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HIGH-ORDER CONTROL VARIATIONS AND SMALL-TIME

LOCAL CONTROLLABILITY*

Mikhail Ivanov Krastanov

Abstract. The importance of “control variations” for obtaining local ap-
proximations of the reachable set of nonlinear control systems is well known.
Heuristically, if one can construct control variations in all possible direc-
tions, then the considered control system is small-time locally controllable
(STLC). Two concepts of control variations of higher order are introduced
for the case of smooth control systems. The relation between these varia-
tions and the small-time local controllability is studied and a new sufficient
STLC condition is proved.

1. High-order variations and small-time local controllabiity.

The traditional approach to obtaining local approximations of the reachable set
of nonlinear control systems has been to construct “control variations”. If one
can construct control variations in all possible directions, then the reachable
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set should to be a full neighborhood of the starting point. Let us consider the
following control system:

(1) ẋ(t) = f0(x(t)) +

m
∑

i=1

ui(t)fi(x(t)), ui(t) ∈ [−1, 1],

where fi, i = 0, . . . ,m, are smooth vector fields defined on a neigbourhood of the
point x0 ∈ Rn with f0(x0) = 0. Let u(·) = (u1(·), . . . , um(·)) be an integrable
function defined on the interval [0, T ] whose components take values from [−1, 1].
An absolutely continuous function x(·) with x(0) = x0 and satisfying (1) for
almost every t from [0, T ] is called an admissible trajectory of (1) defined on
[0, T ], starting from the point x0 and corresponding to the control u(·). By
R(x, T ) we denote all points of Rn reachable from the point x by means of
admissible trajectories of (1) defined on [0, T ] and starting from the point x.

We introduce two concepts of high-order control variations to the reach-
able set of the control system (1) at the point x0: the sets of H- and S-control
variations. First we denote by Exp(Zt)x0 the value of the solution of the equation

ẋ(τ) = Zt(x(τ)), x(0) = x0,

at time τ = 1, where {Zt : t ∈ R+} is a given family of smooth vector fields,
defined on Rn and depending continuously on t ≥ 0.

Definition 1. The smooth vector field g is said to be an H-control vari-

ation to the reachable set of the control system (1) at the point x0 if there exist a

positive number T , a neighbourhood Ω of x0, two families of smooth vector fields

at and bt parameterized by t > 0, and a continuous function p : R+ → R+ such

that for each x ∈ Ω and each t ∈ [0, T ]

Exp (tg + at + bt) (x) ∈ R(x, p(t)),

where

‖at(x)‖ ≤ M tθ ‖x − x0‖, ‖bt(x)‖ ≤ N tσ, p(t) < ν tλ,

for some positive constants M , N , ν, θ, σ > 1 and λ. We denote by H+(x0) the

set of all H-control variations to the reachable set of the control system (1) at x0.

Remark 1. To our knowledge, Hermes was the first to realize (cf. [5])
the importance of the control variations for obtaining local approximations of
the reachable set of control systems. Similar definitions of high-order control
variations can be found in [6], [8], [12], [13] etc. All these definitions use the
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notion of a Lie bracket. Let f and g be smooth vector fields defined on Rn. Then
the Lie bracket [f, g] is defined as

[f, g](x) :=
∂g

∂x
(x)f(x) −

∂f

∂x
(x)g(x).

It should be mentioned that the notion of Lie brackets is extended to the non-
smooth case in [3].

The next proposition provides constructions of elements of the set H+(x0):

Proposition 1. The following assertions hold true:

a) The set H+(x0) is a convex cone;

b) The vector fields fi, ± [fi, fj ], [fi, [fi, f0]], i, j = 1, . . . ,m, are elements of

the set H+(x0);

c) Let ±g ∈ H+(x0). Then ±[g, f0] ∈ H+(x0).

Slightly different versions of this proposition can be found in [5], [6],
[8], [12]. The corresponding proofs are based on the so called Campbell-Baker-
Hausdorff formula.

Definition 2. Let H =
{

h1, . . . , hk
}

be a finite set of smooth vector fields.

