Serdica J. Computing 5 (2011), 117–128

Serdica Journal of Computing

Bulgarian Academy of Sciences Institute of Mathematics and Informatics

THE NONEXISTENCE OF $[132, 6, 86]_3$ CODES AND $[135, 6, 88]_3$ CODES

Yusuke Oya

ABSTRACT. We prove the nonexistence of $[g_3(6,d), 6, d]_3$ codes for d = 86, 87, 88, where $g_3(k, d) = \sum_{i=0}^{k-1} \left\lfloor d/3^i \right\rfloor$. This determines $n_3(6, d)$ for d = 86, 87, 88, where $n_q(k, d)$ is the minimum length n for which an $[n, k, d]_q$ code exists.

1. Introduction. An $[n, k, d]_q$ code C is a linear code of length n, dimension k and minimum weight d over \mathbb{F}_q , the field of q elements. The *weight* of a vector $\boldsymbol{x} \in \mathbb{F}_q^n$, denoted by $wt(\boldsymbol{x})$, is the number of nonzero coordinate positions in \boldsymbol{x} . We only consider *non-degenerate* codes having no coordinate which is identically zero.

A fundamental problem in coding theory is to find $n_q(k,d)$, the minimum length n for which an $[n, k, d]_q$ code exists. See [8] for the updated tables of $n_q(k,d)$ for some small q and k. For ternary linear codes, $n_3(k,d)$ is known for $k \leq 5$ for all d ([5]), but the value of $n_3(6,d)$ is still unknown for many integer d although the Griesmer bound is attained for all $d \geq 352$. It is known that

ACM Computing Classification System (1998): E.4.

Key words: ternary linear codes, optimal codes, projective geometry.

 $n_3(6,d) = g_3(6,d)$ or $g_3(6,d) + 1$ for d = 86, 87, 88, where $g_3(k,d) = \sum_{i=0}^{k-1} \lfloor d/3^i \rfloor$ is the Griesmer bound, see [9]. An $[n, k, d]_q$ code attaining the Griesmer bound is called a *Griesmer code*. Our purpose is to prove the following theorems.

Theorem 1.1. There exist no $[132, 6, 86]_3$ codes.

Theorem 1.2. There exist no $[135, 6, 88]_3$ codes.

Corollary 1.3. $n_3(6, d) = g_3(6, d) + 1$ for d = 86, 87, 88.

The code obtained by deleting the same coordinate from each codeword of C is called a *punctured code* of C. If there exist an $[n+1, k, d+1]_q$ code which gives C as a punctured code, C is called *extendable*. To prove Theorem 1.1, we show the that a putative $[132, 6, 86]_3$ code is extendable.

2. Preliminary results. We denote by PG(r, q) the projective geometry of dimension r over \mathbb{F}_q . 0-flats, 1-flats, 2-flats, 3-flats, (r-2)-flats and (r-1)-flats are called *points*, *lines*, *planes*, *solids*, *secundums* and *hyperplanes* respectively. We denote by \mathcal{F}_j the set of j-flats of PG(r,q) and by θ_j the number of points in a j-flat, i.e. $\theta_j = (q^{j+1}-1)/(q-1)$. We set $\theta_j = 0$ for j < 0.

Let \mathcal{C} be a non-degenerate $[n, k, d]_q$ code. The columns of a generator matrix of \mathcal{C} can be considered as a multiset of n points in $\Sigma = \mathrm{PG}(k - 1, q)$ denoted also by \mathcal{C} . We see linear codes from this geometrical point of view. An *i-point* is a point of Σ which has multiplicity i in \mathcal{C} . Denote by γ_0 the maximum multiplicity of a point from Σ in \mathcal{C} and let C_i be the set of *i*-points in Σ , $0 \leq i \leq \gamma_0$. For any subset S of Σ we define the multiplicity of S with respect to \mathcal{C} , denoted by $m_{\mathcal{C}}(S)$, as

$$m_{\mathcal{C}}(S) = \sum_{i=1}^{\gamma_0} i \cdot |S \cap C_i|,$$

where |T| denotes the number of elements in a set T. When the code is projective, i.e. when $\gamma_0 = 1$, the multiset C forms an *n*-set in Σ and the above $m_{\mathcal{C}}(S)$ is equal to $|\mathcal{C} \cap S|$. A line l with $t = m_{\mathcal{C}}(l)$ is called a *t*-line. A *t*-plane, a *t*-solid and so on are defined similarly. Then we obtain the partition $\Sigma = \bigcup_{i=0}^{\gamma_0} C_i$ such that $n = m_{\mathcal{C}}(\Sigma)$ and $n - d = \max\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\}$. Conversely such a partition $\Sigma = \bigcup_{i=0}^{\gamma_0} C_i$ as above gives an $[n, k, d]_q$ code in a natural manner. For an *m*-flat Π in Σ we define

$$\gamma_j(\Pi) = \max\{m_{\mathcal{C}}(\Delta) \mid \Delta \subset \Pi, \ \Delta \in \mathcal{F}_j\}, \ 0 \le j \le m.$$

