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SOLVING MAXIMUM CLIQUE PROBLEM FOR PROTEIN

STRUCTURE SIMILARITY*

Noël Malod-Dognin, Rumen Andonov, Nicola Yanev

Abstract. Computing the similarity between two protein structures is
a crucial task in molecular biology, and has been extensively investigated.
Many protein structure comparison methods can be modeled as maximum
weighted clique problems in specific k-partite graphs, referred here as align-
ment graphs.

In this paper we present both a new integer programming formulation
for solving such clique problems and a dedicated branch and bound algo-
rithm for solving the maximum cardinality clique problem. Both approaches
have been integrated in VAST, a software for aligning protein 3D structures
largely used in the National Center for Biotechnology Information, an orig-
inal clique solver which uses the well known Bron and Kerbosch algorithm
(BK). Our computational results on real protein alignment instances show
that our branch and bound algorithm is up to 116 times faster than BK.

1. Introduction. A fruitful assumption in molecular biology is that
proteins of similar three-dimensional (3D) structures are likely to share a com-
mon function and in most cases derive from the same ancestor. Understanding
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and computing physical similarity of protein structures is one of the keys for
developing protein based medical treatments, and thus it has been extensively
investigated [11]. Evaluating the similarity of two protein structures can be done
by finding an optimal order-preserving matching (also called alignment) between
their components. We show that finding such alignments is equivalent to solving
maximum clique problems in specific k-partite graphs referred here as alignment
graphs. In this context, we present a new integer programming model for solving
the maximum weighted clique problem in alignment graphs. In addition, we also
propose a dedicated branch and bound algorithm (B&B) for the maximum clique
problem. Both approaches have been integrated and validated in VAST[7] (Vec-
tor Alignment Search Tool), a software for aligning protein 3D structures largely
used in the National Center for Biotechnology Information1, and compared to the
original VAST clique solver which is based on the Bron and Kerbosch algorithm
(BK) [5]. The obtained results on real protein structure comparison instances
show that our B&B algorithm is up to 116 times faster than BK, and thus clearly
demonstrate the usefulness of our dedicated algorithm.

2. Clique problems and protein structure similarity. In this
paper, we focus on grid-alike graphs, which we define as follows. A m×n align-

ment graph G = (V,E) is a graph in which the vertex set V is depicted by
a (m-row) × (n-column) array T , where each cell T [i][k] contains at most one
vertex i.k from V (note that for both arrays and vertices, the first index stands
for the row number, and the second for the column number). Two vertices i.k

and j.l can be connected by an edge (i.k, j.l) ∈ E only if i < j and k < l. It is
easily seen that the m rows form a m-partition of G, and that the n columns also
form a n-partition. As for the general case, a clique in G is a subset of V such
that any two vertices in it are connected by an edge.

Various clique problems can be formulated in such a graph. The Maximum

Clique problem (MCC) consists in finding in G a clique of maximum cardinality,
denoted by MCC(G). MCC is one of the first problems shown to be NP-Complete
[8]. If we associate to each vertex i.k a weigth Sik, and to each edge (i.k, j.l) a
weight Cikjl, then other maximum clique problems arise. The most general one is
the Maximum Weighted Clique problem (MWC), which consists in finding the
clique having the maximum sum of vertex and edge weights. Its particular cases
– MCC, the clique with maximum sum of vertex weights and the clique with
maximum sum of edge weights – have been extensively investigated [1, 4, 6].

From a general point of view, two proteins P1 and P2 can be represented

1http://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml
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by their ordered set of components N1 and N2, and estimating their similarity
can be done by finding an optimal matching between the elements of N1 and N2.
In [2], we show that such matchings can be represented in an |N1|×|N2| alignment
graph G = (V,E), where each row corresponds to an element of N1 and each
column corresponds to an element of N2. A vertex i.k is in V (i.e. matching
i ↔ k is possible), only if elements i ∈ N1 and k ∈ N2 are compatible, and this
compatibility can be represented by a weight Sik. An edge (i.k, j.l) is in E if
and only if (i) i < j and k < l, for order preserving, and (ii) matching i ↔ k is
compatible with matching j ↔ l. Again, this compatibility can be represented
by a weight Cikjl. A feasible matching of P1 and P2 is then a clique in G. There
is a multitude of alignment methods and they differ mainly by (i) the nature of
the elements of N1 and N2, (ii) the compatibility definitions between elements
and between pairs of matched elements, and (iii) the kind of maximum clique to
find in G. For example, in VAST, N1 and N2 contain 3D vectors representing the
secondary structure elements of P1 and P2. Matching i ↔ k is possible if vectors
i and k have similar norms and correspond either both to α-helices or both to
β-strands. Finally, matching i ↔ k is compatible with matching j ↔ l only if the
couple of vectors (i, j) from P1 can be well superimposed in 3D-space with the
couple of vectors (k, l) from P2. The longest alignment corresponds to MCC(G).