H is said to be a set of S-control variations of the control system (1) at the point

x0 if there exist positive reals ν, λ, γ0 and γ1 with γ0 < γ1, a neighbourhood Ω
of x0, two families of smooth vector fields ct and dt parameterized by t > 0 such

that for each γ from the open interval (γ0, γ1) and for each vector s = (s1, . . . , sk)
whose components belong to the interval [0, 1] there exists a continuous function

ps,γ : R+ → R+ with ps,γ(η) < ν η−λ such that for each x ∈ Ω and for each

sufficiently large positive integer η

(2) Exp



η−γ
k

∑

j=1

sjh
j + cη + dη



 (x) ∈ R(x, ps,γ(η)),

where

‖cη(x)‖ ≤ Q
1

ηθ
‖x − x0‖, ‖dη(x)‖ ≤ R

1

ησ
,

for some positive constants Q, R, θ and σ > γ1. We denote by S+(x0) the set

of all sets of S-control variations to the reachable set of the control system (1) at

the point x0.
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Remark 2. It is shown in [9] that the general sufficient STLC condition
obtained by Sussmann in [11] (cf. also [1]) is closely related to the above defined
set of high-order control variations. More precisely, the proofs of the sufficient
STLC conditions in [1] and [11] can be used to construct elements of the set
S+(x0). For different applications of the control theory, it is very important to
implement them explicitly by using admissible controls.

The following proposition shows how these high-order control variations
are related to the small-time local controllability (STLC):

Proposition 2. Let Hi =
{

h1
i , . . . , h

ki

i

}

, i = 1, . . . , α, be sets of S-control

variations at x0, let g1, . . . , gk ∈ H+(x0) and let the origin belong to the interior

of the convex hull of the set

(3)
{

h1
1(x0), . . . , h

k1

1 (x0), . . . , h
1
α(x0), . . . , h

kα
α (x0), g1(x0), . . . , gk(x0)

}

.

Then the control system (1) is STLC.

P r o o f. According to Definition 2, for each index i ∈ {1, . . . , α} there
exist positive reals νi, λi, γi

0 and γi
1 with γi

0 < γi
1, a neighbourhood Ωi of x0,

families of smooth vector fields ci
t and di

t parameterized by t > 0 such that for
each γi from the open interval

(

γi
0, γ

i
1

)

and for each vector si = (si
1, . . . , s

ki

i )
whose components belong to the interval [0, 1] there exists a continuous function
psi,γi

: R+ → R+ with psi,γi
(η) < νi η−λi such that for each x ∈ Ωi and for each

sufficiently large positive integer η

(4) Exp



η−γi

ki
∑

j=1

sj
ih

j
i + ci

η + di
η



 (x) ∈ R(x, psi,γi
(η)),

where
‖ci

η(x)‖ ≤ Qi η−θi ‖x − x0‖, ‖di
η(x)‖ ≤ Ri η−σi ,

for some positive constants Qi, Ri, θi and σi > γi
1, i = 1, . . . , α.

Similarly, according to Definition 1, for each index j ∈ {1, . . . , k}, there
exist a positive real T , a neighbourhood Ωj of x0, two families of smooth vector

fields aj
t and bj

t parameterized by t > 0, and a continuous function pj : R+ → R+

such that for each x ∈ Ωj and each t ∈ [0, T ]

(5) Exp
(

tgj + aj
t + bj

t

)

(x) ∈ R(x, pj(t)),

where

‖aj
t (x)‖ ≤ Mj tθj ‖x − x0‖, ‖bj

t (x)‖ ≤ Nj tσj , pj(t) < ν̃j tλ̃j ,
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for some positive constants Mj , Nj , ν̃j , θj, σj > 1 and λ̃j .
Without loss of generality, we may think that

γ1
0 = max{γi

0 : i = 1, . . . , α}.

Let us fix an arbitrary γ from (γ1
0 , γ1

1) and an arbitrary vector

s̃ := (s̃1, . . . , s̃k, s1, . . . , sk) with s̃i := (s̃1
i , . . . , s̃

ki

i ),

where each s̃j
i ∈ [0, 1], j = 1, . . . , ki, i = 1, . . . , α and each sj ∈ [0, 1], j = 1, . . . , k.

