
Serdica J. Computing 5 (2011), 207–236

FAST INFORMATION RETRIEVAL IN THE OPEN GRID

SERVICE ARCHITECTURE∗

Tobias Berka, Marian Vajteršic

Abstract. In research, grid computing is an established way of providing
computer resources for information retrieval. However, e-science grids also
contain, process and produce documents—thereby acting as digital libraries
and requiring means for information discovery. In this paper, we discuss
how distributed information retrieval can be integrated into the Open Grid
Service Architecture (OGSA) to efficiently provide image retrieval for e-
science grids. We identify two fundamental ways of performing information
retrieval on the grid – as a batch job or as a distributed activity – and argue
the case for the latter for reasons of efficiency. We give an analysis of the
theoretic communication and computation complexity and demonstrate that
bandwidth limitations provide a decisive argument to support our case. We
describe further design decisions for our system architecture and give a brief
comparison with other designs reported in literature. Lastly, we describe
how the statelessness and isolation of web services impede data-intensive,
distributed, cross-site activities in OGSA grids, and how to escape them.

ACM Computing Classification System (1998): C.2.4, H.3.3, D.2.11.
Key words: Grid computing, information retrieval, web services.

*This is an extended version of an article presented at the Second International Conference
on Software, Services and Semantic Technologies, Sofia, Bulgaria, 11–12 September 2010.



208 Tobias Berka, Marian Vajteršic

1. Introduction. Computational grids provide computation like a util-
ity. To give more scientists access to the computing power necessary to solve
today’s demandingproblems, scientific funding agencies have launched large pro-
grams for the adoption of grid technology. Grids are now going into full pro-
ductive use in large scientific facilities. In recent research, grids have come as a
natural fit to provide storage and computation for information retrieval systems.
Information retrieval (IR) is concerned with search for unstructured information
such as text documents, and its high computational requirements make it an ideal
candidate for parallel processing. But the connection between e-science grids and
information retrieval runs deeper:

— First, scientists collaborating in a virtual organization (VO) produce and
consume documents as part of their daily work. This goes hand in hand
with a need to discover documents of interest through search and retrieval.

— Second, documents may serve as input for jobs submitted to the grid, e.g.
for applications in digital image processing, natural language processing
and other fields. Consequently, grids may persistently store a large number
of documents.

— And third, documents are also produced as an output of batch jobs, e.g.
in seismic analysis. The automated production of documents depicted in
Figure 1 is an important factor, because it quickly produces large numbers
of documents.

This means that grids themselves resemble digital repositories, in that they pro-
vide virtual organizations with a means to collect, manage, store and even au-
tomatically produce digital documents. If multiple organizations join forces in
a VO to pool their resources, it is clear that we can benefit from a mechanism
for resource discovery, including images and text documents. It is easy to see
the benefit of having readily available information retrieval machinery capable of
indexing documents across the boundaries of individual groups and systems.

However, this raises several challenges for traditional grid computing:

1. The documents are inherently distributed across multiple grid sites and the
search is necessarily distributed. As such, we must always search across
grid sites, despite the fact that conventional grid wisdom forbids cross-site
activities.

2. Queries must be answered sporadically and frequently. It is not possible
to predict the arrival time of the next query and plan the query execution
ahead of its arrival. At the same time, a search engine for a large virtual
organization may have to deal with very many queries.



Fast Information Retrieval in the Open Grid Service Architecture 209

Fig. 1. Automated Document Creation on an e-Science Grid. A processing request is sent
to a grid engine (1) where it is submitted to to a processing system (2). The job returns
images or other documents (3) which are archived on the allocated storage system (4)

3. In addition, search engines must operate for extended durations—much
longer than even expensive batch jobs.

These characteristics are very different from the usual, batch-job style of process-
ing in high-performance computing grids. And indeed, as we will outline below,
we had to find a new architecture for information retrieval on the grid in order
to properly address these issues.

In this paper, we describe the most fundamental difficulties of the task
at hand, and present a novel approach, which allowed us to circumvent some
of these problems. We give a brief review of computational grids, traditional
grid information retrieval and our alternative approach in Section 2, describe the
design of our prototype for fast image retrieval in Section 3 and discuss some
problematic issues that we encountered during the implementation in Section 4.
Lastly, Section 5 summarizes our findings and presents our conclusions.

The research conducted on grid retrieval has been released in [8], and
parts of this article have been published in [9] and [10].

2. Information Retrieval on Computational Grids. The Open
Grid Forum (OGF) has opened the standardization process for IR on the grid



210 Tobias Berka, Marian Vajteršic

with a first official document [34]. Unfortunately, this standardization process
has not seen much progress since. It can indeed be noted that grid information
retrieval has been added to the agenda of the ACM’s special interest group in
information retrieval [4]. However, our own considerations regarding information
retrieval on the grid start at a lower, more fundamental level.

For our goal of providing information retrieval on or for the grid it is
an important question whether we consider information retrieval to be merely
an application, which we split into individual computational tasks that we can
dispatch to a computational grid for execution, or if we see information retrieval
as part of the infrastructure. The latter perspective suggests that we should
deploy information retrieval services alongside the other low-level services. But
before we discuss the specific details of information retrieval on the grid, let us
first review the definition and architecture of computational grids.

2.1. Computational Grids. Grid computing pursues the long-term
goal of providing computing like a utility. The term “grid computing” itself is
derived from the electric power grid. One day in the future, computing will be
provided like electricity by simply plugging a simple terminal into an “outlet”.
Beyond this long-term vision there is also the mid-term perspective on grid com-
puting. In this case, the broad concept of “computing” can be narrowed down
to two cases: high-performance scientific computing and business-centric enter-
prise computing. The primary goal is to increase the utilization of geographically
dispersed compute facilities. Consequently, the raw quantity of computing equip-
ment is to be reduced, along with the cost of owning and operating it [24]. In
both fields which are to be served, the primary task at hand is the batch process-
ing of data intensive applications. There are several aspects that contribute to
the complexity of this objective:

— Geographic dispersion: the facilities which constitute a grid are placed at
different geographic locations. The scale of this physical distribution is
nothing less than global. It is clear that both the large scale and the
ubiquity of dispersion pose many technical challenges. Improved utilization
requires performance optimization in an inherently distributed environment
with an extremely broad cost spectrum.

— Social and legal dispersion: the facilities are owned and operated by differ-
ent legal entities or organizations. Groups of organizations can form virtual
organizations, which exist as units of administration on a grid. These units
then share access to grid resources, such as computing facilities, and data
sources, such as file systems, sensors or databases. Care must be taken that
the various requirements of such organizations are met, including proper



Fast Information Retrieval in the Open Grid Service Architecture 211

authentication and authorization, auditing, billing and means of adminis-
tration.

— Heterogeneous systems: at the individual level, the systems within a grid are
not homogeneous. In fact, a grid is a large, collaborative system consisting
of different hardware platforms, operating systems, software libraries and
applications. While some differences may be obvious and relatively easy to
deal with, such as different processor architectures or operating systems,
other differences are more subtle and carry a much greater potential for
implicit dependencies and thus failure. Minor differences between version,
binary patches or simply the placement within the file system are known to
wreck havoc on application behavior, compilation of software and distrib-
uted deployment. Needless to say, all these issues must be dealt with only
to deploy and run a piece of software on a grid.

