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THE ECCENTRIC CONNECTIVITY POLYNOMIAL OF

SOME GRAPH OPERATIONS

A. R. Ashrafi∗, M. Ghorbani, M. A. Hossein-Zadeh

Abstract. The eccentric connectivity index of a graph G, ξC , was proposed
by Sharma, Goswami and Madan. It is defined as ξC(G) =
∑

u∈V (G) degG(u)εG(u), where degG(u) denotes the degree of the vertex x

in G and εG(u) = Max{d(u, x) | x ∈ V (G)}. The eccentric connectivity
polynomial is a polynomial version of this topological index. In this pa-
per, exact formulas for the eccentric connectivity polynomial of Cartesian
product, symmetric difference, disjunction and join of graphs are presented.

1. Introduction. Throughout this paper all graphs are assumed to be

simple, finite and connected. A function Top from the class of connected graphs

into real numbers with the property that Top(G) = Top(H) whenever G and

H are isomorphic is known as a topological index in the chemical literature;

see [11]. There are many examples of such functions, especially those based on

distances, which are applicable in chemistry. The Wiener index [19], defined as
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the sum of all distances between pairs of vertices in a graph, is probably the first

and most studied such graph invariant, both from a theoretical and a practical

point of view. If we define the distance d(x, y) between vertices x and y of a

graph G as the length of a minimum path connecting them then it is possible

to redefine the Wiener index as W (G) =
∑

{x,y}⊆V (G) d(x, y). The topological

indices which are definable by distance function d(−,−) are called a distance-

based topological index.

The eccentric connectivity index of a graph G, ξC , is a new distance-based

topological index which was proposed by Sharma, Goswami and Madan [13].

We encourage to interested readers to consult papers [1 − 4, 6 − 8, 14, 16, 17] for

chemical meaning and [12, 21] for mathematical properties of this new topological

index.

A graph can be characterized by a number, by a matrix or by a poly-

nomial. The characterization of graphs by a single topological index is usually

impossible. For example, it is possible to find infinite pairs of graphs with the

same Wiener index. It is an open question to find a topological index characteriz-

ing graphs. On the other hand, it is possible to characterize graphs by matrices.

A well-known example of such matrices is an adjacency matrix. But the charac-

terization of graphs by polynomials is a new branch of research in modern graph

theory. This paper is an attempt in this line. We refer the interested readers to

[5, 15, 20] for more information on this topic.

Throughout this paper our notation is standard and taken mainly from

[13, 18].

2. Definitions. In this section we present the main concepts of the

paper. We begin by eccentric connectivity index. It is defined as ξC(G) =
∑

u∈V (G) degG(u)εG(u), where degG(u) denotes the degree of the vertex u in G

and εG(u) is the largest distance between u and any other vertex v of G. The

quantity εG(u) is usually named the eccentricity of vertex u in G. The minimum

and maximum of eccentricity among vertices of G are called the radius and

diameter of G, respectively.

The eccentric connectivity and total eccentricity polynomials of G

are defined as Ξ(G,x) =
∑

u∈V (G) degG(u)xεG(u) and Θ(G,x) =
∑

u∈V (G) xεG(u),

respectively. It is easy to see that the eccentric connectivity index and the total

eccentricity of a graph can be obtained from the corresponding polynomials by

evaluating their first derivatives at x = 1.
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A vertex u ∈ V (G) is called well-connected if εG(u) = 1, i.e., if it is

adjacent to all other vertices in G. We denote the number of well-connected

vertices in G by w(G). Define NG(u) = {v ∈ V (G) : uv ∈ E(G)}, where u is a

fixed vertex of G. Then the modified eccentric connectivity polynomial of

G is defined as ξC(G,x) =
∑

u∈V (G) δ(u)xεG(u), where δ(v) =
∑

u∈NG(v) deg(u).

Then the modified eccentric connectivity index ξC(G) =
∑

u∈V (G) δ(u)εG(u)

is the first derivative of ξC(G,x) evaluated at x = 1.

