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AN ELECTROMAGNETISM METAHEURISTIC FOR THE

UNCAPACITATED MULTIPLE ALLOCATION HUB

LOCATION PROBLEM∗

Vladimir Filipović

Abstract. In this article, the results achieved by applying an electromag-
netism (EM) inspired metaheuristic to the uncapacitated multiple allocation
hub location problem (UMAHLP) are discussed. An appropriate objec-
tive function which natively conform with the problem, 1-swap local search
and scaling technique conduce to good overall performance. Computational
tests demonstrate the reliability of this method, since the EM-inspired meta-
heuristic reaches all optimal/best known solutions for UMAHLP, except one,
in a reasonable time.

1. Introduction. The past four decades have witnessed an explosive
growth in the field of network-based facility location modeling. The multitude
of applications in practice is a major reason for the great interest in that field.
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Computer and telecommunication networks, DHL-like services and postal net-
works, as well as transport systems can be analyzed as a hub network. All those
systems contain a set of facilities (locations) that interact with each other, and
with a given distance and transportation cost. Instead of serving every user from
its assigned facility with a direct link, the hub network allows transportation via
specified hub facilities.

Hubs are facilities that serve as switching points in telecommunications
and transportation networks. Hub networks arise where there is traffic demand
from many origin nodes to many destination nodes and connecting all origin-
destination pairs by direct links is not practical and/or economical. It is often
assumed that hubs are connected by a complete network and the routing cost
between hubs is discounted. Flows from many origins to many destinations are
consolidated at hubs and routed together to benefit from economies of scale. This
is the case when traffic between origin and destination node must be routed via
one or more hubs, i.e., direct communication between two non-hub nodes is for-
bidden. By using switching points in the network and increasing transportation
between them the capacity of the network can also be used more efficiently. This
strategy also provides lower transportation cost per unit.

There are various model formulations proposed for the problem of choos-
ing a subset of hubs in the given network. They involve capacity restrictions on
the hubs, fixed cost, a predetermined number of hubs and other aspects. Two
allocation schemes in the network can be assumed: single allocation and multiple
allocation.

In the single allocation hub location problem each node must be assigned
to exactly one hub node so that all the transport from (to) each node goes only
through its hub. The multiple allocation scheme allows each facility to commu-
nicate with more than one hub node. If the number of switching centers is fixed
to p, we are dealing with p-hub problems. Capacitated versions of hub problems
also exist in the literature, but the nature of capacities is different. The flows be-
tween hubs or between hubs and non-hubs can be limited. There are also variants
of capacitated hub problems that involve limits on the flow into the hub node,
through the node or fixed costs on hubs.

In this paper the uncapacitated multiple allocation hub location problem
(UMAHLP) is considered. In this case:

• No capacities on the nodes are imposed, so overall communication in each
hub and nonhub node is unbounded;

• The number of hubs is not fixed;
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• Each non-hub node may be assigned to more than one hub (multiple allo-
cation scheme), i.e., communication from one non-hub node to others can
be via different hubs;

• An hub is located with certain expenses (fixed costs) for establishing it.
Fixed costs must be paid for every hub and they participate in the objective
function.

The objective of UMAHLP is to choose a set of hubs and allocate non-hub
nodes to the hubs, so that the sum of total transportation cost and fixed costs is
minimized. UMAHLP is known to be NP-hard in the general case. In a special
case when the matrix of flows is sparse, the problem is solvable in polynomial
time, but this situation is almost non-existent in practical applications.

2. Previous work. A detailed review of all hub location problems and
their classification is out of this paper’s scope but it can be found in [1, 5]. In
the sequel only previous work related only to the UMAHLP will be described.

The first formulation of this problem is given in [4]. Dual ascent tech-
niques within a Branch-and-Bound scheme on small instances of up to 25 nodes
are given in [11]. A similar approach is used in [14], with tighter lower bounds
and improved upper bounds. The results are presented on instances with up to
40 nodes.

A quadratic integer formulation of the UMAHLP based on the idea of
multi-commodity network flows was introduced in [10]. This formulation showed
to be suitable for using a Branch-and-Bound procedure. The authors present
results on their own randomly generated instances with up to 80 vertices.

A mixed integer linear programming (MILP) formulation for UMAHLP as
well as two other similar hub location problems are given in [2]. The experimental
results are presented for instances up to 50 nodes. In [13] a polyhedral structure
of set packing problem is used to tighten the MILP formulation of UMAHLP.
Benders decomposition is also used for solving UMAHLP to optimality [7]. It is
able to solve some large instances of up to 200 nodes, considered out of reach of
other exact methods in a reasonable time.