— Heterogeneous grids: due to the decentralized and competitive nature of
computing as a business and science, there is now a broad range of both
commercial and scientific toolkits for grid computing. These can be cluster
management tools [27] [28], cycle stealing tools [1] [2] or grid techniques
integrated into enterprise computing solutions [14]. This has given rise to
the need to standardize grid functionality. The Open Grid Forum1 (OGF)
is the standardization group which has taken on this effort. The Globus
toolkit2 serves as the reference implementation of this standardization effort
[26].

Since we attempt to be independent from individual vendors or system
designers in our work, we are closely following the doctrine and principles of
the open grid forum and the design of the Globus toolkit. The design of the
common grid architecture of the OGF is referred to as the Open Grid Services
Architecture (OGSA) [25]. The approach taken by the OGF fundamentally relies
on web-based service oriented architecture, as embodied by the World Wide Web
Consortium’s3 web service standards, with extensions for security and stateful
web services by the Organization for the Advancement of Structured Information
Standards4 (OASIS). The OGF provides standardized interfaces to the common
functionality of various grid toolkits. In this manner, the OGSA and its reference
implementation, the Globus toolkit, offer the usual range of facilities for a batch
processing system.

1see http://www.ogf.org.
2see http://www.globus.org.
3see http://www.w3.org.
4see http://www.oasis-open.org.



212 Tobias Berka, Marian Vajteršic

2.2. Grid Information Retrieval. The deployment of information
retrieval on the grid can be done in two basic forms: as a job or as a service. If
IR is conducted as a job, then we utilize the grid as a computational utility. But
if it is provided as a service, then we integrate it into the grid infrastructure. In
this article, we are arguing the case for the latter approach, because it is more
suitable for the task at hand.

For IR as a job, the computationally expensive tasks of information re-
trieval systems are submitted to a computational grid as jobs. In this case, we
utilize the grid as an automated batch processing system, which allows us to
perform computations by staging executable code and the data onto the system
allocated for by the grid scheduler. However, since IR systems seek to maxi-
mize the user satisfaction by minimizing the response time [17], batch processing
can only be applied to off-line functions without stringent requirements on the
response time. Figure 2 sketches this traditional approach to grid IR.

Fig. 2. Grid Information Retrieval as a Job. A client submits a query (1), the distributed
indices are located (2) and staged to the dynamically allocated computing node (3). This

node computes the query and returns the results (4)

As an example, consider a retrieval system using latent semantic index-
ing [21], which has to compute and update a singular value decomposition. These
expensive updating and indexing steps can be performed as batch jobs on the grid.
The query execution, on the other hand, should be performed in a different man-
ner, because the time spent moving the index to the allocated processing system



Fast Information Retrieval in the Open Grid Service Architecture 213

is not proportional to the time spent computing the query results.
With IR as a service, we avoid this problem by conducting a distributed

retrieval process amongst the nodes of a virtual organization’s grid. The retrieval
functionality is thus offered as a persistent, distributed service and the node-local
indices can be kept ready to respond to incoming queries.

Fig. 3. Grid Information Retrieval as a Service. A query is submitted (1) and the
grid nodes compute the results in parallel by exchanging intermediate data (2) with-

out relocating the local indices. Once the parallel algorithm completes, the results are
returned (3)

The requirements of IR support this approach. In all of its forms, an in-
formation retrieval system maintains some form of search index, which contains
the associations (e.g. presence, relative frequency, relevance or some other quan-
tification) between the features (e.g. words, tags, genes or image metrics) and the
documents. This index is queried to provide search and retrieval functionality.
For information retrieval as a job, it is necessary to move the entire index back
and forth between the server, which provides the retrieval functionality, and the
allocated computing nodes in the grid.

Clearly, this is not a very economical approach to the task at hand. The
specific requirements of information retrieval are somewhat at odds with the job-
submission paradigm inherent in computational grids. If we take the other route
and integrate information retrieval into the grid infrastructure, we can eliminate
this problem, making information retrieval as a service not only a valid, but
indeed a valuable approach.



214 Tobias Berka, Marian Vajteršic

2.3. The Cost of Index Migration. To illustrate the advantage over
the traditional approach, let us consider a system of N sites indexing a total
of D documents using F features. We now analyze the theoretic gains we can
make in terms of processing time and communication costs per query. For dense
feature vectors used in image retrieval, the computational complexity of the query
processing is dominated by computing the similarity between the query and all
documents. Sorting the results with an optimal complexity of O(D log D) is
barely noticeable compared to the similarity scoring computation with a typical
serial time complexity of

TS = O(FD).

If we split the document collection into N disjoint parts of equal size, the parallel
time complexity is

TP = O

(

FD

N

)

.

Without considering communication cost, the processing time is reduced and we
obtain a theoretic speed-up of

S =
TS

TP

=
O(FD)

O
(

FD

N

) = O(N).

For cross-site grid retrieval the communication overhead will not save us any time,
but the burden placed on the individual site is reduced. Table 1 summarizes the
mathematical symbols used here.

Table 1. Mathematical Symbols

Symbol Description

N Number of grid sites,
D Number of documents,
F Number of features,
TS Time complexity of the serial algorithm,
TP Time complexity of the parallel algorithm,
S Speed-up of the parallel algorithm over the serial version.

But IR as a service also allows us to improve the network utilization.
Merging and sorting the results of the individual sites can be performed with a
distributed merge-sort algorithm, which requires O(log N) serial communication
steps. The message size doubles with every step, but the total message size is less
than twice the number of documents, or O(D) asymptotically. In the traditional
grid retrieval case, all contributing sites must send their entire indices to the in-
dexing server. This effectively requires O(N) message sends with a total message



Fast Information Retrieval in the Open Grid Service Architecture 215

size of O(FD). Simultaneous connections are of course possible, but these in-
cur additional overheads in the operating system and networking hardware, may
cause network congestion and must share the available bandwidth. Consequently,
they seldom perform better than a sequence of isolated send operations. We thus
reduce the number of serial messaging steps from linear to logarithmic and the
total message size by a factor of O(F ) for every single query5.

Needless to say, a balanced distribution of documents is an important
prerequisite for these savings. For asymmetric situations, where few sites hold
many documents but most sites hold very few, we should either re-distribute the
documents or use a monolithic retrieval engine.

To illustrate the difference in terms of concrete numbers, we will consider
the transmission time based on the bandwidth. For simplicity, we will not con-
sider the latency. If the network topology provides multiple links to the server,
then the bandwidth is limited by the memory bandwidth of the processor. In
the Intel Nehalem architecture the absolute limit is 30 GB/s. If we use 1,024
image features in single-precision, 32 bit floating point representation, we have a
total size of 4 KiB per document. We can then transmit the vectors for 7,864,320
documents in one second. While merging the results from different sites, we
transmit a 32 bit document identifier and a similarity score in 32 bit floating
point representation for each document, with a total memory size of 8 bytes per
result. The theoretic throughput is therefore 4,026,531,840 results per second.
If we were to transmit the feature vectors for all of these documents, the total
transmission time would be 512 seconds, or 8 minutes and 32 seconds. We can
expect an improvement in transmission time from 8.5 minutes to about 2 sec-
onds for every query if numerical identifiers are used. Use of string identifiers
reduces this advantage. Assuming a document identifier length of 252 characters
and single-precision similarity scores, we can still transmit 125,829,120 results
per second, or 16 times more than document vectors.

