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THE NONEXISTENCE OF [132, 6,86]; CODES AND
[135, 6, 88]; CODES

Yusuke Oya

ABSTRACT. We prove the nonexistence of [g3(6,d),6,d]s codes for
d = 86, 87,88, where g3(k,d) = Zf:_()l {d/3"'—|. This determines n3(6,d) for
d = 86,87, 88, where ny(k, d) is the minimum length n for which an [n, k, d,
code exists.

1. Introduction. An [n,k,d]; code C is a linear code of length n,
dimension k£ and minimum weight d over F,, the field of ¢ elements. The weight
of a vector z € Fy, denoted by wt(x), is the number of nonzero coordinate
positions in . We only consider non-degenerate codes having no coordinate
which is identically zero.

A fundamental problem in coding theory is to find n,(k,d), the mini-
mum length n for which an [n, k, d], code exists. See [8] for the updated tables
of ng(k,d) for some small ¢ and k. For ternary linear codes, n3(k,d) is known for
k <5 for all d ([5]), but the value of n3(6,d) is still unknown for many integer
d although the Griesmer bound is attained for all d > 352. It is known that
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n3(6,d) = g3(6,d) or g3(6,d) + 1 for d = 86,87, 88, where g3(k,d) = S5 [d/3']
is the Griesmer bound, see [9]. An [n,k,d], code attaining the Griesmer bound
is called a Griesmer code. Our purpose is to prove the following theorems.

Theorem 1.1. There exist no [132,6,86]3 codes.
Theorem 1.2. There exist no [135,6,88]3 codes.

Corollary 1.3. n3(6,d) = g3(6,d) + 1 for d = 86,87, 88.

The code obtained by deleting the same coordinate from each codeword
of C is called a punctured code of C. If there exist an [n+ 1, k,d + 1], code which
gives C as a punctured code, C is called extendable. To prove Theorem 1.1, we
show the that a putative [132,6,86]3 code is extendable.

2. Preliminary results. We denote by PG(r, ¢) the projective geom-
etry of dimension r over F,. O-flats, 1-flats, 2-flats, 3-flats, (r — 2)-flats and
(r — 1)-flats are called points, lines, planes, solids, secundums and hyperplanes
respectively. We denote by F; the set of j-flats of PG(r, ¢) and by 6; the number
of points in a j-flat, i.e. 6; = (¢ —1)/(g — 1). We set 0; = 0 for j < 0.

Let C be a non-degenerate [n,k,d]; code. The columns of a generator
matrix of C can be considered as a multiset of n points in ¥ = PG(k — 1,¢)
denoted also by C. We see linear codes from this geometrical point of view. An
i-point is a point of ¥ which has multiplicity ¢ in C. Denote by 7y the maximum
multiplicity of a point from ¥ in C and let C; be the set of i-points in 33, 0 < i < ~p.
For any subset S of 3 we define the multiplicity of S with respect to C, denoted

by me(S), as
Y0

me(S) = ) i-|SNCil,
i=1

where |T'| denotes the number of elements in a set 7. When the code is projective,
i.e. when 9 = 1, the multiset C forms an n-set in ¥ and the above m¢(S) is
equal to [CNS|. A line [ with t = m¢(l) is called a t-line. A t-plane, a t-solid and
so on are defined similarly. Then we obtain the partition ¥ = [J]2, C; such that
n = me(X) and n — d = max{me(mw) | 7 € Fr_2}. Conversely such a partition
¥ = )2, C; as above gives an [n, k, d], code in a natural manner. For an m-flat
IIin ¥ we define

v; () = max{mec(A) | ACII, A e F;}, 0<j<m.
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We write simply 7; instead of v;(X). It holds that y4,_2 = n—d, y4—1 = n. When
C is Griesmer, +;’s are uniquely determined [6] as follows.

j
(2.1) VJ:ZM%W for 0<j<k—1.

u=0

Hence, every Griesmer [n, k,d], code is projective if d < ¢*~1. In this paper, we
only consider projective codes. Denote by a; the number of hyperplanes II in X
with me(IT) = i. The list of a;’s is called the spectrum of C. We usually use 7;’s
for the spectrum of a hyperplane of ¥ to distinguish from the spectrum of C. A
simple counting of argument yields the following.