For each index i ∈ {1, . . . , α} two cases are possible: a) γ < γi
1; b) γ ≥ γi

1.
In the case a) we have that γi

0 ≤ γ1
0 < γ < γi

1. By setting γi := γ and sj
i := s̃j

i ,
j = 1, . . . , ki, we obtain that (4) is fulfilled for each sufficiently large positive
integer η > 0. Let us assume that the case b) holds true, i.e., γ ≥ γi

1. We fix
a positive number γi from (γi

0, γ
i
1). Then γi < γ and for each positive integer η

there exists a positive integer µi = µi(η) ≥ η such that the following inequalities
hold true:

(

1

µi(η)

)γi

≥

(

1

η

)γ

>

(

1

µi(η) + 1

)γi

.

We set s̄i := (s1
i , . . . , s

ki

i ), where

sj
i :=

s̃j
i (µi(η))γi

ηγ
, j = 1, . . . , ki.

Clearly, 0 ≤ sj
i ≤ 1. For this choice of s̄i and γi and replacing η by µi(η), the

inclusion (4) can be written as follows

(6) Exp



η−γ

ki
∑

j=1

s̃j
ih

j
i + ci

µi(η) + di
µi(η)



 (x) ∈ R(x, pi
s̄i,γi

(µi(η)),

where

‖ci
µi(η)(x)‖ ≤ Q µi(η)−θi ‖x − x0‖, ‖di

µi(η)(x)‖ ≤ Ri µi(η)σi ,

for the positive constants Qi, Ri, θi and σi > γi
1, i = 1, . . . , α. Our choice of µi(η)

and the inequalities σi > γi
1 > γi imply that

ηγ

µi(η)σi
<

(µi(η) + 1)γi

µi(η)σi
=

(

1 +
1

µi(η)

)γi

µi(η)σi−γi

−→

η→∞

0,
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and
(

1

η

)γ

>

(

1

µi(η)

)σi

for all sufficiently large positive integers η. Thus we have shown that

‖di
µ(η)(x)‖ = o (1/ηγ) ,

where by definition
o(t)

t
→ 0 as t ↓ 0.

Hence, for each index i the inclusion (4) or the inclusion (6) is fulfilled
(depending on the cases a) and b)). Then there exists a neighborhood Ω of x0

such that for each point x ∈ Ω and for all sufficiently large positive integers η

E(s̃, η, γ)(x) := Exp



η−γ

k1
∑

j=1

s̃j
1h

j
1 + c1

η + d̃1
η



 · · ·

Exp



η−γ
kα
∑

j=1

s̃j
αhj

α + cα
η + d̃α

η



 Exp
(

s1η
−γg1 + a1

s1η−γ + b1
s1η−γ

)

· · ·

Exp
(

skη
−γgk + ak

skη−γ + bk
skη−γ

)

(x) ∈ RN
~X

(x, p̃s̃,γ̃(η)) ,

where by d̃i
η, ,i = 1, . . . , α, we have denoted the corresponding di

η (in the case a))
or di

µi(η) (in the case b)). Also, here we have set

p̃s̃,γ̃(η) = p̃1
ŝ1,γ1

(η) + · · · + p̃α
ŝα,γα

(η) + p1
(

s1η
−γ

)

+ · · · + pk
(

skη
−γ

)

,

where p̃i
ŝi,γi

(η) is equal to pi
s̃i,γi

(η) (in the case a)) or to pi
s̄i,γi

(µi(η)) (in the case

b)). Taking into account the estimations for pi
si,γi

(·), i = 1, . . . , α, for pj(·),
j = 1, . . . , k, and the inequalities µi(η) ≥ η for all indices i for which the case b)
holds true, we obtain that

(7) p̃s̃,γ̃(η) <
α

∑

i=1

νi η−λi +
k

∑

j=1

ν̃j

(

sjη
−γ

)λ̃j < ν η−λ,

where ν :=





α
∑

i=1

νi +

k
∑

j=1

ν̃js
λ̃j

j



 and λ := min
(

λ1, . . . , λα, γλ̃1, . . . , γλ̃k

)

. Ap-

plying the C-B-H formula, we obtain that E(s̃, η, γ)(x) =
(8)

= Exp



η−γ





α
∑

i=1

ki
∑

j=1

s̃j
ih

j
i +

k
∑

j=1

sjg
j



 + Θη,γ + ∆η,γ,s̃



 (x) ∈ R (x, p̃s̃,γ̃(η)) ,
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where p̃s̃,γ(η) < ν η−λ,

(9) ‖Θη,γ‖ ≤ Q

(

1

η

)θ

‖x − x0‖ and ‖∆η,γ,s̃‖ = o (1/ηγ) .