2.4. The Choice of Middleware. An important question is the choice
of communication middleware for such a persistent parallel information retrieval
service. We can follow the OGF in their move towards a service-oriented ar-
chitecture using web services as a means of communication between nodes [26].
This design rationale led to the open grid service architecture (OGSA) described
in [25]. Web services are language independent and allow a great deal of flexibil-
ity regarding the design and implementation of the retrieval software running on
individual nodes. The price we pay for this flexibility is high communication costs
due to XML-based message formats. Furthermore, web services offer a different

5The savings are actually closer to F/2, but this fine point is lost in O-notation.



216 Tobias Berka, Marian Vajteršic

style of communication compared to traditional middleware for parallel high-
performance applications—a gap that must be bridged by manual programming
effort.

Another approach would be the use of grid-aware implementations of the
message passing interface (MPI). Such systems use various techniques to bypass
firewalls or other mechanisms obstructing cross-site communication and attempt
to re-structure collective communication operations to minimize the use of high-
latency links [18]. This approach obviously provides better communication per-
formance and allows parallel services to use the popular MPI interfaces. But
it limits the openness of the distributed retrieval system because all local im-
plementations are forced to use a specialized MPI implementation. We lose the
flexibility of mixing different implementations within the grid retrieval system of
a virtual organization.

A third approach would be the use of a service-oriented architecture other
than web services for information retrieval systems, e.g. the OSIRIS middleware
framework [15]. These alternate forms of middleware may offer more flexibility
than plain web services, but they are often available only in research implemen-
tations and do not enjoy widespread use.

We believe that we should choose the first option, comply with the OGSA
and use web services as a means of communication despite the increase in cost of
cross-site messaging. If we define interfaces for effective and efficient information
retrieval, we not only avoid the index migration problem, but we can include
information discovery mechanisms into the standard functionality of grid toolkits.
And as we have noted above, this is an identified goal of the OGF.

Thus far, we have discussed our key architectural issue: how to conduct
information retrieval on grids. The next design decision is to determine which
distributed or parallel information retrieval architecture would be suitable for
retrieval as a service. Distributed information retrieval offers an extremely broad
range of retrieval models, system architectures and distribution methods. This
field is so rich that a survey of the state-of-the-art is clearly out of scope. But
before we describe our own design decisions, let us review some of the fundamental
architectures that have been developed.

3. Fast Image Retrieval as a Service. The design of any distrib-
uted retrieval system must strike a balance between flexibility and response time
and/or retrieval quality. It is easy to see that we gain a maximum in flexibility
if we design for a federated, heterogeneous retrieval system with distinct features
and potentially overlapping document collections. But we can minimize the re-



Fast Information Retrieval in the Open Grid Service Architecture 217

sponse time if we build a homogeneous, centralized retrieval system with strictly
partitioned features and documents. In order to make informed design decisions
for our image search engine in e-science grids, we will sketch the background in
parallel and distributed information retrieval.

3.1. Parallel Processing in Information Retrieval. Sparked by some
prominent computer architectures of the past, it was natural to raise the issue
of how to best utilize methods from the field of parallel computing for informa-
tion retrieval purposes at a very early stage [48]. In more recent developments,
MPI-based text search engine on high-performance middleware [38], a hybrid
synchronous/asynchronous parallel search engine [40], a parallel algorithm for
nearest neighbor search on a clustered index [29] or a parallel index for multime-
dia search [39].

Due to the past and present importance of text retrieval, no overview of
distributed retrieval can be complete without mention of the research on parallel
and distributed inverted files—the most common form of index representation.
Instead of storing the plain text of a file sequentially, it can be transformed
into an inverted file. In this representation, the original document content is
stored as a list of words and their occurrences. In this format it is easy to
construct word frequencies by counting the number of occurrences for every word.
The inverted list thereby serves not only as an extended form of sparse vector
representation for text indexing, but also allow search engines to locate the actual
occurrences and reconstruct the surrounding text, which is a very useful feature
for the presentation of search results for the end user.

Naturally, this representation has attracted much attention in the research
of parallel and distributed retrieval architectures [52] [55] [33] [23] [50] [61]. It
should also be pointed out that prior to inverted files, various other coding- or
hash-based mechanisms have been used [51].

Unfortunately, these thoroughly understood techniques do not serve us
well for our purpose of retrieving images. The reason for this is two-fold:

1. The feature vectors for image retrieval are dense rather than sparse. This
means that the inverted list representation is inefficient compared to dense
vector or matrix representations.

2. The features and measures provided by digital image processing typically
do not have any meaningful location in the source image. While certain
features are indeed spatially located, such as windowed histograms in the
image domain, this kind of location information serves no use for the pre-
sentation of image search results. The added value introduced by inverted
lists is thus not present in image retrieval systems.



218 Tobias Berka, Marian Vajteršic

3.2. The Background of Distributed Databases. Much of the more
recent work in the field has taken place before the backdrop provided by distrib-
uted relational database systems. Several important distinctions for architectural
and organizational principles have been carried over from the retrieval of data to
that of information.

Using central processing units, random access memory and hard disk
drives as building blocks, designers of distributed databases use a three-way clas-
sification of hardware architectures, e.g. in [31]:

1. Shared-everything systems allow arbitrary sharing of RAM and HDDs
amongst a number of CPUs.

2. Shared-disk systems allow the sharing of HDDs amongst a number of CPUs
with individual RAM.

3. Shared-nothing systems consist of individual hosts with isolated units of
CPU, RAM and HDD communicating on one or more shared channels.

Since the grid is geographically dispersed over a very large area, our own system
is placed firmly in the realm of shared-nothing systems. While the networking
technology may be low-latency and high-bandwidth to support the demands of
the grid infrastructure, from the perspective of our information retrieval system
these links are nowhere near the performance of a local area network due to the
geographic distances and cumbersome XML formats involved. This leaves us
with relatively high costs for communication, which must be accounted for in the
design of our algorithms.

While this model describes the sharing at the hardware level, [20] intro-
duces an analogous classification for the sharing of information at application
level:

1. Shared-index systems allow every cooperating computing element to access
a common index in full.

2. Shared-vocabulary systems can utilize a global, shared set of features.

3. Shared-nothing systems consist of isolated hosts without any explicit shar-
ing of information.

While this classification can describe some of today’s distributed retrieval archi-
tectures, we believe that it fails to capture the difference between explicit sharing
of information, by replication or storage on a dedicated server, and implicit shar-
ing of information, where the global state is derived through distributed control
but never constructed explicitly.

Another distinction describes the degree of local autonomy for the individ-
ual hosts. The literature refers to this with somewhat sharp notions, classifying



Fast Information Retrieval in the Open Grid Service Architecture 219

systems either as centralized (no local autonomy) or federated, which enjoy a
varying degree of local independence.

The difference between homogeneous and heterogeneous systems largely
follows the same structure as distributed databases, but it is not explicitly noted
and often intermingled with other distinctions. In information retrieval, hetero-
geneous search systems that cannot cooperate directly are typically referred to as
meta-search engines, because they consist of search engines querying other search
engines without knowing any details about their vocabulary, index or algorithmic,
inner workings. Homogeneous systems, on the other hand, are often assumed to
be cooperative, tightly coupled and willing to expose their data [46]. In both
cases, the problems of selecting sub-collections, combining the results and assign-
ing new, combined relevances, commonly referred to collection selection, result
fusion and merging problems are also intense subjects of study, see e.g. [6] [13]
[16] [45].