3. Main results.

In this section we first compute the eccentric and modified eccentric con-

nectivity polynomials of some well known graphs that will serve as basic building

blocks in the considered composite graphs. We begin by introducing the first

Zagreb index. The first Zagreb index was introduced more than forty years

ago by Gutman and Trinajestić [9]. We recommend [10] for the success history

of this topological index. It is defined as M1(G) =
∑

u∈V (G) deg(u)2.

Example 1. Let Kn be the complete graph on n vertices. Then for

every v ∈ V (Kn), δ(v) = (n − 1)2 and ε(v) = 1. This implies that ξC(Kn;x) =

n(n − 1)2x, Ξ(Kn;x) = n(n − 1)x and Θ(Kn;x) = nx.

Example 2. Let Cn denote the cycle of length n. Then for each vertex

v of G, δ(v) = 4 and ε(v) = ⌊n
2 ⌋. Hence, ξC(Cn;x) = 4nx⌊n

2
⌋, Ξ(Cn;x) = 2nx⌊n

2
⌋

and Θ(Cn;x) = nx⌊n
2
⌋.

Example 3. Let Sn = K1,n be the star graph with n + 1 vertices. Then

the central vertex v has degree n, δ(v) = n and eccentricity 1, while the remaining

n vertices have degree 1 and eccentricity 2 and for all vertices δ(v) = n . Hence

ξC(Sn;x) = n2x2 + nx, Ξ(Sn;x) = nx(x + 1) and Θ(Sn;x) = x(x + n).

Example 4. A wheel Wn is a graph of order n+1 which contains a cycle

on n vertices and a central vertex connected to each vertex of the cycle. Again, the

central vertex v has degree n, δ(v) = 3n and eccentricity 1, while the peripheral

vertices u have degree 3, δ(v) = n + 6 and eccentricity 2. So, ξC(Wn;x) =

(n2 +6n)x2 +3nx, Ξ(Sn;x) = nx(x+1) and its eccentric connectivity polynomial

is given by Ξ(Wn;x) = nx(3x + 1), while the total eccentricity polynomial is the

same as for Sn.
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Example 5. Consider a complete n-partite graph Mm1m2···mn containing

v = |V (G)| vertices. By definition, the vertex set V (G) of this graph can be

partitioned into subsets V1, V2, · · · , Vn of V such that for every 1 ≤ i ≤ n there is

no edge between the vertices of Vi. If none of Vi is a single vertex, then by direct

calculation one can see that:

Ξ(Mm1m2···mn ;x) = 2





∑

i6=j

mimj



x2

and

ξC(Mm1m2···mn ;x) =





n
∑

i=1

mi

n
∑

k=1,k 6=i

mk|V (G) − mk|



x2.

If some of the classes are singletons, the above expression must be modified by

adding an appropriate linear term. This illustrates the problems arising when a

graph contains well-connected vertices.

Example 6. Let Pn be the path on n vertices (n ≥ 4). Then

ξ(Pn;x) = 4xn−1 + 6xn−2 + 8x⌈n/2⌉ 1 − x⌊n/2⌋−1

1 − x
+ 4x⌊n/2⌋ [n odd] ,

Ξ(Pn;x) = 2xn−1 + 4x⌈n/2⌉ 1 − x⌊n/2⌋−1

1 − x
+ 2x⌊n/2⌋ [n odd] ,

Θ(Pn;x) = 2x⌈n/2⌉ 1 − x⌊n/2⌋

1 − x
+ x⌊n/2⌋ [n odd] .

Here the square brackets on the right-hand side evaluate to 1 if the en-

closed logical expression is true, and to 0 otherwise.

Lemma 1. Let G be a graph then M1(G) =
∑

u∈V (G) δ(u).