If we expand the right-hand side of (8), it turns out that

E(s̃, η, γ)(x) = 1+η−γ





α
∑

i=1

ki
∑

α=1

s̃j
ih

j
i +

k
∑

j=1

sjg
j



 (x)+Y2(η, γ)(x)+Y3(η, s̃, γ)(x),

where Y2(η, γ) is a sum of powers of Θη,γ and Y3(η, s̃, γ) is a sum of products

of the factors η−γ





α
∑

i=1

ki
∑

α=1

s̃j
ih

j
i +

k
∑

j=1

sjg
j



, Θη,γ and ∆η,γ,s̃ and at least one

factor is ∆η,γ,s̃ or η−γ





α
∑

i=1

ki
∑

α=1

s̃j
ih

j
i +

k
∑

j=1

sjg
j



. The inequalities (9) imply that

Θη,γ(x0) = 0, and hence every power Θη,γ(x0) = 0 vanishes as well. Also, every
term of the sum Y3(η, s̃, γ) is a product containing at last one factor o(1/η−γ).
So, we have that E(s̃, η, γ)(x0) =

= 1 + η−γ





α
∑

i=1

ki
∑

α=1

s̃j
ih

j
i +

k
∑

j=1

sjg
j



 (x) + Y3(η, s̃, γ)(x) ∈ R (x, p̃s̃,γ̃(η)) ,

where p̃s̃,γ̃(η) < ν η−λ and Y3(η, s̃, γ̃)/ηγ tends to zero as η → ∞ ( the conver-
gence being uniform with respect to the vector s̃ whose components vary in the
interval [0, 1]). From here (cf. for example, [10]), it follows that R(x0, t) contains
a neighbourhood of the point x0 for each t > 0. This completes the proof. �

REFERE NC ES

[1] Agrachev A., R. Gamkrelidze. Local controllability and semigroups of
diffeomorphisms. Acta Applicandae Mathematicae, 32 (1993), 1–57.

[2] Clarke F. H., Yu. S. Ledyaev, R. J. Stern, P. R. Wolensky. Non-
smooth analysis and control theory. Graduate Texts in Mathematics 178,
Springer, New York, Berlin, Heidelberg, 1998.



92 Mikhail Ivanov Krastanov

[3] Frankowska H. Local controllability of control systems with feedback. J.

Optimization Theory Appl., 60 (1989), 277–296.

[4] Hermes H. On the synthesis of a stabilizing feedback control via Lie alge-
braic methods. SIAM J. Control Optim., 16 (1978), 715–727.

[5] Hermes H. Lie algebras of vector fields and local approximation of attain-
able sets. SIAM J. Control Optim., 18 (1980), 352–361.

[6] Krastanov M. I., M. Quincampoix. Local small-time controllability and
attainability of a set for nonlinear control systems. ESAIM: Control. Optim.

Calc. Var., 6 (2001), 499–516.

[7] Krastanov M. I. A sufficient condition for small-time local attainability
of a set. Control and Cybernetics, 31 (2002), No 3, 739-750.

[8] Krastanov M. I., V. M. Veliov. On the controllability of switching linear
systems. Automatica, 41 (2005), 663–668.

[9] Krastanov M. I. A Sufficient Condition for Small-Time Local Controlla-
bility. SIAM J. Control Optim., 48 (2009), No 4, 2296–2322.

[10] H. Sussmann. Lie brackets and local controllability: a sufficient condition
for scalar-input systems. SIAM J. Control Optim., 21 (1983), 686–713.

[11] Sussmann H. J. A general theorem on local controllability. SIAM J. Control

Optim., 25 (1987), 158–194.

[12] Veliov V., M. I. Krastanov. Controllability of piecewise linear systems.
Systems & Control Letters, 7 (1986), 335–341.

[13] Veliov V. M. On the controllability of control constrained linear systems.
Math. Balk., New Ser., 2 (1988), 147–155.

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 8

1113 Sofia, Bulgaria,

e-mail: krast@math.bas.bg

Received October 10, 2009

Final Accepted February 4, 2010