We write simply γ_j instead of $\gamma_j(\Sigma)$. It holds that $\gamma_{k-2} = n - d$, $\gamma_{k-1} = n$. When \mathcal{C} is Griesmer, γ_j 's are uniquely determined [6] as follows.

(2.1)
$$\gamma_j = \sum_{u=0}^j \left\lceil \frac{d}{q^{k-1-u}} \right\rceil \text{ for } 0 \le j \le k-1.$$

Hence, every Griesmer $[n, k, d]_q$ code is projective if $d \leq q^{k-1}$. In this paper, we only consider projective codes. Denote by a_i the number of hyperplanes Π in Σ with $m_{\mathcal{C}}(\Pi) = i$. The list of a_i 's is called the *spectrum* of \mathcal{C} . We usually use τ_j 's for the spectrum of a hyperplane of Σ to distinguish from the spectrum of \mathcal{C} . A simple counting of argument yields the following.

Lemma 2.1. A projective $[n, k, d]_q$ code satisfies

(1)
$$\sum_{i=0}^{n-d} a_i = \theta_{k-1}$$
, (2) $\sum_{i=1}^{n-d} ia_i = n\theta_{k-2}$, (3) $\sum_{i=2}^{n-d} i(i-1)a_i = n(n-1)\theta_{k-3}$.

We get the following from the three equalities of Lemma 2.1:

(2.2)
$$\sum_{i=0}^{n-d-2} \binom{n-d-i}{2} a_i = \binom{n-d}{2} \theta_{k-1} - n(n-d-1)\theta_{k-2} + \binom{n}{2} \theta_{k-3}$$

Lemma 2.2 ([10]). Let Π be an *i*-hyperplane through a *t*-secundum δ . Then

(1) $t \le \gamma_{k-2} - (n-i)/q = (i + q\gamma_{k-2} - n)/q.$

(2) $a_i = 0$ if an $[i, k - 1, d_0]_q$ code with $d_0 \ge i - \lfloor (i + q\gamma_{k-2} - n)/q \rfloor$ does not exist, where $\lfloor x \rfloor$ denotes the largest integer less than or equal to x.

(3) $\gamma_{k-3}(\Pi) = \lfloor (i+q\gamma_{k-2}-n)/q \rfloor$ if an $[i,k-1,d_1]_q$ code satisfying $d_1 \ge i - \lfloor (i+q\gamma_{k-2}-n)/q \rfloor + 1$ does not exist.

(4) Let c_j be the number of *j*-hyperplanes through δ other than Π . Then

(2.3)
$$\sum_{j} (\gamma_{k-2} - j)c_j = i + q\gamma_{k-2} - n - qt$$

(5) For a γ_{k-2} -hyperplane Π_0 with spectrum $(\tau_0, \ldots, \tau_{\gamma_{k-3}}), \tau_t > 0$ holds if $i + q\gamma_{k-2} - n - qt < q$.

Theorem 2.3 ([11]). Let C be a Griesmer $[n, k, d]_p$ code, p a prime. If p^e divides d, then p^e is a divisor of all nonzero weights of C.

Let \mathcal{C} be an $[n, k, d]_3$ code with $k \geq 3$, gcd(3, d) = 1. The diversity (Φ_0, Φ_1) of \mathcal{C} was defined in [12] as the pair of integers:

$$\Phi_0 = \frac{1}{2} \sum_{3|n-i} a_i, \quad \Phi_1 = \frac{1}{2} \sum_{i \not\equiv n, n-d \pmod{3}} a_i,$$

where the notation x|y means that x is a divisor of y. Let

$$\begin{split} F_0 &= \{ \pi \in \mathcal{F}_{k-2} \mid m_{\mathcal{C}}(\pi) \equiv n \pmod{3} \}, \\ F_1 &= \{ \pi \in \mathcal{F}_{k-2} \mid m_{\mathcal{C}}(\pi) \not\equiv n, n-d \pmod{3} \}, \\ F_2 &= \{ \pi \in \mathcal{F}_{k-2} \mid m_{\mathcal{C}}(\pi) \equiv n-d \pmod{3} \}. \end{split}$$

Then we have $\Phi_s = |F_s|$ for s = 0, 1.