P r o o f. By using the definition one can see that:

M1(G) =
∑

u∈V (G)

deg(u)2 =
∑

u∈V (G)

∑

v∈NG(u)

deg(v) =
∑

u∈V (G)

δ(u). 2

3.1. Cartesian product. For given graphs G1 and G2 their Cartesian

product G1�G2 is defined as the graph on the vertex set V (G1) × V (G2), and

vertices u = (u1, u2) and v = (v1, v2) of V (G1)×V (G2) are connected by an edge if
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and only if either ([u1 = v1 and u2v2 ∈ E(G2)]) or ([u2 = v2 and u1v1 ∈ E(G1)]).

It is a well-known fact that the Cartesian product of graphs is commutative and

associative up to isomorphism, see [13] for details. To simplify our argument we

write below deg(u, v) as deg((u, v)) and δ(u, v) as δ((u, v)).

By a classical result in metric graph theory [13], the distance between

two vertices in G1�G2 is given by dG1�G2
(u, v) = dG1

(u1, v1)+dG2
(u2, v2), where

u = (u1, u2) and v = (v1, v2). The degree of a vertex (u1, u2) of G1�G2 is the sum

of the degrees of its projections to the respective components, δG1�G2
(u1, u2) =

δG1
(u1) + δG2

(u2). The eccentricity of a vertex (u1, u2) of G1�G2 is obtained in

the same way.

Lemma 2. If ui ∈ Gi, i = 1, 2, then

δG1�G2
(u1, u2) = δG1

(u1) + δG2
(u2) + 2degG1

(u1)degG2
(u2).

P r o o f. Applying an argument similar to Lemma 1, we have:

δG1�G2
(u1, u2) =

∑

a∈NG1
(u1)

degG1�G2
(a, u2) +

∑

b∈NG2
(u2)

degG1�G2
(u1, b)

=
∑

a∈NG1
(u1)

(degG1
(a) + degG2

(u2))

+
∑

b∈NG2
(u2)

(degG1
(u1) + degG2

(b))

= δG1
(u1) + δG2

(u2) + 2degG1
(u1)degG2

(u2). 2

The Cartesian product of more than two graphs is defined inductively,

G1� . . . �Gs = (G1� . . . �Gs−1)�Gs. We denote G1�G2� . . . �Gs by
∏s

i=1 Gi.

If G1 = G2 = · · · = Gs = G, we have the s-th Cartesian power of G and denote

it by Gs.

Corollary 3. If ui ∈ Gi, 1 ≤ i ≤ k, then

δQk
i=1 Gi

(u1, u2, · · · , uk) =

k
∑

i=1

δGi
(ui) +

k
∑

i=1

degGi
(vi)

k
∑

j=1,j 6=i

degGj
(vj).

P r o o f. Induct on k. �
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Lemma 4. Let G =

s
∏

i=1

Gi and ui ∈ Gi, 1 ≤ i ≤ s. Then

εG((u1, u2, · · · , us)) =

s
∑

i=1

εGi
(ui).

In the following theorem the relationship between the eccentric and mod-

ified eccentric polynomials are investigated.

Theorem 5. Suppose Gi, 1 ≤ i ≤ k, are a connected graph. Then

ξC(
s
∏

i=1

Gi;x) =
k
∑

i=1

(ξC(Gi, x))
k
∏

j=1,j 6=i

Θ(Gj ;x)

+ 2

s
∑

1≤i<j≤k

Ξ(Gi;x)Ξ(Gj ;x)

k
∏

r=1,r 6=i,j

Θ(Gj ;x)

P r o o f. Let G =

k
∏

i=1

Gi. By definition, we have:

ξC(G;x)

=
∑

(u1,u2,··· ,uk)∈G

δG(u1, u2, · · · , uk)x
εG(u1,u2,··· ,uk)

=
∑

(u1,u2,··· ,uk)∈G





k
∑

i=1

δGi
(ui) +

k
∑

i=1

degGi
(vi)

k
∑

j=1,j 6=i

degGj
(vj)



x

k
∑

i=1
εGi

(ui)

=
k
∑

i=1

(ξC(Gi, x))
k
∏

j=1,j 6=i

Θ(Gj ;x) + 2
s
∑

1≤i<j≤k

Ξ(Gi;x)Ξ(Gj ;x)
k
∏

r=1,r 6=i,j

Θ(Gj ;x).