Lemma 2.1. A projective [n,k,d], code satisfies

n—d n—d n—d
(D)D ai=6k1, (2> e =nbp s, (3) > i(i—1)a;=n(n— 1) .
=0 =1 =2

We get the following from the three equalities of Lemma 2.1:

(2.2) niz (” _j - Z) 0 = (” ) d) Orr—n(n—d—1)0ps+ (Z) O .

=0

Lemma 2.2 ([10]). Let II be an i-hyperplane through a t-secundum 9.
Then

(1) t < yp—2—(n—1)/q=(i+qmw-—2—n)/q

(2) a; =0 if an [i,k — 1,do]q code with dy > i — | (i + qyg—2 —n)/q] does
not exist, where |x| denotes the largest integer less than or equal to x.

(3) Ye—3(Il) = (4 qyk—2—n)/q] if an [i,k — 1,d1]y code satisfying
dy >i— (i 4+ qyk—2—n)/q] + 1 does not exist.

(4) Let ¢; be the number of j-hyperplanes through & other than II. Then

(2.3) > (2 —)ej =i+qum-—2—n—qt

J
. (5) For a ~yg—2-hyperplane Iy with spectrum (7o, ..., Ty, ,), & > 0 holds if
T+ qYVp—2—n —qt <q.

Theorem 2.3 ([11]). Let C be a Griesmer [n,k,d], code, p a prime. If
p° divides d, then p® is a divisor of all nonzero weights of C.
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Let C be an [n,k,d]s code with k& > 3, ged(3,d) = 1. The diversity
(®g, 1) of C was defined in [12] as the pair of integers:

1
e Z‘au ‘I)1=7‘ Z i,
3ln—i i#n,n—d (mod 3)

where the notation x|y means that x is a divisor of y. Let

Fy = {me€Fpo|me(r)=n (mod3)},
F, = {m€Fx_o|me(r)#nn—d (mod3)},
F, = {re€Fro|me(r)=n—d (mod 3)}.

Then we have 5 = |Fs| for s =0, 1.

The diversity can be applied to the dual space ¥* of ¥. A t-flat II of ¥*
with [II N Fy| = 4, [II N Fy| = j is called an (7,): flat. An (i,7); flat is called
an (i,7)-line. An (i,7)-plane, an (i, j)-solid and so on are defined similarly. We
denote by F7 the set of j-flats of X*. Let A be the set of all possible (4, j) for
which an (4, j); flat exists in ¥*. Then we have

A= {( 70)7(07 )7(27 1) ( )7(470)}7

Ay = {(4,0),(1,6),(4,3),(4,6),(7,3),(4,9), (13,0)},

As = {(13,0),(4,18),(13,9), (10, 15),(16,12),(13,18),(22,9), (13,27), (40,0)},

Ay = {(40,0),(13,54),(40,27),(31,45), (40, 36), (40, 45), (49, 36), (40, 54), (67, 27),
(40,81), (121,0)},

As = {(121,0),(40,162), (121, 81), (94, 135), (121, 108), (112, 126), (130, 117),

(121,135), (148,108), (121, 162), (202, 81), (121, 243), (364,0)},
see [12]. Let II; € Fi. Let o) = [II; N Fy|, s = 0,1. (0o™®, 1®) is called the
diversity of I1;.
We use the following extension theorem to prove Theorem 1.1.

Theorem 2.4 ([3]). LetC be an [n,k,d|3 code with ged(d,3) =1 whose
diversity satisfies &1 = 0. Then C is extendable.

The following Lemma gives the set of all possible diversities of non-
extendable [n, k, d]s codes for k = 5,6, which is needed later.

Lemma 2.5 ([7]). Let C be an [n,k,d|3 code with diversity (®g, ®1),
gcd(3,d) = 1. If C is not extendable, then
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(1) when k =5, (99, ®1) € D = {(40,27), (31,45), (40, 36), (40, 45), (49, 36)},
(2) when k = 6, (g, ®1) € DF = {(121,81), (94,135), (121, 108),
(112,126), (130, 117), (121, 135), (148, 108)}.

The following Lemmas 2.6 and 2.7 can be derived from Theorems 3.12,
3.13, 3.16 in [12].