The diversity can be applied to the dual space Σ^* of Σ . A *t*-flat Π of Σ^* with $|\Pi \cap F_0| = i$, $|\Pi \cap F_1| = j$ is called an $(i, j)_t$ flat. An $(i, j)_1$ flat is called an (i, j)-line. An (i, j)-plane, an (i, j)-solid and so on are defined similarly. We denote by \mathcal{F}_{i}^{*} the set of *j*-flats of Σ^{*} . Let Λ_{t} be the set of all possible (i, j) for which an $(i, j)_t$ flat exists in Σ^* . Then we have

$$\begin{split} \Lambda_1 &= \{(1,0), (0,2), (2,1), (1,3), (4,0)\}, \\ \Lambda_2 &= \{(4,0), (1,6), (4,3), (4,6), (7,3), (4,9), (13,0)\}, \\ \Lambda_3 &= \{(13,0), (4,18), (13,9), (10,15), (16,12), (13,18), (22,9), (13,27), (40,0)\}, \\ \Lambda_4 &= \{(40,0), (13,54), (40,27), (31,45), (40,36), (40,45), (49,36), (40,54), (67,2), (40,81), (121,0)\}, \end{split}$$

$$\Lambda_5 = \{ (121,0), (40,162), (121,81), (94,135), (121,108), (112,126), (130,117), \\ (121,135), (148,108), (121,162), (202,81), (121,243), (364,0) \},$$

54), (67, 27),

see [12]. Let $\Pi_t \in \mathcal{F}_t$. Let $\varphi_s^{(t)} = |\Pi_t \cap F_s|, s = 0, 1. (\varphi_0^{(t)}, \varphi_1^{(t)})$ is called the diversity of Π_t .

We use the following extension theorem to prove Theorem 1.1.

Theorem 2.4 ([3]). Let C be an $[n, k, d]_3$ code with gcd(d, 3) = 1 whose diversity satisfies $\Phi_1 = 0$. Then C is extendable.

The following Lemma gives the set of all possible diversities of nonextendable $[n, k, d]_3$ codes for k = 5, 6, which is needed later.

Lemma 2.5 ([7]). Let C be an $[n, k, d]_3$ code with diversity (Φ_0, Φ_1) , gcd(3,d) = 1. If C is not extendable, then

120

(1) when k = 5, $(\Phi_0, \Phi_1) \in \mathcal{D}_5^+ = \{(40, 27), (31, 45), (40, 36), (40, 45), (49, 36)\},$ (2) when k = 6, $(\Phi_0, \Phi_1) \in \mathcal{D}_6^+ = \{(121, 81), (94, 135), (121, 108), (112, 126), (130, 117), (121, 135), (148, 108)\}.$

The following Lemmas 2.6 and 2.7 can be derived from Theorems 3.12, 3.13, 3.16 in [12].

Lemma 2.6 ([12]). Let Π be a $(\varphi_0, \varphi_1)_4$ flat with $(\varphi_0, \varphi_1) \in \mathcal{D}_5^+$. (1) For any point P of $F_0 \cap \Pi$, the numbers of (i, j)-lines through P in Π , denoted by $p_{i,j}$, is as in Table 2.1.

Table 2.1									
φ_0	φ_1	$p_{1,0}$	$p_{2,1}$	$p_{4,0}$	$p_{1,3}$				
40	27	18	0	13	9				
		9	27	4	0				
31	45	15	0	10	15				
		6	27	1	6				
40	36	6	27	4	3				
40	45	3	27	4	6				
49	36	12	0	16	12				
		3	27	7	3				

(2) For any point Q of $F_1 \cap \Pi$, the numbers of (i, j)-lines through Q in Π , denoted by $q_{i,j}$, is as in Table 2.2.