2

Corollary 6. Let G and H be connected graphs, then

ξC(G�H;x) = ξC(G;x)Θ(H;x) + ξC(H;x)Θ(G;x) + 2Ξ(G;x)Ξ(H;x).



The Eccentric Connectivity Polynomial of Some Graph Operations 107

Corollary 7.

ξC(Gk;x) = kΘ(G;x)k−2
(

ξC(G;x)Θ(G;x) + (k − 1)Ξ(G;x)2
)

.

Example 7. A Hamming graph Hn1,··· ,ns is defined as Hn1,··· ,ns =
∏s

i=1 Kni
, where n1, · · · , ns are positive integers. It can be easily seen that

Ξ(Kni
;x) = ni(ni − 1)x, ξC(Kni

;x) = ni(ni − 1)2x and Θ(Kni
;x) = nix. Then,

ξC(Hn1,··· ,nk
;x) = (

k
∏

i=1

ni



2
∑

1≤i<j≤k

(ni − 1)(nj − 1) +

k
∑

i=1

(ni − 1)



 xk.

For n1 = n2 = · · · = ns = 2 we obtain the s-dimensional hypercube Qs; its

eccentric connectivity polynomial is given by ξC(Qs;x) = s22sxs.

Example 8. A cylinder covered by squares is called a C4-nanotube

and a torus covered by squares is called a C4-nanotorus. The names are taken

from physics literature, because these are the molecular graphs of nanotubes and

nanotori, respectively. Here, a molecular graph is a graph in which atoms are

vertices and bonds determine the set of edges of the graph. By a well-known

fact in chemistry, the maximum degree in such a graph is four which is related

to carbon atoms. So, a molecular graph is a graph in which the degree of each

vertex is at most four.

The C4-nanotubes and nanotori arise as Cartesian products of paths and

cycles and of two cycles, respectively. By using the results of Examples 2 and 6

and combining them with Theorem 5 we obtain the following explicit formulas

for C4-nanotubes and C4-nanotori. We denote R = Pn�Cm and S = Ck�Cm

and assume k,m ≥ 3 and n ≥ 4. Then,

ξC(R,x) =















































2m
(

2(3x⌈m/2⌉ + 2x⌈n/2⌉)
)

xn−1 +
(

7x⌈m/2⌉ + 2x⌈n/2⌉
)

xn−2 2|n

+2
(

4x⌈m/2⌉ + x⌈n/2⌉
)

n−3
∑

i=⌊n/2⌋

xi

2m
(

5x⌈m/2⌉ + 4x⌈n/2⌉
)

xn−1 +
(

7x⌈m/2⌉ + 8x⌈n/2⌉
)

xn−2 2 6 |n

+8
(

x⌈m/2⌉ + x⌈n/2⌉
)

(

n−3
∑

i=⌊n/2⌋

xi + 1
2x⌈n/2⌉

)

and ξC(S, x) = 16kmx⌊m/2⌋+⌊k/2⌋.
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3.2. Symmetric difference and disjunction. The symmetric differ-

ence G1⊕G2 of two graphs G1 and G2 is the graph with vertex set V (G1)×V (G2)

in which (u1, u2) is adjacent with (v1, v2) whenever u1 is adjacent with v1 in G1

or u2 is adjacent with v2 in G2, but not both. It follows from the definition that

the degree of a vertex (u1, u2) of G1 ⊕ G2 is given by

degG1⊕G2
((u1, u2))

= |V (G2)|degG1
(u1) + |V (G1)|degG2

(u2) − 2degG1
(u1)degG2

(u2).

The disjunction G1 ∨ G2 of two graphs G1 and G2 is the graph with

vertex set V (G1)× V (G2) in which (u1, u2) is adjacent with (v1, v2) whenever u1

is adjacent with v1 in G1 or u2 is adjacent with v2 in G2. Obviously, the degree

of a vertex (u1, u2) of G1 ∨ G2 is given by the following equations:

degG1∨G2
((u1, u2)) = |V (G2)|degG1

(u1)+|V (G1)|degG2
(u2)−degG1

(u1)degG2
(u2).