3.3. Information Retrieval on the World Wide Web. Although
there is no strict, formal requirement for information retrieval on the World Wide
Web to be parallel or distributed, the sheer volume of documents will require
a combination of both. But it is related to retrieval on the grid because the
documents we wish to index are inherently distributed. For the web, information
retrieval services are provided by a number of well known search engines. The
vast amount of literature on the matter lies beyond the scope of this article. For
our purposes it is important to note that the grid differs from the web in ways
which have a great impact on how to provide information retrieval.

First, the grid is not generally a public information space like the web.
Most of its information is confidential to the general public and must be made
available only to the members, or some of the members, of a virtual organiza-
tion. The focus on e-science readily illustrates that internal, work-in-progress
documents must not be leaked to individuals willing and able to subvert the
principles of cooperation within the virtual organization. But the confidentiality
required for grid information retrieval can go even further than access to the full
documents. Even the existence and title of certain documents may have to be
limited until the results have been published. Web search engines are typically
owned and operated by a third party, which has no direct affiliation with the par-
ties of the virtual organization. They operate on the documents exposed to the
public on the World Wide Web by traversing the link structure of the hypertext
and retrieve the documents’ content using the HTTP protocol. To conduct in-
formation retrieval on the grid, the individual sites need more control over which
documents are indexed and retrieved. This high degree of control suggests either



220 Tobias Berka, Marian Vajteršic

federated information retrieval systems with a high degree of local autonomy, or
cooperative systems with distributed control operating within the boundary of a
virtual organization but across the physical entities it contains.

Second, the grid is primarily a compute-enabled distributed system. It
consists of a set of infrastructural services and supports additional execution by
allocating resources for batch-jobs issued dynamically. This is an environment
well suited to the deployment of distributed information retrieval systems. Con-
sidering the cost-ratio between local processing and storage versus transmission
of data over networks, it can be much more economical to move the processing to
the data. In terms of information retrieval this means indexing local document
collections locally. Here we face a trade-off between cost and retrieval perfor-
mance. A cost-effective system may consist of isolated indices with minimal
interaction. More accurate systems may require more interaction between the
individual hosts. But as we will discuss in this article, there are parameters other
than cost and performance which further complicate the design of information
retrieval systems on the grid.

Third, the web is a dedicated hypertext information system and relies on
the HTML document format as its primary form of content. The linked structure
of the web inherently provides a rich foundation for information retrieval because
we can typically assume that there exists some textual document in which any
other content is embedded. Not only is text the most thoroughly supported
form of content, but it can also be used to retrieve other media types based on
the text surrounding the hyperlink. Furthermore, the existence of links between
documents can be exploited for associative models for information retrieval [47].
Grid retrieval cannot make such powerful assumptions about the nature of its
content.

3.4. Peer-to-Peer Retrieval. Information retrieval in peer-to-peer sys-
tems bears several resemblances to grid retrieval:

— Structured peer-to-peer systems are almost identical to grid applications
using structured overlay networks, which offer some form of communication
topology as a virtual networking layer (similar to virtual private networks).

— The federated nature of peer-to-peer systems, where individual hosts are
at liberty not only to join or leave at their discretion, but also to add or
remove documents from the implicit, global corpus as they like, is almost
identical to the degree of autonomy we wish to have in grid infrastructure.

The fundamental difference is that grids are primarily a compute in-
frastructure and not mere shared document bases. However, we can see many
infrastructural concepts which are common among both grids and peer-to-peer



Fast Information Retrieval in the Open Grid Service Architecture 221

system (as discussed in [58]). As an example, consider the traditional publish-
subscribe mechanism in distributed computing, which is present not only in the
open grid forum’s standards (through the common information model standard
[22]), but also in general grid research [44], the research of structured overlay
networks [57] and peer-to-peer systems [7].

Information retrieval for the grid is no different in this respect. Many of
the techniques developed for peer-to-peer information retrieval lend themselves
readily for federated grid retrieval with a very high degree of local autonomy.

The key research issues in peer-to-peer retrieval are much the same as in
other fields of distributed information retrieval, but with a different emphasis.
Of key importance is the question of query routing, i.e., how to channel a query
through a peer-to-peer system to obtain optimal search results while keeping
the overall strain on the communication links minimal. Primitive systems ig-
nore the overhead and use flooding. More advanced systems use the established
state-of-the-art in traditional peer-to-peer systems, which are primarily based
on distributed hashing techniques [3]. This line of work tends to cater for the
“retrieval” aspect in the sense of delivery via network. Of greater interest to us
are other techniques, which are more advanced in terms of information retrieval.
One class of solutions is semantic network overlays, whose structure is determined
by some form of document similarity rather than communication topology and
link latencies. A popular approach is to represent every host via the centroid of
its local document vectors [19] [53] [54]. Other approaches use limited flooding
or random walks through the overlay network until they find a suitable host or
neighborhood of hosts [35].

3.5. Distributed Information Retrieval Architecture. The design
of any distributed information retrieval system is governed by a number of basic
properties. Two important, discriminating issues are the degree to which indi-
vidual nodes of a system can make decisions affecting the global state and the
extent to which individual nodes can become active without an external instruc-
tion to do so. As an example, consider a distributed information retrieval system
organized as a peer-to-peer system, where each node holds the documents stored
by the local user. All of these documents are represented as vectors in a common
vocabulary of features. The users of this system may search the global collection
by issuing queries at their local host. Such a system has a high degree of local au-
tonomy regarding documents, because every node can add or remove documents
as they see fit. The local autonomy regarding features is effectively zero, because
all nodes must use the same vocabulary. We can also assert that nodes can exert
a high degree of local activity, because the users can issue a query at any node,



222 Tobias Berka, Marian Vajteršic

which must then be processed in the entire distributed system.
Some systems expose their internal data to the outside world, while oth-

ers keep it secret. But the wide deployment of service-oriented architectures
allows information retrieval systems to respond to technical inquiries rather than
to merely provide access to raw data. The important distinction is that it is
possible to synthesize the information from a wide range of heterogeneous data
representations. As an example, consider two text retrieval systems:

— System A keeps inverted lists for all of its documents and uses a Boolean
query model.

— System B uses the vector space model with inverse document frequencies.

If the functionality to compute the base data for a global idf score is wrapped as
a function, these two systems are free to query one another, in order to improve
the retrieval performance of both systems. An important factor for real-world
applications is the existence of billing techniques to make data available even to
competitors—for a price.

Another question is whether or not the hosts use a common vocabulary
of features. This issue can become relevant if we intend to integrate a number
of open hosts with different vocabularies. In this case, we must take appropriate
steps to reconcile the vocabularies used by the different hosts. While this poses
few problems for text retrieval, the reconciliation of different image features may
be extremely difficult or impossible without access to the source images and re-
extraction of image features.