A dual-ascent heuristic method embedded into the Branch-and-Bound
algorithm is proposed in [6]. This approach was effective on instances of up to
120 nodes, i.e., the dual ascent heuristic reaches up to 70% optimal solutions,
which significantly reduces the time for the BnB method to verify optimality in
those cases and to resolve the optimal solutions in other 30% cases.
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In [12] a genetic algorithm (GA) for solving UMAHLP was proposed
that uses binary encoding and genetic operators adapted to the problem. The
computational results on standard ORLIB instances with up to 200 nodes are
presented. The results show that the GA approach quickly reaches all optimal
solutions that are known so far and also gives results on large-scale instances of
200 nodes that were unsolved before. This GA approach is further improved by
adding a local search procedure based on 1-interchange ([8, 15]).

3. Mathematical formulation. Various formulations of UMAHLP
arise in the literature and one mixed integer linear programming formulation [6]
is used in this paper.

Consider a set I = {1, . . . , n} of n distinct nodes in the network, where
origin/destination or potential hub location is represented by each node. The
distance from node i to node j is Cij, and triangle inequality may be assumed
[5]. The demand from location i to j is denoted as Wij. Decision variables yk

and xijkm are used in the formulation as follows:

1. yk = 1 if a hub is located at node k, 0 if not;

2. xijkm is the fraction of flow Wij from node i that is collected at hub k, and
distributed by hub m to node j.

Each path from demand to destination node consists of three compo-
nents: transfer from an origin to the first hub, transfer between the hubs and
distribution from the last hub to the destination location. Parameters χ and δ

denote unit costs for collection and distribution, while α is unit cost for hub-to-
hub transportation. According to the hub definition, the unit cost for hub-to-hub
transportation is less than 1, so the discount factor for transport between hubs,
represented by 1 − α, must be positive. The value fk denotes the fixed cost of
establishing hub k (yk = 1). The objective function is the sum of the total flow
cost and the total cost of location hubs. Using the notation mentioned above,
the problem can be written as:

(1) min
∑

i,j,k,m

Wij · (χ · Cik + α · Ckm + δ · Cmj) · xijkm +
∑

k

fk · yk

subject to

(2)
∑

k,m

xijkm = 1 for every i, j
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(3)
∑

m

xijkm +
∑

m,m6=k

xijmk ≤ yk for every i, j, k

(4) yk ∈ {0, 1} for every k

(5) xijkm ≥ 0 for every i, j, k,m

The sum of the origin-hub, hub-hub and hub-destination flow costs mul-
tiplied by the factors χ, α and δ respectively and the sum of fixed costs for estab-
lishing hubs is minimized by the objective function (1). Constraint (2) specifies
that all the flow is sent between every pair of nodes, while constraint (3) ensures
that flow is only sent via opened hubs. Constraints (4) and (5) reflect the binary
and/or non-negative representation of decision variables. The fact that xijkm ≤ 1
is implied by constraint (2), and it is omitted.

4. Proposed EM method. Electromagnetism as an optimization
heuristic was proposed in [3]. This method is a population-based algorithm that
can solve nonlinear optimization problems. Details about the convergence of the
method are provided in the cited paper. In the following text each member pk,
k = 1 . . . m of the population maintained by the algorithm will be referred as an
EM point (or solution point), and the population itself will be referred as the set
of points (or solution set).

In the EM method, a charge is associated to each EM point in the so-
lution set. The charge is calculated as a function of its own and other points,
objective functions. Every point has an impact on others through charge, and its
exact value is given by Coulombs Law. This means that the power of connection
between two points will be proportional to the product of charges and reciprocal
to the distance between them. In other words, the points with a higher charge
will move other points in their direction more strongly. Beside that, the best EM
point will stay unchanged. The proposed EM program for solving UMAHLP is
given by the following pseudo-code:

During the initialization part of the algorithm, EM points are created and
their location in the solution space is randomly selected from the interval [0, 1].
Therefore, the EM point pk represents an n-dimensional vector of real valued
coordinates with taking values from the interval [0, 1]. When the EM points
(potential solutions) are created, their location in the solution space is randomly
selected. In the context of the UMAHLP problem, coordinate i of the EM point
represents whether the corresponding node i is a hub node or non-hub node.
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Algorithm 1: EM pseudo code

Algorithm EM

data input()1

initialization()2

while iteration < max iteration do

foreach point pk in solution set do

calculate objective value(pk)3

1 swap local search(pk)4

scale solution(pk)5

calculate charge and forces()6

apply forces()7

if same solution unchanged max number of times() then

stop()8

The decision variable yi in formulas 1 to 5 is a binary variable, so its
value is obtained by rounding the value of the corresponding i coordinate of EM
point pk. These real values are mapped to the binary solution vector by using
a threshold value, which is set to 0.5 in the proposed algorithm. So, decision
variable yi is set to 1 if pk,i > 0.5 and set to 0 if that is not the case.