Lemma 2.6 ([12]). Let II be a (o, ¢1)4 flat with (¢o, 1) € Di .
(1) For any point P of FyNII, the numbers of (i, j)-lines through P in I, denoted
by pi j, 1s as in Table 2.1.

Table 2.1
Yo ¥1 | PLo P21 P40 P13
40 27 | 18 0 13 9
9 27 4 0
31 45| 15 0 10 15
6 27 1 6
40 36 6 27 4 3
40 45 3 27 4 6
49 36 | 12 0 16 12
3 27 7 3

(2) For any point Q of F1NII, the numbers of (i, j)-lines through Q in I, denoted
by q; ;, is as in Table 2.2.

Table 2.2 Table 2.3
Yo Y1913 Qo2 Qq21 Yo ¥1|Ti0 721 702
40 27 4 18 18 40 27 | 22 9 9
31 45| 13 18 9 31 45| 13 9 18
40 36 | 10 15 15 40 36 | 16 12 12
40 45| 16 12 12 40 45 | 10 15 15
49 36 | 13 9 18 49 36 | 13 18 9

(3) For any point R of FoNII, the numbers of (i, j)-lines through R in 11, denoted
by r; j, is as in Table 2.3.

Lemma 2.7 ([12]). Let II be a (o, ¢1)s5 flat with (¢o, 1) € Dy .
(1) For any point Q of Fy N1I, there are at most 54 (2,1)-lines through @ in II.
(2) For any point R of Fy N1II, the number of (1,0)-lines or (0,2)-lines through
R in 11 is at most 94.
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3. Spectra of some [n, k, d]s codes. In this section, we give some
results on ternary linear codes, which are needed in the next sections. Table 3.1
can be obtained from the known results [2].

Table 3.1. The spectra of some ternary linear codes.

parameters possible spectra
[7.4,3]3 (a1,az,a3,as) = (14,9,9,8)
(ag, a1, az,as3,as) = (2,9,12,10,7)
(ag, a1, ag, as,ay) = (4,4,15,11,6)
(ap,a1,az,as3,as) = (3,8,9,15,5)
[8,4,4]3 (ao,al,ag,ag, ) (3 4, 10, 12,11)
(ag, az, a3, a4)) = (4,16,8,12)
(ag, a1, as, as,ay) = (2,8,4,16,10)
[9,4, 5]3 (ao,al,ag,a4) (1 9 12, 18)
[15,4,9]3 (a3, a¢) = (15,25)
(ao, a3, a6) = (1,13,26)
[10,5,5]3 (al,ag,a4,a5) (10,45,30,36)
[16,5,9]5 (a1,a4,a7) = (6,57,58)
(

[1975711]3 a17a27a’47a57a77a8) (179797277 30745)

Lemma 3.1 ([2]). The spectrum of a projective [15,4,9]3 code is
(ag,ag) = (15,25).

The following information about the classification of some ternary codes
was supplied by I. Bouyukliev via T. Maruta.

Lemma 3.2 (cf.[1]).

(1) The spectrum of a [25,5,15]3 code is either (a1, a4,a7,a19) = (1,12,
43,65) or (a4, a7,a19) = (15,40,66).

(2) The spectrum of a projective [28,5,17]3 code is (a1, as,ag,ap,a11) =
(1,18, 18,39, 45).

(3) The spectrum of a [37,5,23]3 code is either (a1, as, a1, ai1,a13,a14) =
(1, 18, 9, 9, 30, 54) or (ag, ar,as,aip, ail,ais, a14) = (1, 4, 14, 5, 13, 31, 53).

(4) The spectrum of a [47,5,30]3 code is either (as,as,ai1,a14,a17) =
(1, 4, 10, 23, 83) or (CLQ, a11,0a14, CL17) == (1, 18, 18, 84)

(5) Every [29,5,18]3 code is not projective.
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Lemma 3.3. Every [46,5,29]3 code is extendable.

Proof. Let C be a [46,5,29]3 code and let A be a 73-solid, which gives
a [17,4,10]3 by Lemma 2.2. So we have ag = ag = a;2 = 0 by Lemma 2.2 and
the known n3(4,d) table. Now, F; = {0-solids, 9-solids, 15-solids}. From (2.2),
we obtain

136ag 4+ 120a; + 105a9 + 78a4 + 66as + 4ba; + 36ag
(3.1) +28ag + 21aig + 15a11 + 6a13 + 3a14 + a5 = 471

since C is projective. And a 15-solid in ¥ =PG(4, 3) gives a [15,4,9]3 code by
Lemma 2.2, which is also projective. Hence it has only 3-planes or 6-planes by
Lemma 3.1.