Table 2.2					_	Table 2.3					
$arphi_0$ $arphi$	o_1	$q_{1,3}$	$q_{0,2}$	$q_{2,1}$	_	$arphi_0$	φ_1	$r_{1,0}$	$r_{2,1}$	$r_{0,2}$	
40 2	27	4	18	18	_	40	27	22	9	9	
31 4	45	13	18	9	-	31	45	13	9	18	
40 3	B 6	10	15	15	•	40	36	16	12	12	
40 4	15	16	12	12	-	40	45	10	15	15	
49 3	B 6	13	9	18	-	49	36	13	18	9	

(3) For any point R of $F_2 \cap \Pi$, the numbers of (i, j)-lines through R in Π , denoted by $r_{i,j}$, is as in Table 2.3.

Lemma 2.7 ([12]). Let Π be a $(\varphi_0, \varphi_1)_5$ flat with $(\varphi_0, \varphi_1) \in \mathcal{D}_6^+$. (1) For any point Q of $F_1 \cap \Pi$, there are at most 54 (2, 1)-lines through Q in Π . (2) For any point R of $F_2 \cap \Pi$, the number of (1, 0)-lines or (0, 2)-lines through R in Π is at most 94.

3. Spectra of some $[n, k, d]_3$ codes. In this section, we give some results on ternary linear codes, which are needed in the next sections. Table 3.1 can be obtained from the known results [2].

	1 0
parameters	possible spectra
$[7, 4, 3]_3$	$(a_1, a_2, a_3, a_4) = (14, 9, 9, 8)$
	$(a_0, a_1, a_2, a_3, a_4) = (2, 9, 12, 10, 7)$
	$(a_0, a_1, a_2, a_3, a_4) = (4, 4, 15, 11, 6)$
	$(a_0, a_1, a_2, a_3, a_4) = (3, 8, 9, 15, 5)$
$[8, 4, 4]_3$	$(a_0, a_1, a_2, a_3, a_4) = (3, 4, 10, 12, 11)$
	$(a_0, a_2, a_3, a_4)) = (4, 16, 8, 12)$
	$(a_0, a_1, a_2, a_3, a_4) = (2, 8, 4, 16, 10)$
$[9, 4, 5]_3$	$(a_0, a_1, a_3, a_4) = (1, 9, 12, 18)$
$[15, 4, 9]_3$	$(a_3, a_6) = (15, 25)$
	$(a_0, a_3, a_6) = (1, 13, 26)$
$[10, 5, 5]_3$	$(a_1, a_2, a_4, a_5) = (10, 45, 30, 36)$
$[16, 5, 9]_3$	$(a_1, a_4, a_7) = (6, 57, 58)$
$[19, 5, 11]_3$	$(a_1, a_2, a_4, a_5, a_7, a_8) = (1, 9, 9, 27, 30, 45)$

Table 3.1. The spectra of some ternary linear codes.

Lemma 3.1 ([2]). The spectrum of a projective $[15, 4, 9]_3$ code is $(a_3, a_6) = (15, 25)$.

The following information about the classification of some ternary codes was supplied by I. Bouyukliev via T. Maruta.

Lemma 3.2 (cf.[1]).

(1) The spectrum of a $[25, 5, 15]_3$ code is either $(a_1, a_4, a_7, a_{10}) = (1, 12, 43, 65)$ or $(a_4, a_7, a_{10}) = (15, 40, 66)$.

(2) The spectrum of a projective $[28, 5, 17]_3$ code is $(a_1, a_5, a_8, a_{10}, a_{11}) = (1, 18, 18, 39, 45).$

(3) The spectrum of a $[37, 5, 23]_3$ code is either $(a_1, a_8, a_{10}, a_{11}, a_{13}, a_{14}) = (1, 18, 9, 9, 30, 54)$ or $(a_2, a_7, a_8, a_{10}, a_{11}, a_{13}, a_{14}) = (1, 4, 14, 5, 13, 31, 53).$

(4) The spectrum of a $[47, 5, 30]_3$ code is either $(a_5, a_8, a_{11}, a_{14}, a_{17}) = (1, 4, 10, 23, 83)$ or $(a_2, a_{11}, a_{14}, a_{17}) = (1, 18, 18, 84)$.

(5) Every $[29, 5, 18]_3$ code is not projective.

Lemma 3.3. Every $[46, 5, 29]_3$ code is extendable.

Proof. Let C be a $[46, 5, 29]_3$ code and let Δ be a γ_3 -solid, which gives a $[17, 4, 10]_3$ by Lemma 2.2. So we have $a_3 = a_6 = a_{12} = 0$ by Lemma 2.2 and the known $n_3(4, d)$ table. Now, $F_1 = \{0$ -solids, 9-solids, 15-solids\}. From (2.2), we obtain

$$(3.1) 136a_0 + 120a_1 + 105a_2 + 78a_4 + 66a_5 + 45a_7 + 36a_8 + 28a_9 + 21a_{10} + 15a_{11} + 6a_{13} + 3a_{14} + a_{15} = 471$$

since C is projective. And a 15-solid in $\Sigma = PG(4,3)$ gives a $[15,4,9]_3$ code by Lemma 2.2, which is also projective. Hence it has only 3-planes or 6-planes by Lemma 3.1.