The distance between any two vertices of a disjunction or a symmetric

difference cannot exceed 2. If none of the components contains well-connected

vertices, the eccentricity of all vertices is constant and equal to 2.

Lemma 8. If ui ∈ Gi(i = 1, 2), then,

δG1∨G2
(u1, u2) =

(

|V (G2)|
2 − 2|E(G2)|

)

δG1
+
(

|V (G1)|
2 − 2|E(G1)|

)

δG2

+ 2 (|V (G1)||E(G2)|degG1
(u1) + |V (G2)||E(G2)|degG2

(u2)

− |V (G2)|δG1
(u1)degG2

(u2) − |V (G1)|δG2
(u2)degG1

(u1)

+ δG1
(u1)δG2

(u2)) .

δG1⊕G2
(u1, u2) =

(

|V (G2)|
2 − 2|E(G2)|

)

δG1
+
(

|V (G1)|
2 − 2|E(G1)|

)

δG2

+2 (|V (G1)||E(G2)|degG1
(u1) + |V (G2)||E(G2)|degG2

(u2)

−2|V (G2)|δG1
(u1)degG2

(u2) − 2|V (G1)|δG2
(u2)degG1

(u1)

+ 2δG1
(u1)δG2

(u2)) +
(

|V (G1)|
2 − 2|E(G1)|

)

δG2
.



The Eccentric Connectivity Polynomial of Some Graph Operations 109

P r o o f. By the formula given above, we have:

δG1∨G2
(u1, u2) =

∑

a∈NG1
(u1)

∑

v∈V (G2)

degG1∨G2
((a, v))

+
∑

b∈NG2
(u2)

∑

u∈V (G1)

degG1∨G2
((u, b))

−
∑

a∈N(G1)(u1)

∑

b∈N(G2)(u2)

degG1∨G2
((a, b))

=
∑

a∈NG1
(u1)

∑

v∈V (G2)

[|V (G2)|degG1
(a)

+|V (G1)|degG2
(v) − degG1

(a)degG2
(v)]

+
∑

u∈V (G1)

∑

b∈N(G2)(u2)

[|V (G2)|degG1
(u) + |V (G1)|degG2

(b)]

−degG1
(u)degG2

(b)

−
∑

a∈NG1
(u1)

∑

b∈N(G2)(u2)

|V (G2)|degG1
(a)

+|V (G1)|degG2
(b) − degG1

(a)degG2
(b)

=
(

|V (G2)|
2 − 2|E(G2)|

)

δG1
+
(

|V (G1)|
2 − 2|E(G1)|

)

δG2

+2 (|V (G1)||E(G2)|degG1
(u1) + (|V (G2)||E(G1)|degG2

(u2))

−|V (G2)|δG1
(u1)degG2

(u2) − (|V (G1)|δG2
(u2)

−δG1
(u1)δG2

(u2),
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δG1⊕G2
(u1, u2) =

∑

a∈NG1
(u1)

∑

v∈V (G2)

degG1∨G2
((u, b))

−2
∑

a∈NG1
(u1)

∑

b∈NG2
(u2)

degG1∨G2
((a, b))

=
∑

a∈NG1
(u1)

∑

v∈V (G2)

[|V (G2)|degG1
(a)

+|V (G1)|degG2
(v) − degG1

(a)degG2
(v)]

+
∑

u∈V (G1)

∑

b∈NG2
(u2)

[|V (G2)|degG1
(u) + |V (G1)|degG2

(b)

−degG1
(u)degG2

(b)]

−2
∑

a∈NG1
(u1)

∑

b∈NG2
(u2)

[|V (G2)|degG1
(a)

+|V (G1)|degG2
(b) − degG1

(a)degG2
(b)]

=
(

|V (G2)|
2 − 2|E(G2)|

)

δG1
+
(

|V (G2)|
2 − 2|E(G1)|

)

δG2

+2 (|V (G1)|E(G2)degG1
(u1) + |V (G2)||E(G1)|degG2

(u2))

−2|V (G2)|δG1
(u1)degG2

(u2) − 2|V (G1)|δG2
(u2)degG1

(u1)

+2δG1
(u1)δG2

(u2). 2

Lemma 9. Let G1 and G2 be two graphs without well-connected vertices.