In systems with centralized control the distributed processing is orches-
trated and controlled by a coordinator. This host sends requests to all other hosts
which participate in the computation, initiates their processing and gathers their
results. This means that all host interactions directly or indirectly involve the
coordinator. In system with distributed control the activities and flow of infor-
mation is determined and initiated locally. Host interactions occur without the
involvement of a third party. While distributed control is certainly more difficult
to implement, it can greatly reduce the communication overhead.

One obvious means of improving the performance of a distributed infor-
mation retrieval system is to conduct the queries on a restricted subset of hosts.
So instead of operating on the complete, distributed state of the system we can
choose to conduct queries on a constrained, incomplete part of the total index.
Needless to say, there is a trade-off between retrieval accuracy and query response
time.

One common approach is to cluster documents into groups of geomet-
rically similar ones and to pre-select suitable clusters based on the similarity



Fast Information Retrieval in the Open Grid Service Architecture 223

between the query and the centroids of the clusters [30]. In another approach,
clusters are represented as vectors containing the inverse document frequencies
within the individual collections [60]. If the individual hosts of a system are
uncooperative, a meta-searcher can access individual documents and create a
representation of the underlying collection via query-based sampling [42] [43].

One important functional perspective on different types of distributed
information retrieval systems lies in the way queries are routed amongst hosts.
There are several approaches to the query routing problem. These differ primarily
in the required volume of global data. Some approaches use large quantities of
highly dynamic global information but may provide very efficient ways of directing
queries to the target hosts. Other approaches minimize the amount of globally
stored data and sacrifice the efficiency of routing the queries to achieve this.

The first type of query routing, routing by index, uses a complete index
describing which features or documents are available at every host of the system.
Using such an index we can determine the set of holding hosts for every entity in
the system and contact these directly. We use the notion of a partial routing index
to refer to a form of index which uses an incomplete representation to eliminate
the need for an explicitly stored complete index. Such partial indices can be
based on distributed hash tables as used in peer-to-peer networks. Another, more
expensive approach is to introduce integer surrogate identifiers for every entity
and a (global) mapping to translate between the external, original identifiers and
their internal representation. This requires additional attention when allocating
surrogate identifiers and when deleting or relocating documents to prevent a
degenerate distribution of the entities amongst the hosts. While this approach
has a higher communication overhead, it introduces some additional flexibility,
because the surrogate management can be implemented as an independent, re-
usable sub-system.

Another approach avoids the explicit representation of the global index.
Instead, queries are dynamically routed through the system. We refer to this as
interactive query routing. The straightforward approach is to use message flood-
ing to spread the query through the entire system. This approach can be improved
by using local host information or proximity information about a host’s neighbor-
hood to eliminate some of the message overhead and processing costs caused by
unselective flooding. Interactive routing strategies often involve a content-based
selection of the routing target. This decision is typically made locally, meaning
that the target for the next hop in the transmission is selected at every host. In
autonomous and dynamic systems, this process is often inexact and requires some
amount of message branching to search in an area rather than an individual host.



224 Tobias Berka, Marian Vajteršic

But all of these approaches suffer degradation in retrieval performance. The in-
teractive routing approach has its origin in federated, heterogeneous, distributed
relational database systems. It can eliminate the complication of maintaining a
global state in a highly dynamic or heterogeneous system. But this flexibility
comes at a cost, because the global state is partly derived during every single
query.

3.6. Organization in our Approach. Before we can make our choices
regarding the organization of our information retrieval system we must briefly
review the goals of our system. The target “audience” of our system consists of
the members of virtual organizations on computational grids used for e-science
applications. Such applications will be designed for domain experts who are able
to conduct complex searches and require accurate and complete results for their
work (quite unlike the retrieval of holiday images on the Web). The individual
applications will need to choose suitable image features for the specific tasks at
hand. Based on these requirements we have chosen the following organizational
principles for our system:

— Image retrieval as a service: The most fundamental decision we have made
for our system is that, based on our previous discussion about information
retrieval as an infrastructural task, we seek to provide image retrieval func-
tionality on the grid as part of the web-service based infrastructure. While
the kind of machinery we develop is optimized for the retrieval of images, it
is important to note that the interface definitions certainly also suffice for
text retrieval.

— Shared-nothing architecture: Since our system will be part of a computa-
tional grid’s infrastructure we are dealing with a shared-nothing architec-
ture. Note that the individual hosts on which our system is deployed can
themselves be more complex than single-CPU systems, but our focus is on
the overall architecture, rather than hardware-specific optimizations of the
host-local processing.

— Centralized system: The system as we envision it does not grant autonomy
to the individual hosts. Members of the VO can all submit documents to the
distributed system, but they do so through a single designated server. Our
motivation for a centralized approach is threefold. First, a well-designed
front-end server can easily handle large numbers of requests, since the ac-
tual workload is carried primarily by the working hosts. Second, we do not
consider the virtual organizations to be so extremely short-lived to warrant
the additional design complexity and the run-time overhead incurred by
allowing more local autonomy than is needed. Third, current grid toolkits



Fast Information Retrieval in the Open Grid Service Architecture 225

have very limited support for peer-to-peer functionality. Even the abstrac-
tion of the network layer using structured overlay networks is not widely
available (even though it is a well-researched topic). To make matters worse,
those software libraries which provide functionality for federated, distrib-
uted information systems are not compatible with existing grid toolkits.
As a result, every piece of federated functionality must be designed and
implemented specifically for our system as a custom solution. Clearly, this
task lies beyond the scope of the project.

— Master-slave organization: As an immediate consequence, we will base the
design of our distributed mechanisms on a master-slave organization. The
system will consist of a single master, who is responsible for receiving and
answering client requests, and a group of compute hosts, who perform the
distributed query processing.

— Open hosts: The individual hosts in our system should readily answer ques-
tions about their internal state, such as statistics for features or documents.
One particular goal is distributed feature weighting, which we do not in-
tend to limit to specific approaches due to the differences between image
and text retrieval systems outlined above.

— Query-routing by index: In order to reduce the number of messages used
by the system, yet retain the full flexibility regarding the placement of
documents, we have decided to opt for query routing using a complete index.
The master server retains a complete list of which features and documents
belong to which hosts. The storage and look-up overhead caused by this
index is easily compensated by the fact that the operations on a single host
are much faster than web-service based, interactive query routing.

— Complete queries: We use complete knowledge of the entire index to an-
swer queries. Since we are building a system for e-science applications, we
favor retrieval accuracy and completeness over retrieval performance. We
therefore gather the entire, dispersed information required to answer queries
exactly as specified by the general vector space model.

Since we are constructing an image search engine, which uses image fea-
tures, we must work with feature vectors that are dense—a substantial difference
to text retrieval, which uses very sparse vectors since most documents contain
only very few words. But for a wide range of modern text retrieval models the
feature vectors are dense rather than sparse. Today, we have a wide range of
dimensionality-reducing techniques, such as latent semantic indexing [21], spec-
tral decomposition of the feature covariance matrix [36] or rare term vector re-
placement [11].



226 Tobias Berka, Marian Vajteršic

We decided to choose a specific retrieval model to obtain simplicity in the
design and efficiency in the implementation and selected the vector space model.
It was originally introduced in [49], but has been extended in ways too numerous
to describe in this paper. Suffice it to say that it is a tried-and-true retrieval
technique and lends itself well to various modern retrieval tasks.