Suppose $a_0 > 0$ and let Δ_1 be a 0-solid in Σ . For i = 0, the maximum possible contribution of c_j 's in (2.3) to the LHS of (3.1) is $(c_{13}, c_{16}, c_{17}) = (1, 1, 1)$ for t = 0. Estimating the LHS of (3.1) we get $471 \leq 6 \cdot 40 + 136 = 376$, a contradiction. Hence $a_0 = 0$.

Now, \mathcal{C} is not extendable by (4) of Lemma 3.2 if $a_9 + a_{15} > 0$. Then, the diversity (Φ_0, Φ_1) of \mathcal{C} satisfies $(\Phi_0, \Phi_1) \in \mathcal{D}_5^+$ by Lemma 2.5.

Suppose $a_9 > 0$. Let Δ_2 be a 9-solid in Σ and let Δ_2^* be the corresponding point of F_1 in Σ^* . Then Δ_2 gives a $[9,4,5]_3$ code by Lemma 2.2. Hence the spectrum of Δ_2 is $(\tau_0, \tau_1, \tau_3, \tau_4) = (1, 9, 12, 18)$. For i = 9, t = 4, the equation (2.3) has the unique solution $(c_{16}, c_{17}) = (2, 1)$ corresponding to a (2, 1)-line through Δ_2^* . And for i = 9, a t-solid with the solution of (2.3) corresponding to a (1, 3)-line exists only when t = 3, because a 15-solid in Σ has only 3-planes or 6-planes. Hence, there are at least $\tau_4 = 18$ (2, 1)-lines through Δ_2^* and there are at most $\tau_3 = 12$ (1,3)-lines through Δ_2^* . Therefore $(\Phi_0, \Phi_1) = (40, 27), \gamma_{1,3} = 4,$ $\gamma_{0,2} = 18, \gamma_{2,1} = 18$ by Table 2.2, where $\gamma_{i,j}$ denotes the number of (i, j)-lines through Δ_2^* in Σ^* . And then one 0-plane and nine 1-planes, eight 3-planes in Δ_1 correspond to (0, 2)-lines through Δ_2^* in Σ^* . For i = 9, t = 0, 1, 3 in Lemma 2.2, the equation (2.3) has the solution corresponding to a (0, 2)-line as Table 3.2. Hence, estimating the LHS of (3.1) we get $471 \leq 43 \cdot 1 + 31 \cdot 9 + 4 \cdot 8 + 2 \cdot 4 + 28 = 390$, a contradiction. Thus $a_9 = 0$.

Suppose $a_{15} > 0$ and $a_7 > 0$. Let π_1 be a 7-solid in Σ and let P be the corresponding point of F_0 in Σ^* . Then π_1 gives a $[7,4,3]_3$ code by Lemma 2.2. Hence the spectrum of π_1 satisfies $\tau_3 \leq 15$. For i = 7, the equation (2.3) has no solution corresponding to a (1,3)-line through P in Σ^* and a *t*-solid with the solution of (2.3) corresponding to a (2,1)-line exists only when t = 3, since a 15-solid in Σ has only 3-planes or 6-planes. Hence, $\gamma_{1,3} = 0$, $\gamma_{2,1} \leq 15$. But there exists no diversity satisfying this condition in Table 2.1, a contradiction. Thus $a_{15} > 0$ implies $a_7 = 0$.

Next, suppose $a_{15} > 0$ and $a_8 > 0$. Let π_2 be a 8-solid in Σ and let R be the corresponding point of F_2 in Σ^* . Then π_2 gives a $[8, 4, 4]_3$ code by Lemma 2.2, and the spectrum of π_2 satisfies $\tau_3 \leq 16$. For i = 8, a t-solid with the solution of (2.3) corresponding to a (0, 2)-line or a (2, 1)-line through R exists only when t = 3, since a 15-solid in Σ has only 3-planes or 6-planes. Hence, $\gamma_{0,2} + \gamma_{2,1} \leq 16$, contradicting Table 2.3. Hence, $a_{15} > 0$ implies that $a_7 = a_8 = 0$.