Then

εG1∨G2
((u, v)) = εG1⊕G2

((u, v)) = 2.

P r o o f. Let (u, v) be an arbitrary vertex of V (G1 ∨ G2). We know that

its eccentricity cannot exceed two. It remains to show that it cannot be equal to

one. But this would mean that the vertex (u, v) is well-connected in V (G1 ∨G2),

and this is impossible, since a vertex of G1 ∨ G2 is well-connected if and only if

both of its projections are well-connected in their respective components. Hence,

εG1∨G2
((u, v)) = 2 for all vertices (u, v). The same argument can be applied for

G1 ⊕ G2. �
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Theorem 10. Let G1 and G2 be two graphs without well-connected

vertices. Then

ξC(G1 ∨ G2, x) =
(((

|V (G2)|
2 − 4|E(G2)

)

|V (G2)|
)

M1(G1)

+
((

|V (G1)|
2 − 4|E(G1)

)

|V (G1)|
)

M1(G2) + M1(G1)M1(G2)

+ 8|V (G − 1)||V (G2)||E(G1)||E(G2)|
)

x2 ,

ξC(G1 ⊕ G2, x) =
(((

|V (G2)|
2 − 6|E(G2)

)

|V (G2)|
)

M1(G1)

+
((

|V (G1)|
2 − 6|E(G1)

)

|V (G1)|
)

M1(G2) + 2M1(G1)M1(G2)

+ 8|V (G − 1)||V (G2)||E(G1)||E(G2)|
)

x2.

P r o o f. Applying Lemma 9, we have:

ξC(G1 ∨ G2, x) =
∑

(u1,u2)

δG1∨G2
((u1, u2))x

εG1∨G2
((u1,u2))

+
∑

(u1,u2)

(2(|V (G1)||E(G2)|degG1
(u1)

+|V (G2)||E(G1)|degG2
(u2)))x

2

+
∑

(u1,u2)

(−|V (G2)|δG1
(u1)degG2

(u2)

−|V (G1)|δG2
(u2)degG1

(u1) + δG1
(u1)δG2

(u2))x
2

=
(((

|V (G2)|
2 − 6|E(G2)

)

|V (G2)|
)

M1(G1)

+
((

|V (G1)|
2 − 6|E(G1)

)

|V (G1)|
)

M1(G2) + 2M1(G1)M1(G2)

+8|V (G − 1)||V (G2)||E(G1)||E(G2)|
)

x2.



112 A. R. Ashrafi, M. Ghorbani, M. A. Hossein-Zadeh

ξC(G1 ⊕ G2, x) =
∑

(u1,u2)

δG1⊕G2
((u1, u2))x

εG1⊕G2
((u1,u2))

=
∑

(u1,u2)

((

|V (G2)|
2 − 2|E(G2)|

)

δG1
(u1)

+
(

|V (G1)|
2 − 2|E(G1)|δG2

(u2)
)

x2

+
∑

(u1,u2)

(2 (|V (G1)||E(G2)|degG1
(u1)

+|V (G2)||E(G1)|degG2
(u2))) x2

+
∑

(u1,u2)

(−2|V (G2)|δG1
(u1)degG2

(u2)

+|V (G1)|δG2
(u2)degG1

(u1) + δG1
(u1)δG2

(u2)) x2

=
[((

|V (G2)|
2 − 6|E(G2)

)

|V (G2)|
)

M1(G1)

+
((

|V (G1)|
2 − 6|E(G1)

)

|V (G1)|
)

M1(G2)

+2M1(G1)M1(G2) + 8|V (G − 1)||V (G2)||E(G1)||E(G2)|
]

x2.