Suppose ag > 0 and let A1 be a 0-solid in X. For ¢ = 0, the maximum
possible contribution of ¢;’s in (2.3) to the LHS of (3.1) is (c13, c16,c17) = (1,1,1)
for t = 0. Estimating the LHS of (3.1) we get 471 < 6 - 40 + 136 = 376, a
contradiction. Hence ag = 0.

Now, C is not extendable by (4) of Lemma 3.2 if ag + a5 > 0. Then, the
diversity (@, ®1) of C satisfies (®g, ®1) € DF by Lemma 2.5.

Suppose ag > 0. Let Ay be a 9-solid in ¥ and let A% be the corresponding
point of F} in ¥*. Then Ag gives a [9,4,5]|3 code by Lemma 2.2. Hence the
spectrum of Ag is (79,71, 73,74) = (1,9,12,18). For i = 9,¢t = 4, the equation
(2.3) has the unique solution (ci6,c17) = (2,1) corresponding to a (2,1)-line
through A%. And for i =9, a t-solid with the solution of (2.3) corresponding to
a (1,3)-line exists only when ¢ = 3, because a 15-solid in ¥ has only 3-planes or
6-planes. Hence, there are at least 74 = 18 (2, 1)-lines through A} and there are
at most 73 = 12 (1, 3)-lines through Aj. Therefore (®¢, ®1) = (40,27), 1.3 = 4,
Yo,2 = 18, 72,1 = 18 by Table 2.2, where +; ; denotes the number of (i, j)-lines
through A3 in ¥*. And then one O-plane and nine 1-planes, eight 3-planes in
Ay correspond to (0,2)-lines through A% in ¥*. For i = 9,¢ = 0,1,3 in Lemma
2.2, the equation (2.3) has the solution corresponding to a (0, 2)-line as Table 3.2.
Hence, estimating the LHS of (3.1) we get 471 < 43-1+31-944-8+42-4+28 = 390,
a contradiction. Thus ag = 0.

Suppose a15 > 0 and a7 > 0. Let m; be a 7-solid in ¥ and let P be the
corresponding point of Fy in ¥*. Then 7 gives a [7,4, 3]3 code by Lemma 2.2.
Hence the spectrum of m satisfies 73 < 15. For i = 7, the equation (2.3) has
no solution corresponding to a (1,3)-line through P in ¥* and a ¢-solid with the
solution of (2.3) corresponding to a (2,1)-line exists only when ¢t = 3, since a
15-solid in ¥ has only 3-planes or 6-planes. Hence, 1,3 = 0, 72,1 < 15. But there
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exists no diversity satisfying this condition in Table 2.1, a contradiction. Thus
ais > 0 implies a7 = 0.

Next, suppose ai5 > 0 and ag > 0. Let mo be a 8-solid in ¥ and let R be
the corresponding point of Fb in ¥*. Then 7o gives a [8,4,4]3 code by Lemma
2.2, and the spectrum of 7y satisfies 73 < 16. For ¢ = 8, a t-solid with the solution
of (2.3) corresponding to a (0,2)-line or a (2,1)-line through R exists only when
t = 3, since a 15-solid in X has only 3-planes or 6-planes. Hence, y92 +2,1 < 16,
contradicting Table 2.3. Hence, a15 > 0 implies that a7 = ag = 0.

Suppose a5 > 0. Since C is projective, the spectrum of a 15-solid is
(13,76) = (15,25) by Lemma 3.1. Then, for ¢ = 15, the maximum possible
contributions of ¢;’s in (2.3) to the LHS of (3.1) are (ci0,c13,¢17) = (1,1,1) for
t =3 and (¢15,c17) = (1,2) for t = 6, since a7 = ag = 0. Estimating the LHS of
(3.1) we get 471 < 27-15+1-25+ 1 = 431, a contradiction. Hence a5 = 0.