3. Integer programming model for MWC. By using the prop-
erties of our alignment graphs, we designed a new integer programming (IP)
model (whose formulation is very different from [10, 3]) for solving the maximum
weighted clique problem, where the weights are all in R. To each vertex i.k ∈ V

(in row i ∈ V1 and column k ∈ V2), we associate a binary variable xik such that:

xik = {1 if vertex i.k is in the clique, 0 otherwise} .

We also associate to each edge (i.k, j.l) ∈ E a binary variable yikjl such that:

yikjl = {1 if edge (i.k, j.l) is in the clique, 0 otherwise} .

The goal is to find a clique which maximizes the sum of its vertex weights and
the sum of its edge weights. This leads to the objective function:

(1) ZMWC = max
∑

i.k

Sik xik +
∑

(i.k,j.l)

Cikjl yikjl.

The one-to-one matching implies special order set constraints. In each row i ∈ V1,
at most one vertex can be chosen (2), and the same holds for the columns (3).

(2)
∑

k

xik ≤ 1, ∀i ∈ V1.
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(3)
∑

i

xik ≤ 1, ∀k ∈ V2.

These special order set constraints lead to compact formulations of the relations
between vertices and edges. Denote by d+

col(i.k) the set of columns l, l > k, such
that ∃(i.k, j.l) ∈ E. In a similar way, d−col(i.k) is the set of columns l, l < k, such
that ∃(j.l, i.k) ∈ E. d+

row(i.k) is the set of rows j, j > i, such that ∃(i.k, j.l) ∈ E.
And finally, d−row(i.k) is the set of rows j, j < i, such that ∃(j.l, i.k) ∈ E. Edge-
driven activations of vertices can be formulated with (4), (5), (6) and (7):

xik ≥
∑

j

yikjl, ∀i.k ∈ V, ∀l ∈ d+
col(i.k).(4)

xjl ≥
∑

i

yikjl, ∀j.l ∈ V, ∀k ∈ d−col(j.l).(5)

xik ≥
∑

l

yikjl, ∀i.k ∈ V, ∀j ∈ d+
row(i.k).(6)

xjl ≥
∑

k

yikjl, ∀j.l ∈ V, ∀i ∈ d−row(j.l).(7)

Vertice-driven activations of edges can be formulated with (8) and (9) :

∑

i

xik +
∑

j

xjl −
∑

ij

yikjl ≤ 1, ∀k ∈ V2, ∀l ∈ V2, k < l.(8)

∑

k

xik +
∑

l

xjl −
∑

kl

yikjl ≤ 1, ∀i ∈ V1, ∀j ∈ V1, i < j.(9)

This IP formulation is an improved version of the one that we proposed in [9].

4. Branch and Bound approach for MCC. We present here a
new branch and bound algorithm for solving the MCC problem in the previously
defined alignment graph G = (V,E). Let us first introduce some notions and
notations. A successor of a vertex i.k ∈ G is an element of the set Γ+(i.k) =
{j.l ∈ V s.t. (i.k, j.l) ∈ E, i < j and k < l}. Similarly, a predecessor of a
vertex i.k ∈ G is an element of the set Γ−(i.k) = {j.l ∈ V s.t. (j.l, i.k) ∈ E, j < i

and l < k}. GΓ+(i.k), GΓ−(i.k) denote the subgraphs of G induced by the vertices
in Γ+(i.k)and in Γ−(i.k). A feasible path in G is an ordered sequence “i1.k1,
i2.k2, . . ., it.kt” of vertices ∈ V , such that ∀n ∈ [1, t − 1], (in.kn, in+1.kn+1) ∈ E

and in < in+1, kn < kn+1.
Branching: Each node of the B&B tree is characterized by a couple (C,

Cand) where C is the clique under construction and Cand is the set of candidate
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vertices to be added to C. All B&B nodes can also access Cbest, the best clique
found so far during the exploration of the B&B tree (initially set to ∅). Starting
from the root node (∅, V ), successors of a B&B node (C,Cand) are the nodes
(C

⋃
{i.k}, Cand

⋂
Γ+(i.k)), for all vertices i.k ∈ Cand. Branching follows the

lexicographic increasing order (row first).