Suppose $a_{15} > 0$. Since C is projective, the spectrum of a 15-solid is $(\tau_3, \tau_6) = (15, 25)$ by Lemma 3.1. Then, for i = 15, the maximum possible contributions of c_j 's in (2.3) to the LHS of (3.1) are $(c_{10}, c_{13}, c_{17}) = (1, 1, 1)$ for t = 3 and $(c_{15}, c_{17}) = (1, 2)$ for t = 6, since $a_7 = a_8 = 0$. Estimating the LHS of (3.1) we get $471 \le 27 \cdot 15 + 1 \cdot 25 + 1 = 431$, a contradiction. Hence $a_{15} = 0$.

Now, our assertion follows from Theorem 2.4. \Box

t	c_1	c_2	c_4	c_5	c_7	c_8	c_9	c_{10}	c_{11}	c_{13}	c_{14}	c_{15}	c_{16}	c_{17}
0							1		1			_		1
							1				2	—		
1							1				1	_		1
3											1	1		1

Table 3.2. Solutions of (2.3) for i = 9 corresponding to a (0, 2)-line

Corollary 3.4. The spectrum of a $[46, 5, 29]_3$ code satisfies

 $a_i = 0$ for all $i \notin \{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17\}.$

4. Proof of Theorems 1.1 and 1.2.

Lemma 4.1. There exists no $[133, 6, 87]_3$ code.

Proof. Let C be a putative $[133, 6, 87]_3$ code and let Π be a γ_4 -hyperplane in $\Sigma = PG(5,3)$. Then Π satisfies $\tau_i = 0$ for all $i \notin \{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17\}$ by Corollary 3.4, so $a_i = 0$ for all $i \notin \{1, 10, 16, 19, 25, 28, 34, 37, 43, 46\}$ by Theorem 2.3, Lemma 2.2 and the known $n_3(5, d)$ -table. From (2.1), we obtain

 $(4.1) \quad 35a_1 + 22a_{10} + 15a_{16} + 12a_{19} + 7a_{25} + 5a_{28} + 2a_{34} + a_{37} = 112$

since \mathcal{C} is projective.

Suppose $a_1 > 0$ and let π_1 be a 1-hyperplane. The spectrum of π_1 is $(\tau_0, \tau_1) = (81, 40)$. Then the solutions of (2.3) for i = 1 are $(c_{43}, c_{46}) = (2, 1)$ for t = 0 and $(c_{43}, c_{46}) = (1, 2)$ for t = 1. Hence $a_1 = 1$ and $a_i = 0$ for $10 \le i \le 37$, contradicting (4.1). Thus $a_1 = 0$.

Suppose $a_{10} > 0$ and let π_2 be a 10-hyperplane. Then π_2 gives a $[10, 5, 5]_3$ code by Lemma 2.2. The spectrum of π_2 is $(\tau_1, \tau_2, \tau_4, \tau_5) = (10, 45, 30, 36)$ by Table 3.1. For i = 10, the maximum possible contributions of c_j 's in (2.3) to the LHS of (4.1) are $(c_{34}, c_{46}) = (1, 2)$ for t = 1 and $(c_{37}, c_{46}) = (1, 2)$ for t = 2 and $(c_{43}, c_{46}) = (1, 2)$ for t = 4 and $c_{46} = 3$ for t = 5. Estimating the LHS of (4.1) we get $112 \le 2 \cdot 10 + 1 \cdot 45 + 22 = 87$, a contradiction. Hence $a_{10} = 0$.

Similarly, for i = 16, 19, considering the maximum possible contributions of c_j 's in (2.3) to the LHS of (4.1) gives a contradiction. Hence $a_{16} = a_{19} = 0$.

Suppose $a_{25} > 0$ and let π_3 be a 25-hyperplane. Then π_3 gives a $[25, 5, 15]_3$ code by Lemma 2.2. Hence there are two possible spectra for π_5 by Lemma 3.2. We first assume that the spectrum of π_3 is $(\tau_1, \tau_4, \tau_7, \tau_{10}) = (1, 12, 43, 65)$. For i = 25, the maximum possible contributions of c_j 's in (2.3) to the LHS of (4.1) are $(c_{25}, c_{43}) = (1, 2)$ for t = 1 and $(c_{34}, c_{43}) = (1, 2)$ for t = 4 and $(c_{37}, c_{46}) = (1, 2)$ for t = 7 and $c_{46} = 3$ for t = 10, since $c_{28} = 0$ when t = 4 by Lemma 3.2. Estimating the LHS of (4.1) we get $112 \leq 7 \cdot 1 + 2 \cdot 12 + 1 \cdot 43 + 7 = 81$, a contradiction. We get a contradiction similarly for the other spectrum of π_5 . Hence $a_{25} = 0$.