Now, our assertion follows from Theorem 2.4. O

Table 3.2. Solutions of (2.3) for i = 9 corresponding to a (0, 2)-line

tlcp|ca|cg|cs|cr|cg|cog|clo|ci1|ci3|cia|cis| cip | Ci7
0 1 1 - 1
1 2 —
1 1 1 — 1
1 1 1

Corollary 3.4. The spectrum of a [46,5,29]3 code satisfies

a; =0 for all i ¢ {1,2,4,5,7,8,10,11,13,14,16,17}.

4. Proof of Theorems 1.1 and 1.2.

Lemma 4.1. There exists no [133,6,87]3 code.

Proof. Let C be a putative [133,6,87]3 code and let IT be a y4-hyperplane
in ¥ = PG(5,3). Then II satisfies 7; = 0 for all 7 ¢ {1,2,4,5,7,8,10, 11,13, 14, 16,
17} by Corollary 3.4, so a; = 0 for all i ¢ {1,10, 16, 19,25,28,34,37,43,46} by
Theorem 2.3, Lemma 2.2 and the known n3(5, d)-table. From (2.1), we obtain

(41) 35a1 4 22a109 + 15a16 + 12a19 + Tass + Sasg + 2a34 + azy = 112



The Nonexistence of [132,6,86]3 Codes and [135,6,88]3 Codes 125

since C is projective.

Suppose a; > 0 and let m; be a 1-hyperplane. The spectrum of m; is
(10,71) = (81,40). Then the solutions of (2.3) for i = 1 are (c43,ca6) = (2,1) for
t =0 and (c43,c46) = (1,2) for t = 1. Hence a; = 1 and a; = 0 for 10 <14 < 37,
contradicting (4.1). Thus a; = 0.

Suppose ajg > 0 and let m be a 10-hyperplane. Then 7 gives a [10, 5, 5|3
code by Lemma 2.2. The spectrum of mo is (71,72, 74,75) = (10,45,30,36) by
Table 3.1. For ¢ = 10, the maximum possible contributions of ¢;’s in (2.3) to the
LHS of (4.1) are (c34,c46) = (1,2) for t = 1 and (c37,cs6) = (1,2) for t = 2 and
(ca3,ca6) = (1,2) for t = 4 and ¢4 = 3 for ¢t = 5. Estimating the LHS of (4.1) we
get 112 <2-10+1-45 4+ 22 = 87, a contradiction. Hence a9 = 0.

Similarly, for ¢ = 16, 19, considering the maximum possible contributions
of ¢;’s in (2.3) to the LHS of (4.1) gives a contradiction. Hence a5 = a19 = 0.

Suppose ags > 0 and let 73 be a 25-hyperplane. Then 73 gives a [25, 5, 15]3
code by Lemma 2.2. Hence there are two possible spectra for w5 by Lemma 3.2.
We first assume that the spectrum of w3 is (71,74, 77, 710) = (1,12,43,65). For
i = 25, the maximum possible contributions of ¢;’s in (2.3) to the LHS of (4.1) are
(025,043) = (1,2) for t =1 and (034,043) = (1,2) for t = 4 and (0377046) = (1,2)
for t = 7 and ¢4 = 3 for ¢t = 10, since cgg = 0 when ¢t = 4 by Lemma 3.2.
Estimating the LHS of (4.1) we get 112 < 7-142-1241-43 47 = 81, a
contradiction. We get a contradiction similarly for the other spectrum of 7.
Hence ass = 0.

Suppose agg > 0 and let 74 be a 28-hyperplane. Then 74 gives a [28,5,17]3
code by Lemma 2.2. The spectrum of my4 is (11,75, 78, 710, 711) = (1,18, 18,39, 45)
by Lemma 3.2. For i = 28, the equation (2.3) has the solutions as in Table 4.1.