The quality of the particular EM point is measured by calculating its
objective value. Since users can be assigned only to opened hub facilities, only
the array yk directly obtained from coordinates of the EM point is sufficient for
successfull calculation of EM point’s objective value. In other words, UMAHLP
problem sets no limit on capacities, so EM algorithm is designed on the way
that calculation of values xijkm is executed within the evaluation of objective
function. For a fixed set of hubs (yk) the modified version of the well-known
Floyd-Warsall algorithm, described in [9], is used to obtain shortest paths. Af-
ter finding shortest paths between all pair of nodes, the evaluation of objective
function is relatively straightforward. It is done by summing shortest distances
multiplied with flows and corresponding χ, α, and δ parameters, and adding the
fixed cost fk of established hubs (yk = 1).

The pseudo-code of the EM algorithm indicates that, in each iteration, it
tries to improve each EM point with a 1-swap local search procedure. The design
of the 1-swap local search procedure in the proposed algorithm is as follows: the
procedure tries to swap one element of the array of decision variables yi with its
complement value and recalculate the objective function. In other words, during
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the local search procedure, the node at position i becomes ’promoted’ to hub
if it was not hub originally, or becomes ’demoted’ to non-hub if it was a hub
before. After that swap, the objective value of the new EM point is compared
to the objective value of the original one. The proposed local search procedure
uses first improvement strategy, which means that when improvement is detected,
improvement is immediately applied and the local search continues. If for each
node the swap produces an objective value greater or equal than the original one,
the local search ends with no improvement.

The scaling procedure, which is introduced in the proposed algorithm, has
influence on balancing between intensification and diversification of the search
process. The scaling procedure is performed after 1-swap local search, and its
main goal is to transform the vector in such manner that the intensification of
the search is increased. Let λ ∈ (0, 1) denotes the scale factor, pk is the k th point
in the solution set and p̄k is the vector of decision variables yi, i = 1, . . . , n after
the local search performed on the kth EM point. The position of pnew

k , which
represents the new (scaled) EM point, is given by the following formula:

(6) pnew
k = λ · p̄k + (1 − λ) · pk

Choosing the appropriate value of scale factor λ is significant for governing
the search process. In the extremal case, when λ is close to 1, the search process
will likely stick to a local optimum. Another extremal case, when λ is equal to
0, obviously represents a no-scaling situation.

During calculation of charges, potential solutions (EM points) are being
evaluated according the following formula:

(7) qi = exp









−n
f(pi) − f(pbest)

m
∑

k=1

f(pk) − f(pbest)









,

where n is the dimension space, f(p) is the objective function’s value for point
p in the solution space and pbest is the best solution in the solution space after
local search and scaling.

Finally, the total force produced by previously calculated charges is ap-
plied. The resulting force Fi on point i is the sum of force vectors induced by all
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other neighbor points on point i:

(8)

Fi =
m
∑

j=1,j 6=i

Fij , where

Fij =















(

qiqj

||pj − pi||2

)

· (pj − pi), f(pj) < f(pi)
(

qiqj

||pj − pi||2

)

· (pi − pj), f(pj) ≥ f(pi)

,

where ‖pi − pj‖ is the euclidean distance between EM points pi and pj. After
calculation in (8), the value of Fi is normalized, so it represents only a direction
in which a point is going to move. The actual step that is made is the product of
a uniform random variable from domain [0;maxstep] and the normalized value
F̂i. The EM point with the best objective value is fixed, because all other EM
points are moving toward it.

5. Experimental results. All computational results were carried out
on an Intel 2.5 GHz single processor with 1GB of memory. The algorithm was
coded in the C programming language and tested on AP ORLIB instances from
the literature.

The finishing criterion of GA is the maximal number of iterations Niter =
100. The scaling factor λ is set to 0.1. Since the results of EM is nondeterministic,
the method was applied 20 times on each problem instance.