Our system uses two types of distribution: both the features and the
documents can be partitioned amongst hosts of the system. In addition, both
partitionings can be combined into a hybrid partitioning strategy. The document
partitioning can be used to index and search the documents of multiple sites of
a VO. Within a site, a feature partitioning may be used to further accelerate
the search process. We adapted the data parallel retrieval algorithm described
in [12].

For the future, we have the option to add additional layers for improved
efficiency through caching or replication, or for fault tolerance through redun-
dancy. Furthermore, the local similarity computation can be exchanged for a
sparse implementation of the vector space model, without having to modify the
distributed query processing.

Unfortunately, it is not possible to give a full survey of the related lit-
erature and we focus on prior work with immediate relevance to our approach.
In research, conventional information retrieval systems have been successfully
deployed as jobs on the grid [32] or in more intricate architectural forms us-
ing workflow engines [37]. Other research directions include the development of
new similarity index structures and algorithms specifically for the requirements
of grid infrastructure [5]. Research on distributed information retrieval with a
service-oriented architecture is not limited to the OGSA, see e.g. [41]. For text
retrieval in the vector space model using inverted files, the feature and document
partitioning [33] and the hybrid partitioning [59] have been applied successfully.

4. In-Memory Retrieval with Web Services. Due to the dis-
parate scales of performance, executing search operations on an index in main
memory is clearly preferable to disk-based searching. In-memory retrieval is
therefore a field of study in its own right [56]. For infrastructural information
retrieval in the OGSA, it becomes a major cause for concern.

We have previously argued that information retrieval is best offered in
a server-like manner in order to prevent costly migration of indices. Initially,
it would seem that web services are a natural fit for the task at hand. How-
ever, two fundamental issues cause an enormous amount of manual labor in the
programming of such systems in practice. In all major implementations of web



Fast Information Retrieval in the Open Grid Service Architecture 227

services, the delivery of messages or requests is processed by a user-supplied func-
tion, which is isolated inside a web service container. We had to add the message
queues and message-passing facilities in our own software, and faced further chal-
lenges to overcome the isolating barrier of the web service container.

In theory, web services are designed to be closed operations without any
protocol-specific state, which are executed within the isolation of a web-service
container, i.e. a separate sub-process contains the execution of the web service
to limit the harm it can do to the overall system. If web services are used in an
actual, non-trivial application to provide operations to external clients, we are
confronted with an entirely different story. Here, web services must operate on
the application’s state.

As a consequence, the principles of statelessness and isolation are therefore
subverted. The most common way to do this is to store the application state in
a relational database, as depicted in Figure 4. The implementation of the web
service uses a database connectivity driver to read and modify the state.

web server

web service

container

database

server(s)

(1) (2)

(3)

state

Fig. 4. Overcoming statelessness and isolation of web services using a database. The
incoming web service call (1) triggers the execution of the associated function (2), which

escapes from the web service container using a database driver (3)

Recognizing the need for better tools for the job, the organization for the
advancement of structured information standards (OASIS) has developed the
web service resource framework (WSRF). It is a collection of XML-based micro-
standards for the creation, use and management of state information for web
services. As shown in Figure 5, a stateful web service has means for declaring
and manipulating a state, which is persistently stored in the file system in an
XML file. This state is presented to the web service whenever a call is made,
and the changes are written back to the file system once the call has completed.
Similarly, a web service implementation could simply use the file system to store
its state in a custom file format.



228 Tobias Berka, Marian Vajteršic

web server

web service

container

file system

(1)

(3)
(2)

(4)

(5)

server

state

Fig. 5. Overcoming statelessness and isolation with the web service resource framework.
For every incoming message (1) the old state is fetched from the file system (2) and the
handler function is called (3). Upon completion, the new state is handed back to the

web server (4) and persistently stored in the file system (5)

For our purposes of providing an application programming interface (API)
for distributed, parallel information retrieval, statelessness and isolation are highly
problematic. The key reason for realizing information retrieval as a service was
to prevent index migration for efficiency. Now, web services create a similar
problem: we must avoid moving the index to and from expensive persistent stor-
age. Statelessness prevents us from holding the local portion of the search index
in memory across multiple queries and service invocations. Isolation makes it
impossible to share the search index with another process which executes the
retrieval functionality. At the same time, a relational database and the OASIS’s
web service resource framework are both unsuitable for our needs. Neither a
relational database nor an XML file is well-suited for storing dense matrix data,
which constitutes the bulk of our application state. Direct usage of the file system
was also out of question to avoid touching the slow, persistent storage mechanism
of the hard disk drive.

Therefore, we had to develop a new way of escaping from the web service
container. We decided to use remote procedure calls (RPCs), as provided by
the open network computing ONC-RPC framework, which is readily available
on every major Linux distribution. These remote procedure calls can be made
from the computer hosting the web server to an RPC daemon on the same host,
or to another machine used exclusively for indexing. The web service simply
reformats the data to data structures suitable for RPC transmission, dispatches
a call to the RPC handler, which executes the implementing function for the call.
The implementation of each remote procedure places the message content in one
of two message queues: one for processing requests and another for delivery of



Fast Information Retrieval in the Open Grid Service Architecture 229

intermediate results. These two queues are shared between a messaging thread

for the execution of the remote procedure calls and an application thread, which
performs the actual retrieval functionality, as depicted in Figure 6.

Web services provide either remote procedure call or message passing se-
mantics. In practice, however, every web service invocation is mapped directly
to a function call, which is executed in isolation within a web service container.
Currently, there is no realization providing actual message passing facilities. This
is a severe impediment, since we require messages to communicate intermediate
results during the distributed search process. But because the message trans-

web server

web service

container

server(s)

(1)
(2)

RPC daemon application

(3) (4)

state

Fig. 6. Overcoming statelessness and isolation with remote procedure calls. An in-
coming message (1) is passed to the handler (2). An associated remote procedure call is
dispatched to target host, where a daemon receives the call (3) and invokes the associated

function (4)

web server

web service

container

messaging

server(s)

(1)
(2)

(3)

(4)

(5)

application

Fig. 7. Our strategy for overcoming statelessness and isolation. The web server (1) passes
the message to the executing web service container (2), which uses remote procedure calls
to transmit the message to the RPC daemon (3). The implementing function places the
data in a shared message queue (4). This queue can be accessed by the application

thread (5), which performs the actual retrieval functionality



230 Tobias Berka, Marian Vajteršic

marshal

arguments

dispatch

RPC inspect 

message

enqueue

request 

enqueue 

delivery

return
complete

RPC

dequeue

request

dequeue

delivery

wait for

delivery

process

request

receive

data

send

data

data

sent

data

received

return
request

completed

wait for

request

Web Service

Container

RPC

Server

Application

Thread

Request

Handler

request message

(1)

(2)

(3)

(4)

Fig. 8. Swimlane flowchart for the queue operation. An incoming web service invocation
is received by the handler and placed in the request or message queue (1). If intermediate
data from another node is received while a request is being processed (2), the message
queue acts as an asynchronous buffer. Intermediate send operations (3) are performed
directly by the request thread by dispatching a web service invocation. Once the execu-
tion of a request terminates (4), the processing thread returns to the request queue and

awaits the next job



Fast Information Retrieval in the Open Grid Service Architecture 231

mission can take place concurrently with the local result processing, we further
need an asynchronous, concurrent message passing facility. As shown in Figure 7,
we are using two queues for our asynchronous message passing system: one for
processing requests, i.e. queries or modifications to the documents, and another
for data messages, i.e. intermediate results from other nodes. These two queues
are shared between a messaging thread for the execution of the remote procedure
calls and an application thread, which performs the actual retrieval functionality,
as depicted in Figure 7.

