dimensions;

e The denormalized design schemes have an insignificantly better perfor-
mance that the corresponding normalized design scheme;

o If the sparsity is greater, the performance is better, but this dependence is
very weak;

e If the sparsity between concatenated dimensions is less than 99% the per-
formance benefits become more perceivable (mostly in the case of a B-tree
index scheme).

5. Conclusions and future directions. The dependence between
dimensions can be a reason for a set of dimensions being stored together in a
joint relational scheme, instead of separate dimension schemes. In some sources
this technique is also referred to as “flattening dimensions” (see [3]).

Our conviction is that the design technique is not widely used in ROLAP
systems, because the model becomes more complicated and the dependence be-

A Super-Dimension Approach in ROLAP Environments 321

tween dimensions could not be accurately computed (it changes over time). The
OLAP designers have to decide which part of the dimensions to form a compos-
ite of on the basis of their knowledge about the business area and inner object
dependences. But this technique certainly brings storage benefits. The results
of our experiments suggest that if there is less than 20% sparsity between two
dimensions, their concatenation will decrease the allocated storage and increase
the performance in specific queries, while the others won’t be affected.

In fact, the productivity gains are guaranteed when we want to show the
relationship between the dimensions on the OLAP users before the execution of
the main report query, for example, when a user selects a product to see what
the relevant sales channels are. We have not included such a test in our experi-
ment because there are indisputable benefits (a query on the superdimension is
significantly faster than a query with distinct operators over a fact table).

It is difficult to define a precise sparsity threshold above which speed-up
of the queries will compensate for the overhead of the additional join operations
and deliver a significantly better performance. Our experiment is based on the
real enterprise data, but there an additional test over simulated data is necessary
to find a more accurate answer to the question what dimension is it reasonable
to concatenate into a composite to achieve better query performance in addition
to better storage size.

REFERENCES

[1] LEMIRE D., O. KASER. Lectures in Data Warehousing.
http://pizza.unbsj.ca/~owen/backup/courses/0LAP-2004/0lap?2.pdf,
2004

[2] LEMIRE D. O. KASER. Attribute Value Reordering for Efficient Hybrid
OLAP. In: Proceedings of the 6th ACM international workshop on Data
warehousing and OLAP, 2003, ISBN:1-58113-727-3, 1-8.

[3] Cognos ULC. Improved Performance by Flattening Dimensions.
http://www.ibm.com/developerworks/data/library/cognos/
pagel74.html, 2008

[4] Kimbal R. Showing the Correlation between Dimensions. Kimbal Univeristy.
http://www.rkimball.com/html/designtipsPDF/DesignTips2000%20/
KimballDT6ShowingThe.pdf, 2010

322
[5]
[6]

Ina Naydenova

CHAUDHURI S., U. DAYAL. An overview of data warehousing and OLAP
technology. ACM SIGMOD Record, 26 (1997), 65—4.

SINGH A. Handling inter-dimensional members dependency and reducing
cube sparsity using reference dimensions in Analysis Services 2005 SP2.
http://asmdx.blogspot.com/2008/05/
handling-inter-dimensional-members.html, 2008

THOMSEN E. OLAP Solutions Building Multidimensional Information Sys-
tems, ISBN:0-471-40030-0, John Wiley and Sons, USA, 1997.

Wu K., A. SHOSHANI, K. STOCKINGER. Analyses of Multi-Level and Multi-
Component Compressed Bitmap Indices. ACM Transactions on Database
Systems, 35 (2010), No 1, Article No. 2.

PEDERSEN T., CH. JENSEN. Multidimensional Database Technology. IEEE
Computer Society Press, 34 (2001), No 12, ISSN:0018-9162, 40-46.

O’NEIL P., D. Quass. Improved Query Performance with Variant Indices.

In: Proceedings of the ACM International Conference on Management of
Data (SIGMOD 1997), May 13-15, 1997, Tucson, Arizona, USA, 38-49.

O’NEIL P. Model 204 architecture and performance. In Proceedings of the
2nd International Workshop in High Performance Transaction Systems, Lec-
ture Notes in Computer Science, 359 (1987), Springer, 40-59.

O’nNEIL E., P. O’NEIL, K. WU. Bitmap index design choices and their
performance implications. In: Proceedings of IDEAS’07, Banff, Alberta,
Canada, 72-84.

Niem1 T., L. HIRVONEN, K. JARVELIN. Multidimensional data model and
query language for informetrics. Journal of the American Society for Infor-
mation Science and Technology, 54 (2003), No 10, 939-951.

LEVENE M., G. Loizou. Why is the snowflake scheme a good data ware-
house design?, Information Systems, 28 (2003), No 3, 225-240.

Ina Naydenova

Faculty of Mathematics and Informatics

St. Kliment Ohridski University of Sofia

5, J. Bourchier Blvd

1164 Sofia, Bulgaria Received January 3, 2011
e-mail: ina@fmi.uni-sofia.bg Final Accepted March 2, 2012