Table 1 summarizes the EM results on all AP instances and is organized
as follows:

• the first three columns contain the instance name, the optimal solution if
it is known and the best known solution from the literature if the optimal
solution is not known;

• the best solution obtained by EM in 20 runs, named EMbest, is given in the
fourth column;

• the average running time (t) used to reach the final EM solution for the first
time is given in the fifth column, while the sixth and the seventh column (ttot

and iterLS) show the average total running time and the average number
of local search steps for finishing EM, respectively;
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Table. 1. Experimental results

Inst. Optsol or Bestknown EMbest t ttot iterLS gapavg σavg

(sec) (sec) (%) (%)

10L 221032.734 opt 0.0031 0.0066 124.7 0.000 0.000

10T 257558.086 opt 0.0010 0.0059 99.5 1.278 1.261

20L 230385.454 opt 0.0031 0.0166 207.2 1.714 2.215

20T 266877.485 opt 0.0052 0.0182 181.2 0.809 1.392

25L 232406.746 opt 0.0073 0.0508 453.1 2.225 2.506

25T 292032.080 opt 0.0117 0.0309 261.3 1.607 1.890

40L 237114.749 opt 0.0292 0.1386 310.9 0.826 1.282

40T 293164.836 opt 0.0229 0.1145 325.1 1.093 2.249

50L 233905.303 opt 0.0791 0.3715 444.3 1.085 0.963

50T 296024.896 298147.281 0.0652 0.2292 323.2 0.948 0.349

60L 225042.310 opt 0.1722 0.4120 180.6 0.000 0.000

60T 243416.450 opt 0.1481 0.3277 114.8 0.358 1.557

70L 229874.500 opt 0.3190 0.7465 269.1 0.746 0.247

70T 249602.845 opt 0.2918 0.4964 130.7 0.532 0.916

80L 225166.922 opt 0.5549 1.1362 261.1 1.578 0.603

80T 268209.406 opt 0.4121 0.9239 130.9 0.000 0.000

90L 226857.465 opt 0.6708 2.3096 333.0 0.767 0.991

90T 277417.972 opt 0.5971 1.1817 124.2 0.000 0.000

100L 235097.228 opt 0.9878 2.5722 334.8 1.852 0.819

100T 305097.949 opt 0.8878 1.5004 128.2 0.000 0.000

110L 218661.965 opt 1.5066 4.2050 402.4 1.072 1.230

110T 223891.822 opt 1.5752 2.6364 176.1 0.479 0.527

120L 222238.922 opt 2.3347 5.2403 332.6 1.033 1.454

120T 229581.755 opt 2.6948 3.9519 162.4 0.000 0.000

130L 223814.109 b.k. 3.3614 9.0636 519.0 0.949 0.690

130T 230865.451 b.k. 3.4129 5.2910 188.9 0.411 0.609

200L 230204.343 b.k. 25.3535 48.4941 595.9 0.694 1.219

200T 268787.633 b.k. 28.9455 43.4441 500.3 0.835 0.571
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• in the last two columns (gapavg and σavg) contain information on the average

solution quality: gapavg is a percentage gap defined as gapavg =
1

20

20
∑

i=1

gapi,

where gapi = 100 ∗
EMi − EMbest

EMbest

and EMi represents the EM solution

obtained in the i th run, while σavg is the standard deviation of gapi,

i = 1, 2, . . . , 20, obtained by the formula σavg =

√

√

√

√

1

20

20
∑

i=1

(gapi − gapavg)
2.

Optimal solutions in Table 1 are marked by opt and best known solutions
by b.k.

The data from Table 1 show that the EM method reached an optimal
solution (or best known solution for the last 4 instances) in all cases except
one (instance 50T). The fact that EM reached 27 out of 28 optimal/best known
solutions with a rather small average gap indicate that the EM approach can be
reliably used in solving the UMAHLP.

6. Conclusions. In this article, an electromagnetism-inspired meta-
heuristic that solves the UMAHLP is introduced. The objective function natively
conforms with the problem, while the 1-swap local search and the proposed scal-
ing technique directs EM to promising search regions. Extensive computational
experiments indicate that the proposed method is very powerful and that the
medium-size and large-size UMAHLP instances can be solved in less than fifty
seconds of running time for sizes attaining 200 nodes.

Hence, future work could also concentrate on the speed-up of the algo-
rithm by taking advantage of parallel computation and on GA hybridization with
exact methods.
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rithm for Solving Uncapacitated Multiple Allocation Hub Location Problem.
Computing and Informatics, 24 (2005), 415–426.
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