Fathoming: For a given a B&B node (C,Cand) and a current best clique
Cbest, we denote by MCCi.k(G) the maximum cardinality clique in G containing
vertex i.k ∈ Cand. If |MCCi.k(G)| ≤ |Cbest|, then we do not miss the solution by
discarding i.k from Cand. Furthermore, denote by Ci.k the best clique that can
be found by branching on the vertex i.k, and let MCCi.k(G

Cand) be the maximum
cardinality clique in GCand (the subgraph of G induced by the vertices in Cand)
containing i.k. It is easily seen that |Ci.k| = |C|+ |MCCi.k(G

Cand)|. Any vertex
i.k ∈ Cand such that |MCCi.k(G

Cand)| ≤ |Cbest| − |C| leads to non-interesting
leaves, and thus, can be removed from Cand.

Bounds: We are not going to compute |MCCi.k(G)| or |MCCi.k(G
Cand)|,

but we replace them with upper bounds based on feasible paths. Denote by P (G)
the longest (in terms of vertices) feasible path in G. Note that computing |P (G)|
can be done by dynamic programming in O(|E|) time. For any vertex i.k ∈ V ,
we denote by Pi.k(G) the longest feasible path in G containing i.k, such that for
any vertex j.l 6= i.k in the feasible path, j.l is connected to i.k (i.e. (i.k, j.l) ∈ E

or (j.l, i.k) ∈ E). By definition, Pi.k(G) = P (GΓ−(i.k))
⋃
{i.k}

⋃
P (GΓ+(i.k)), and

|Pi.k(G)| = |P (GΓ−(i.k))| +1+ |P (GΓ+(i.k))|. It is easily seen that |MCCi.k(G)| ≤
|Pi.k(G)| for all i.k ∈ V . Similarly, |MCCi.k(G

Cand)| ≤ |Pi.k(G
Cand)| for all

i.k ∈ Cand. Thus any vertex i.k ∈ Cand such that: (i) |Pi.k(G)| ≤ |Cbest|, or (ii)
|Pi.k(G

Cand)| ≤ |Cbest| − |C|, can be safely removed from Cand.

5. Results. All results were obtained on a PC with an Intel Pen-
tium 4tm CPU at 3GHz. The IP based solver (MIP) was implemented with Ilog
Cplex 10.0, and the B&B solver was implemented in C. These two clique solvers
were compared to (BK)2 [5]. All algorithms were used to solve maximum cardi-
nality clique problems. The comparison was performed on real protein structure
comparison instances. We used two different benchmarks3 which significantly
differ by the number of secondary structure elements (SSE) per protein chain.
The first benchmark, the Skolnick set, contains 40 small protein chains having
from 5 to 20 SSEs. The second benchmark, the S2 set, contains 36 long protein

2VAST’s clique solver, BK, returns all maximal cliques in a graph and thus can be used to
solve any kind of clique problems.

3The full description of both benchmarks is availlable at:
https://www.irisa.fr/symbiose/old/softwares/resources/proteus300
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chains having from 51 to 87 SSEs. Note that for the Skolnick set, we only consid-
ered the 170 instances leading to alignement graphs having at least 100 vertices.
Table 1 presents the characteristics of the corresponding alignment graphs. One
peculiarity is their low density, less than 20% for the Skolnick set and less than
6% for the S2 set.

Table 1. Characteristics of the alignment graphs

Number of vertices Number of edges Density
Set name min, average, max min, average, max min, average, max
Skolnick 100, 158.92, 208 886, 2368.69, 3547 0.16, 0.18, 0.20

S2 1390, 2384.97, 5582 45278, 144206.44, 604793 0.03, 0.05, 0.06

Figure 1 compares the time needed by MIP to the one of BK on the 170
Skolnick instances. On the average, MIP is 3.35 times slower than BK. This
is not surprising, since dedicated solvers are expected to be faster than general
purpose solvers (CPLEX in this case). This observation motivated us to go
further in developing a fast special purpose clique solver. Figure 2 compares the
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Fig. 1. MIP vs BK running time comparison on a Skolnick set

time needed by B&B to the one of BK on set S2. We observed that B&B is in
average 15.57 times faster than BK, and on the biggest instances (where both
proteins contain more than 80 SSEs), it is up to 116.7 times faster. Such big
instances are solved by B&B in less than 79 seconds (25 sec. on average) while
BK needs up to 2660 seconds (1521 sec. on average).
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Fig. 2. B&B vs BK running time comparison on an S2 set

6. Conclusion. We presented a new IP model for solving the maximum
weighted clique problem arising in the context of protein structure comparison,
which was implemented and validated on a small benchmark. We also presented
a new dedicated B&B algorithm for the maximum cardinality clique problem.
The computational results show that on big instances, our B&B is significantly
faster than the Bron and Kerbosch algorithm (up to 116 times for the largest
proteins). In the near future, we intend to study the behavior of the proposed
algorithms on arbitrary graphs, conveniently transformed into grid graphs in a
preprocessing step.
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