In this approach, the implementation of the web service’s associated func-
tion degenerates to simple data handling. The swimlane flowchart in Figure 8
illustrates the details of the queue-based, threaded communication. The actual
handlers merely unmarshal the data from the message and either resend or en-
queue them.

5. Conclusions. In this paper, we have argued that information re-
trieval for virtual organizations is an inherently distributed activity, which is com-
plicated by the fact that queries must be answered sporadically and frequently.
We have briefly reviewed the traditional notion of grid information retrieval as
a job and argued that it suffers from the problem of prohibitively high index
migration costs. As a remedy, we have introduced the concept of information re-
trieval as a service to prevent the negative impact of index migration on response
time—and consequently user experience. We have sketched various character-
istics of different approaches to distributed information retrieval and suggested
that it is necessary to make specific choices. As an example, we have described
the design decisions for our image retrieval system for e-science grids. Lastly, we
have described the problems we encountered while implementing our approach as
part of the open grid service architecture and sketched our resolution. Thus we
have shown that it is indeed possible, albeit difficult, to build such a system. In
the future, we hope to conduct a thorough performance analysis to empirically
support the case for grid retrieval as part of the grid infrastructure.

Acknowledgement. The authors wish to acknowledge their funding
by the Austrian ministry for science and research under grant no. P-142201-06.



232 Tobias Berka, Marian Vajteršic

REFERE NC ES

[1] Anderson D. P. BOINC: A System for Public-Resource Computing and
Storage. In: Proc. GRID, IEEE, USA, 2004, 4–10.

[2] Anderson D. P., J. Cobb, E. Korpela, M. Lebofsky, D. Werthimer.

SETI@home: An Experiment in Public-Resource Computing. Commun.

ACM, 45 (2002), No 11, 56–61.

[3] Androutsellis-Theotokis S., D. Spinellis. A Survey of Peer-to-Peer
Content Distribution Technologies. ACM Comput. Surv., 36 (2004), No 4,
335–371.

[4] Baraglia R., D. Laforenza, F. Silvestri. SIGIR Workshop Report:
The SIGIR Heterogeneous and Distributed Information Retrieval Workshop.
SIGIR Forum, 39 2005, No 2, 19–24.

[5] Batko M., V. Dohnal, P. Zezula. M-Grid: Similarity Searching in Grid.
In: Proc. P2PIR, ACM, New York, 2006, 17–24.

[6] Baumgarten C. A Probabilistic Solution to the Selection and Fusion Prob-
lem in Distributed Information Retrieval. In: Proc. SIGIR, ACM, USA, 1999,
246–253.

[7] Berberich K., M. Koubarakis, C. Tryfonopoulos, G. Weikum,

C. Zimmer. MAPS: Approximate Publish/Subscribe Functionality in Peer-
to-Peer Networks. In: Proc. ADPUC, ACM, USA, 2006, 1.

[8] Berka T. Distributed Image Retrieval on the Grid using the Vector Space
Model. Master’s thesis, University of Salzburg, Austria, 2009.

[9] Berka T., R. Kutil, M. Vajteršic. Fast Distributed Image Retrieval for
e-Science Grids: Motivations and Challenges. In: Proc. ICCP, IEEE, 2010,
163–170.

[10] Berka T., M. Vajteršic. Fast Information Retrieval in the Open Grid
Service Architecture. In: Proc. S3T, 2010, 202–206.

[11] T. Berka, M. Vajteršic. Dimensionality Reduction for Information Re-
trieval using Vector Replacement of Rare Terms. In: Proc. TM, 2011.

[12] Berka T., M. Vajteršic. Parallel Retrieval of Dense Vectors in the Vector
Space Model. Computing and Informatics, 2 (2011), 247–265.

[13] Berretti S., A. del Bimbo, P. Pala. Merging Results for Distributed
Content Based Image Retrieval. Multimedia Tools Appl., 24(2004), No 3,
215–232.



Fast Information Retrieval in the Open Grid Service Architecture 233

[14] Boden T. The Grid Enterprise — Structuring the Agile Business of the
Future. BT Technology Journal, 22(2004), No 1, 107–117.

[15] G. Brettlecker, D. Milano, P. Ranaldi, H. Schuldt. DelosDLMS
– A Next-Generation Digital Library Management System. In: Proc.
ICIAP,IEEE, USA, 2007, 83–88.

[16] Callan J., F. Crestani, H. Nottelmann, P. Pala, X. M. Shou.

Resource Selection and Data Fusion in Multimedia Distributed Digital Li-
braries. In: Proc. SIGIR, ACM, USA, 2003, 363–364.

[17] Chowdhury A., G. Pass. Operational Requirements for Scalable Search
Systems. In: Proc. CIKM, ACM, New York, 2003. 435–442.

[18] Coti C., T. Herault, S. Peyronnet, A. Rezmerita, F. Cappello.

Grid Services for MPI. In: Proc. CCGRID, IEEE, USA, 2008, 417–424.

[19] Cuenca-Acuna F. M., T. D. Nguyen. Text-Based Content Search and
Retrieval in Ad-hoc P2P Communities. In: Proc. NETWORKING, Springer,
UK, 2002, 220–234.

[20] De Kretser O., A. Moffat, T. Shimmin, J. Zobel. Methodologies for
Distributed Information Retrieval. In: Proc. Proceedings of the The 18th
International Conference on Distributed Computing Systems, IEEE, Com-
puter Society Washington, DC, USA, 1998.

[21] Deerwester S. C., S. T. Dumais, T. K. Landauer, G. W. Furnas,

R. A. Harshman. Indexing by Latent Semantic Analysis. JSIS, 41(1990),
No 6, 391–407.

[22] Distributed Management Task Force. Specification for CIM Operations over
HTTP, Version 1.2. Online publication of the DMTF.
http://www.dmtf.org/standards/published documents/DSP200.html,
January 2007.

[23] Efraimidis P., C. Glymidakis, B. Mamalis, P. Spirakis, B. Tam-

pakas. Parallel Text Retrieval on a High Performance Supercomputer using
the Vector Space Model. In: Proc. SIGIR, ACM, USA, 1995, 58–66.

[24] Foster I., C. Kesselman. Computational Grids. The Grid: Blueprint for
a New Computing Infrastructure, Morgan-Kaufman, USA, 1999, 15–51.

[25] Foster I., H. Kishimoto, A. Savva, D. Berry, A. Djaoui,

A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist, R. Subramaniam,

J. Treadwell, J. von Reich. The Open Grid Services Architecture, Ver-
sion 1.5. http://www.ogf.org/documents/GFD.80.pdf, July 2006.



234 Tobias Berka, Marian Vajteršic

[26] Foster I. T. Globus Toolkit Version 4: Software for Service-Oriented Sys-
tems. In: NPC, (Eds H. Jin, D. A. Reed, W. Jiang), LNCS, Vol 3779,
Springer, 2005, 2–13.