Suppose $a_{28} > 0$ and let π_4 be a 28-hyperplane. Then π_4 gives a $[28, 5, 17]_3$ code by Lemma 2.2. The spectrum of π_4 is $(\tau_1, \tau_5, \tau_8, \tau_{10}, \tau_{11}) = (1, 18, 18, 39, 45)$ by Lemma 3.2. For i = 28, the equation (2.3) has the solutions as in Table 4.1.

Table 4.1									
t	c_{28}	c_{34}	c_{37}	c_{43}	c_{46}				
1	1	1			1				
	1		1	1					
		1	2						
5	1				2				
		1	—	2					
8			1		2				
				3					
10				1	2				
11					3				

Table 4.1

Since there are one 1-solid and 18 5-solids in π_4 , we get $a_{28} + a_{34} \leq \tau_1 \cdot 2 + \tau_5 \cdot 1 = 20$

by Table 4.1. Similarly, we also get $a_{28} + a_{34} + a_{37} \leq \tau_1 \cdot 3 + \tau_5 \cdot 1 + \tau_8 \cdot 1 = 39$ by Table 4.1. Hence, we get $73 - 4a_{28} \leq a_{34} \leq 20 - a_{28}$ from these two inequalities and (4.1). Hence, if $a_{28} > 0$, then it holds that $a_{28} \geq 18$ and there exists a 46-hyperplane which has a 5-solid. (Otherwise, estimating the maximum possible LHS of (4.1) we get $112 \leq 7 \cdot 1 + 2 \cdot 18 + 1 \cdot 18 + 5 = 66$, a contradiction.) Now, let II' be a 46-hyperplane containing a 5-solid. Then II' gives a [46, 5, 29]₃ code by Lemma 2.2. For i = 46, the solutions of the equation (2.3) satisfy $c_{28} \leq 2$ when t = 5 and $c_{28} \leq 1$ when $7 \leq t \leq 11$. Since the spectrum of II' satisfies $\tau_5 = 1, \tau_7 + \tau_8 = 4, \tau_{10} + \tau_{11} = 10$ by Lemma 3.3 and Lemma 3.2 (4), we get $a_{28} \leq \tau_5 \cdot 2 + (\tau_7 + \tau_8) \cdot 1 + (\tau_{10} + \tau_{11}) \cdot 1 = 16$, a contradiction. Hence $a_{28} = 0$. Now, we get $2a_{34} + a_{37} = 112$ from (4.1), and $4a_{34} + 3a_{37} + a_{43} = 217$ from (1) and (2) of Lemma 2.1, whence $a_{37} + a_{43} = -7$, a contradiction. This completes the proof. \Box

Proof of Theorem 1.1. Let C be a putative $[132, 6, 86]_3$ code and let Π be a γ_4 -hyperplane in $\Sigma = PG(5,3)$. Then Π satisfies $\tau_i = 0$ for all $i \notin \{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17\}$ by Corollary 3.4, so $a_i = 0$ for all $i \notin \{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17\}$ $\{0-2, 6, 9-11, 15, 16, 18-20, 24, 25, 27-29, 33, 34, 36-38, 42, 43, 45, 46\}$ by Lemma 2.2 and the known $n_3(5, d)$ -table. Suppose $a_{29} > 0$ and let π_1 be a 29-hyperplane in Σ . Then π_1 gives a $[29, 5, 18]_3$ code by Lemma 2.2. By Lemma 3.2 (5), $\gamma_0(\pi_1) \neq 1$, which contradicts the fact that \mathcal{C} is projective. Hence $a_{29} = 0$. Since \mathcal{C} is not extendable by Lemma 4.1, the diversity (Φ_0, Φ_1) of \mathcal{C} satisfies $(\Phi_0, \Phi_1) \in \mathcal{D}_6^+$ by Lemma 2.5. And it holds that $F_1 = \{i \text{-hyperplanes} \mid i \in \mathcal{D}_6^+$ $\{2, 11, 20, 38\}$. Let π be an *i*-hyperplane in F_1 and let π^* be the point of F_1 in Σ^* corresponding to π . Then there are at most 54 (2,1)-lines through π^* in Σ^* by (1) of Lemma 2.7. If $i = 2, \pi$ has 54 0-solids, 54 1-solids and 13 2solids. Setting i = 2 in Lemma 2.2, the equation (2.3) has the unique solution $(c_{42}, c_{43}, c_{45}) = (1, 1, 1)$ corresponding to a (2, 1)-line through π^* for t = 0, and $(c_{45}, c_{46}) = (2, 1)$ corresponding to a (2, 1)-line through π^* for t = 2. Hence, there are at least 67 (2,1)-lines through π^* , a contradiction. Similarly, we can get a contradiction for i = 11, 20, 38. Thus $a_2 = a_{11} = a_{20} = a_{38} = 0$.