Table 4.1
U | cog | €34 | C37 | Ca3 | Cap
1 1 1
1 1 1
1 2
) 1 — 2
1 - 2
8 1 2
10 1 2
11 3

Since there are one 1-solid and 18 5-solids in 74, we get asg+ass < 71-2+75-1 = 20
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by Table 4.1. Similarly, we also get asg +asgqs+as7 <1 -3+75-14+75-1 =39 by
Table 4.1. Hence, we get 73 — 4asg < ags < 20 — agg from these two inequalities
and (4.1). Hence, if asg > 0, then it holds that ags > 18 and there exists a 46-
hyperplane which has a 5-solid. (Otherwise, estimating the maximum possible
LHS of (4.1) we get 112 <7-1+2-18+1-18 + 5 = 66, a contradiction.) Now,
let IT" be a 46-hyperplane containing a 5-solid. Then IT' gives a [46, 5, 29]3 code
by Lemma 2.2. For i = 46, the solutions of the equation (2.3) satisfy cog < 2
when t = 5 and cog < 1 when 7 < ¢t < 11. Since the spectrum of II' satisfies
75 = 1,77 + 718 = 4,710 + 711 = 10 by Lemma 3.3 and Lemma 3.2 (4), we get
ass <7524 (77 +718) - 1 + (110 + 711) - 1 = 16, a contradiction. Hence agg = 0.
Now, we get 2asq + azy = 112 from (4.1), and 4asy + 3agy + ag3 = 217 from (1)
and (2) of Lemma 2.1, whence a3y 4+ a43 = —7, a contradiction. This completes
the proof. O

Proof of Theorem 1.1. Let C be a putative [132,6,86]3 code and

let II be a 44-hyperplane in ¥ =PG(5,3). Then II satisfies 7; = 0 for all
i ¢ {1,2,4,5,7,8,10,11,13,14,16,17} by Corollary 3.4, so a; = 0 for all i ¢
{0—2,6,9—11, 15, 16, 18— 20, 24, 25, 27— 29, 33, 34, 36— 38, 42, 43, 45, 46} by Lemma
2.2 and the known n3(5, d)-table. Suppose agg > 0 and let m; be a 29-hyperplane
in ¥. Then m gives a [29,5,18]3 code by Lemma 2.2. By Lemma 3.2 (5),
vo(m1) # 1, which contradicts the fact that C is projective. Hence a9 = 0.
Since C is not extendable by Lemma 4.1, the diversity (®g,®1) of C satisfies
(®g,®1) € D by Lemma 2.5. And it holds that F} = {i-hyperplanes | i €
{2,11,20,38}}. Let m be an i-hyperplane in F; and let 7* be the point of F}
in ¥* corresponding to . Then there are at most 54 (2,1)-lines through =*
in ¥* by (1) of Lemma 2.7. If i = 2, © has 54 0-solids, 54 1-solids and 13 2-
solids. Setting ¢ = 2 in Lemma 2.2, the equation (2.3) has the unique solution
(ca2,c43,c45) = (1,1,1) corresponding to a (2,1)-line through 7* for ¢ = 0, and
(ca5,c46) = (2,1) corresponding to a (2, 1)-line through 7* for ¢ = 2. Hence, there
are at least 67 (2,1)-lines through 7*, a contradiction. Similarly, we can get a
contradiction for ¢ = 11,20, 38. Thus as = a11 = agy = azg = 0.

Hence we get ®; = |Fi| = 0, which implies that C is extendable by
Theorem 2.4. But there exists no [133, 6, 87]3 code by Lemma 4.1, a contradiction.
This completes the proof. O

Lemma 4.2 ([4]). There ezists no [136,6,89]3 code.

Proof of Theorem 1.2. Let C be a putative [135,6,88]3 code and
let IT be a vy4-hyperplane in ¥ =PG(5,3). Then II gives a [47,5,30]3 code by
Lemma 2.2. By Lemma 3.2, II satisfies 7, = 0 for all i ¢ {2,5,8,11,14,17}, so
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a; =0 for all i ¢ {2,9-11,18-20, 27-29, 36-38,45-47} by Lemma 2.2 and the known
ns(5, d)-table. Since C is not extendable by Lemma 4.2, the diversity (g, ®1) of
C satisfies (®g, D) € Dgr by Lemma 2.5. Now, let ¥* be the dual space of X.
Let II* be the point of F» corresponding II in ¥* and let r; ; be the number of
(i,7)-lines through IT*. Then, for i = 47,¢t = 14,17, the equation (2.3) has no
solution corresponding to a (2,1)-line through IT*. Thus, by Lemma 3.2, we get

r1,0 + 702 > T4 + 117 > 102,

which contradicts (2) of Lemma 2.7. This completes the proof. O
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