[27] Frey V., T. Tannenbaum, M. Livny, I. Foster, S. Tuecke. Condor-
G: A Computation Management Agent for Multi-Institutional Grids. Cluster

Computing, 5 (2002), No 3, 237–246.

[28] Gentzsch W. Sun Grid Engine: Towards Creating a Compute Power Grid.
In: Proc. CCGRID, IEEE, USA, 2001, 35-36.

[29] Gil-Costa V., M. Marin, N. Reyes. Parallel Query Processing on Dis-
tributed Clustering Indexes. JDA, 7 (2009), No 1, 3 – 17.

[30] Gravano L., H. Garćıa-Molina, A. Tomasic. GlOSS: Text-Source Dis-
covery over the Internet. ACM Trans. Database Syst., 24 (1999), No 2,
229–264.

[31] Hua K. A., C. Lee. Handling Data Skew in Multiprocessor Database Com-
puters Using Partition Tuning. In: Proc. VLDB, Morgan Kaufmann Pub-
lishers Inc, USA, 1991, 525–535.

[32] Hughes B., S. Venugopal, R. Buyya. Grid-based Indexing of a Newswire
Corpus. In: Proc. GRID, IEEE, USA, 2004, 320–327.

[33] Jeong B.-S., E. Omiecinski. Inverted File Partitioning Schemes in Mul-
tiple Disk Systems. IEEE Trans. Parallel Distrib. Syst., 6 (1995), No 2,
142–153.

[34] Kim Y. Grid Information Retrieval System for Dynamically Reconfigurable
Virtual Organization. http://www.ogf.org/documents/GFD.82.pdf, Feb-
ruary 2006.

[35] King I., C. H. Ng, K. C. Sia. Distributed Content-based Visual Informa-
tion Retrieval System on Peer-to-Peer Networks. ACM Trans. Inf. Syst., 22

(2004), No 3, 477–501.

[36] Kobayashi M., M. Aono, H. Takeuchi, H. Samukawa. Matrix Com-
putations for Information Retrieval, Major and Outlier Cluster Detection.
JCAM, 149 (2002), No 1, 119–129.

[37] Larson R. R., R. Sanderson. Grid-based Digital Libraries: Cheshire3
and Distributed Retrieval. In: Proc. JCDL, ACM, New York, 2005,
112–113.



Fast Information Retrieval in the Open Grid Service Architecture 235

[38] MacFarlane A., J. McCann, S. Robertson. PLIERS: A Parallel Infor-
mation Retrieval System Using MPI.In: Euro PVM/MPI, LNCS, Vol 1697,
Springer, 1999, 674–674.

[39] Marin M., V. Gil-Costa, C. Bonacic. A Search Engine Index for Mul-
timedia Content. In: Proc. Euro-Par, LNCS, Vol 5168, Springer, 2008,
866–875.

[40] Marin M., V. Gil-Costa, C. Bonacic, R. Baeza-Yates, I. D. Scher-

son. Sync/Async Parallel Search for the Efficient Design and Construction
of Web Search Engines. Parallel Computing, 36 (2010), No 4, 153–168.

[41] Hyperdatabase Infrastructure for Management and Search of Multimedia
Collections. In: Proc. DELOS Workshop, 2004, 25–36.

[42] Ogilvie P., J. Callan. The Effectiveness of Query Expansion for Distrib-
uted Information Retrieval. In: Proc. CIKM, ACM, USA, 2001, 183–190.

[43] Powell A. L., J. C. French. Comparing the Performance of Collection
Selection Algorithms. ACM Trans. Inf. Syst., 21(2003), No 4, 412–456.

[44] Ranjan R., L. Chan, A. Harwood, S. Karunasekera, R. Buyya.

Decentralised Resource Discovery Service for Large Scale Federated Grids.
In: Proc. E-SCIENCE, IEEE, USA, 2007, 379–387.

[45] Rasolofo Y., F. Abbaci, J. Savoy. Approaches to Collection Selection
and Results Merging for Distributed Information Retrieval. In: Proc. CIKM,
ACM, USA, 2001, 191–198.

[46] Ribeiro-Neto B. A., R. A. Barbosa. Query Performance for Tightly
Coupled Distributed Digital Libraries. In: Proc. DL, ACM, USA, 1998,
182–190.

[47] Salton G. Associative Document Retrieval Techniques Using Bibliographic
Information. J. ACM, 10(1963), No 4, 440–457.

[48] Salton G., D. Bergmark. Parallel Computations in Information Re-
trieval. In: Proc. CONPAR, Springer, UK, 1981, 328–342.

[49] Salton G., A. Wong, C. S. Yang. A Vector Space Model for Automatic
Indexing. Commun. ACM, 18 (1975), No 11, 613–620.

[50] Sornil O. Parallel Inverted Index for Large-Scale, Dynamic Digital Li-
braries. PhD thesis, Virginia Polytechnic Institute and State University,
2001.

[51] Stanfill C., B. Kahle. Parallel Free-Text Search on the Connection Ma-
chine System. Commun. ACM, 29 (1986), No 2, 1229–1239.



236 Tobias Berka, Marian Vajteršic

[52] Stanfill C., R. Thau, D. Waltz. A Parallel Indexed Algorithm for In-
formation Retrieval. SIGIR Forum, 23 (1989), 88–97.

[53] Tang C., Z. Xu, S. Dwarkadas. Peer-to-Peer Information Retrieval using
Self-Organizing Semantic Overlay Networks. In: Proc. SIGCOMM, ACM,
USA, 2003, 175–186.

[54] Tang C., Z. Xu, M. Mahalingam. pSearch: Information Retrieval in
Structured Overlays. SIGCOMM Comput. Commun. Rev., 33 (2003), No 1,
89–94.

[55] Tomasic A., H. Garcia-Molina. Performance of Inverted Indices in
Shared-Nothing Distributed Text Document Information Retrieval Systems.
In: Proc. PDIS, San Diego, CA, USA, 1993, 8–17.

[56] Transier F., P. Sanders. Engineering Basic Algorithms of an In-Memory
Text Search Engine. ACM Trans. Inf. Syst., 29 (2010), No 1, 2–37.

[57] Tryfonopoulos C., S. Idreos, M. Koubarakis. Publish/Subscribe
Functionality in IR Environments using Structured Overlay Networks. In:
Proc. SIGIR, ACM, USA, 2005, 322–329.

[58] Venugopal S., R. Buyya, K. Ramamohanarao. A Taxonomy of Data
Grids for Distributed Data Sharing, Management, and Processing. ACM

Comput. Surv., 38 (2006), Issue 1, Article No 3.

[59] Xi W., O. Sornil, M. Luo, E. A. Fox. Hybrid Partition Inverted Files:
Experimental Validation. In: Proc. ECDL, Springer, London, 2002, 422–431.

[60] Xu J., J. Callan. Effective Retrieval with Distributed Collections. In:
Proc. SIGIR, ACM, USA, 1998, 112–120.

[61] Zobel J., A. Moffat. Inverted Files for Text Search Engines. ACM Com-

put. Surv., 38(2006), Issue 2, Article No 6.

Tobias Berka

Department of Computer Sciences

University of Salzburg

Austria

e-mail: tberka@cosy.sbg.ac.at

Marian Vajteršic

Department of Informatics

Mathematical Institute

Slovak Academy of Sciences

Slovakia

Received April 30, 2011

Final Accepted August 25, 2011