2

3.3. Join. The join G = G1 + G2 of graphs G1 and G2 with disjoint

vertex sets V1 and V2 and edge sets E1 and E2 is the graph with vertex set

V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ {xy | x ∈ V (G1) & y ∈ V (G2)}.

The definition can be generalized to the case of s ≥ 3 graphs in a straightforward

manner.

The following result is a direct consequence of the definition of join.

Lemma 11. If none of Gi, i = 1, 2, contains well-connected vertices,

then for every u ∈ V (G1 + G2) we have εG1+G2
(u) = 2.

Lemma 12. Let Gi, i = 1, 2 be graphs. Then

δG1+G2
=















δG1
(u) + degG1

(u)|V (G2)| + |V (G1)||V (G2)| + 2|E(G2)|
u ∈ V (G1)

δG2
(u) + degG2

(u)|V (G1)| + |V (G1)||V (G2)| + 2|E(G1)|
u ∈ V (G2)

.
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P r o o f. If u ∈ V (G1), then we have

δG1+G2
(u) =

∑

a∈NG1
(u)

degG1+G2
(a) +

∑

b∈VG2

degG1+G2
(b)

=
∑

a∈NG1
(u)

(degG1
(a) + |V (G2)|) +

∑

b∈VG2

(degG2
(b) + |V (G1)|)

= δG1
(u) + degG1

(u)|V (G2)| + |V (G1)||V (G2)| + 2|E(G2)|.

Similary if u ∈ V (G2), then

δG1+G2
(u) =

∑

a∈NG2
(u)

degG1+G2
(a) +

∑

b∈VG1

degG1+G2
(b)

=
∑

a∈NG2
(u)

(degG2
(a) + |V (G1)|) +

∑

b∈VG1

(degG1
(b) + |V (G2)|)

= δG2
(u) + degG2

(u)|V (G1)| + |V (G1)||V (G2)| + 2|E(G1)|.

2

Theorem 13. Let G1 and G2 be two graphs without well-connected

vertices. Then

ξC(G1 + G2, x) = (M1(G1) + M1(G2) + 4(|V (G1)||E(G2)| + |V (G2)||E(G1)|)

+ |V (G1)||V (G2)|(V (G1)| + |V (G2)|) x2.

P r o o f. By Lemma 12, we have:

ξC(G1 + G2, x) =
∑

v∈V (G1)

δG1+G2
(v)xεG1+G2

(v) +
∑

v∈V (G2)

δG1+G2
(v)xεG1+G2

(v)

=
∑

v∈V (G1)

(δG1
(v) + degG1

(v)|V (G2)|

+|V (G1)||V (G2)| + 2|E(G2)|) x2

+
∑

v∈V (G2)

(δG2
(v) + degG2

(v)|V (G1)|

+|V (G1)||V (G2)| + 2|E(G1)|) x2

= (M1(G1) + M1(G2) + 4(|V (G1)||E(G2)| + |V (G2)||E(G1)|)

+ |V (G1)||V (G2)|(V (G1)| + |V (G2)|) x2,

which proves the theorem. �
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4. Conclusions. In this paper the eccentric and modified eccentric

connectivity polynomials of graphs are presented. Our definitions are similar to

those are given in Sagan et al. [15]. The exact formulas for some graph operations

are obtained. These polynomials are computed for well-known graphs to clarify

our formulas. Finally, the polynomial presented by Sagan et al. for the Wiener

index can be defined in a unique way, but it is possible to define even more than

two different polynomials with the property that their derivative evaluated at

x = 1 give the eccentric connectivity index.

For given graphs G1 and G2 their tensor product G1 × G2 is defined

as the graph on the vertex set V (G1) × V (G2), and vertices u = (u1, u2) and

v = (v1, v2) of V (G1) × V (G2) are connected by an edge if and only if either

u1v1 ∈ E(G1) and u2v2 ∈ E(G2). It remains an open question to find exact

formulas for the eccentric and modified eccentric connectivity polynomials of

graphs under tensor product operation.
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