Hence we get $\Phi_1 = |F_1| = 0$, which implies that C is extendable by Theorem 2.4. But there exists no $[133, 6, 87]_3$ code by Lemma 4.1, a contradiction. This completes the proof. \Box

Lemma 4.2 ([4]). There exists no $[136, 6, 89]_3$ code.

Proof of Theorem 1.2. Let \mathcal{C} be a putative $[135, 6, 88]_3$ code and let Π be a γ_4 -hyperplane in $\Sigma = PG(5, 3)$. Then Π gives a $[47, 5, 30]_3$ code by Lemma 2.2. By Lemma 3.2, Π satisfies $\tau_i = 0$ for all $i \notin \{2, 5, 8, 11, 14, 17\}$, so

127

 $a_i = 0$ for all $i \notin \{2, 9-11, 18-20, 27-29, 36-38, 45-47\}$ by Lemma 2.2 and the known $n_3(5, d)$ -table. Since \mathcal{C} is not extendable by Lemma 4.2, the diversity (Φ_0, Φ_1) of \mathcal{C} satisfies $(\Phi_0, \Phi_1) \in \mathcal{D}_6^+$ by Lemma 2.5. Now, let Σ^* be the dual space of Σ . Let Π^* be the point of F_2 corresponding Π in Σ^* and let $r_{i,j}$ be the number of (i, j)-lines through Π^* . Then, for i = 47, t = 14, 17, the equation (2.3) has no solution corresponding to a (2, 1)-line through Π^* . Thus, by Lemma 3.2, we get

$$r_{1,0} + r_{0,2} \ge \tau_{14} + \tau_{17} \ge 102,$$

which contradicts (2) of Lemma 2.7. This completes the proof. \Box

REFERENCES

- BOUYUKLIEV I., J. SIMONIS. Some new results for optimal ternary linear codes. *IEEE Trans. Inform. Theory* 48 (2002), 981–985.
- [2] EUPEN M. VAN, P. LISONEK. Classification of some optimal ternary linear codes of small length. Des. Codes Cryptogr. 10 (1997), 63–84.
- [3] HILL R. An extension theorem for linear codes. Des. Codes Cryptogr. 17 (1999), 151–157.
- [4] JONES C. M. Optimal ternary linear codes. PhD thesis, University of Salford, 2000.
- [5] LANDJEV I. N. The nonexistence of some optimal ternary linear codes of dimension five. Des. Codes Cryptogr. 15 (1998), 245–258.
- [6] MARUTA T. On the nonexistence of q-ary linear codes of dimension five. Des. Codes Cryptogr. 22 (2001), 165–177.
- [7] MARUTA T. Extendability of ternary linear codes. Des. Codes Cryptogr. 35 (2005), 175–190.
- [8] MARUTA T. Griesmer bound for linear codes over finite fields. http://www.geocities.jp/mars39geo/griesmer.htm.
- [9] MARUTA T., Y. OYA. On optimal ternary linear codes of dimension 6. Adv. Math. Commun., (to appear).

- [10] TAKENAKA M., K. OKAMOTO, T. MARUTA. On optimal non-projective ternary linear codes. *Discrete Math.* 308 (2008), 842–854.
- [11] WARD H. N. Divisibility of codes meeting the Griesmer bound. J. Combin. Theory Ser. A 83 (1998), 79–93.
- [12] YOSHIDA Y., T. MARUTA. Ternary linear codes and quadrics. *Electronic J. Combin.* 16 (2009) #R9.

Yusuke Oya Department of Mathematics and Information Sciences Osaka Prefecture University Sakai, Osaka 599-8531, Japan e-mail: yuu.vim-0319@hotmail.co.jp

Received January 6, 2011 Final Accepted April 7, 2011

128