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ONE-PARAMETER BIFURCATION ANALYSIS

OF DYNAMICAL SYSTEMS USING MAPLE
*

Milen Borisov, Neli Dimitrova

Abstract. This paper presents two algorithms for one-parameter local
bifurcations of equilibrium points of dynamical systems. The algorithms
are implemented in the computer algebra system Maple 13 c© and designed
as a package. Some examples are reported to demonstrate the package’s
facilities.

1. Introduction. Nonlinear dynamical systems depending on para-

meters may have very complicated behavior. If the parameters are varied, the

phase portrait may deform slightly without altering its qualitative (topological)

features, or sometimes the dynamics may be modified significantly, producing a

qualitative change in the phase portrait [1], [2], [4]. Bifurcation theory studies
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these qualitative changes in the phase portrait, e. g. the appearance or disap-

pearance of equilibrium points, periodic orbits or more complicated features.

Consider the dynamical system

(1) ẋ = f(x, p), x ∈ Rn, p ∈ R1,

where f is a smooth vector function. Suppose an asymptotically stable equilib-

rium (x∗, p) is perturbed by varying the system parameter p, and at a critical

parameter value p = p∗ the equilibrium becomes nonhyperbolic, i. e., some eigen-

values of the linearization (Jacobian matrix) Dxf(x, p) evaluated at (x∗, p∗) cross

the imaginary axis. The question is what happens to the system as p is varied

about p∗. This question can be answered using the center manifold theory and

the method of normal forms, which will be shortly presented below.

Without loss of generality let us assume that (x∗, p∗) = (0, 0). Assume

further that Dxf(0, 0) has n0 eigenvalues with zero real part, and n−n0 eigenval-

ues with nonzero real parts. Then (1) can be written in the following extended

form

u̇ = Au+ F (u, v, p), F (0, 0, 0) = 0, DF (0, 0, 0) = 0

v̇ = Bv +G(u, v, p), G(0, 0, 0) = 0, DG(0, 0, 0) = 0(2)

ṗ = 0,

where the parameter p is introduced as a new phase variable, A is an n0 × n0

matrix having eigenvalues with zero real parts, B is an (n − n0) × (n − n0)

matrix having eigenvalues with nonzero (negative and/or positive) real parts.

The matrices A and B do not depend on the parameter p. An invariant manifold

is called a center manifold for (2) if it can locally be represented as follows [4]

W c(0) = {(u, v, p) : v = V (u, p), |u| < δ1, |p| < δ2, V (0, 0) = 0, DV (0, 0) = 0}

for δ1 and δ2 sufficiently small. The conditions V (0, 0) = 0 and DV (0, 0) = 0

imply that W c(0) is tangent at (u, v, p) = (0, 0, 0) to the invariant subspace Ec

spanned by the generalized eigenvectors, which correspond to the n0 eigenval-

ues with zero real part. Then the dynamical system (2) is locally topologically

equivalent with the system [1]

u̇ = Au+ F (u, V (u, p), p), (u, p) ∈ Rn0 ×R1(3)

ṗ = 0(4)

v̇ = Bv, v ∈ Rn−n0.(5)
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The equations for u and v are uncoupled in the above system. The first two

equations, (3) and (4), represent the restriction of (2), or equivalently of (1), on

its center manifold. Since (5) is linear and has exponentially decaying/growing

solutions, the analysis of bifurcations of the equilibrium points of (1) reduces to

that of the restricted equations (3) and (4).

The computation of the center manifold (i. e., of the function v = V (u, p))

is a difficult problem. Fortunately there is a method [1], [4], based on power

series expansions, for computing approximations of the center manifold to any

desired degree of accuracy. In the next sections we shall show that quadratic

approximation of V will suffice to determine the local steady states bifurcations

and the Andronov-Hopf bifurcation.

Having the reduced dynamical system on its center manifold, the next

goal is to simplify the nonlinear part F in (3), yielding the so-called topological

normal form of the bifurcation.

The analytical parameter and coordinate transformations required to put

the system into its topological normal form lead to lengthy intermediate calcula-

tions like symbolic Jacobian computations, Taylor series coefficients, eigenvalues

and eigenvectors computations. The natural environment for this kind of work

are the computer algebra systems (CAS) like Maple and Mathematica. Their

impact on dynamical systems studies is due to the fact that many calculations

are too tedious for manual work, but do not challenge the computer resources [3].

In this paper we present two algorithms for symbolical study of one-

parameter local bifurcations of equilibrium points and discuss their implementa-

tion in CAS Maple.

2. Local bifurcations of equilibrium points with single zero

eigenvalue. Consider the dynamical system (1) and assume that (x∗, p∗) is a

nonhyperbolic equilibrium point with a single zero eigenvalue of the linearization

Dxf(x∗, p∗), with the remaining eigenvalues having nonzero real parts. Below we

present the main steps of the algorithm for normal form computation of this type

of bifurcations following some ideas from [4].

Step 1. Transform the critical point (x∗, p∗) into the origin using the

coordinate change y = x− x∗, γ = p− p∗. Then (1) becomes

ẏ = f(y + x∗, γ + p∗) ≡ g(y, γ).
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Step 2. Consider the suspended dynamical system

ẏ = g(y, γ), y ∈ Rn, γ ∈ R1

γ̇ = 0

and find a Taylor approximation up to the 3rd order about (0, 0)

ẏ = Dyg(0, 0)y +R(y, γ)

γ̇ = 0,
(6)

where R(y, γ) = g0(y, γ) + g(2)(y, γ) + g(3)(y, γ); g0(y, γ) contains all terms of

g(y, γ) depending (even linearly) on γ, and g(j)(y, γ) represents all terms in the

Taylor expansion of g(y, γ) of order j in y.

Step 3. Construct the transformation matrix T such that

T−1Dyg(0, 0)T =

(

0 0
0 B

)

where the (n − 1) × (n − 1)-matrix B has eigenvalues with nonzero real parts.

Make the coordinate change u = T−1y to obtain

u̇ = T−1Dyg(0, 0)Tu + T−1R(Tu, γ).

Denote G(u, γ) = T−1R(Tu, γ), ξ = u1, ϕ = G1(u, γ), v = (u2, u3, . . . , un)T,

F = (G2, G3, . . . , Gn)T. Then (6) is topologically equivalent with

ξ̇ = ϕ(ξ, v, γ)

v̇ = Bv + F (ξ, v, γ)(7)

γ̇ = 0.

Step 4. Reduction on the center manifold.

The center manifold W c(0, 0, 0) is locally represented as

W c(0, 0, 0) = {(ξ, v, γ) : v = V (ξ, γ), V (0, 0) = DξV (0, 0) = 0}

for sufficiently small |ξ| and |γ|. Using the invariance of V (ξ, γ) under the dy-
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namics (7) we obtain that the function V (ξ, γ) satisfies the equation

(8)















∂V1

∂ξ
(ξ, γ)

...

∂Vn−1

∂ξ
(ξ, γ)















ϕ(ξ, V (ξ, γ), γ) = B · V (ξ, γ) + F (ξ, V (ξ, γ), γ).

Find an approximation of V = (V1, . . . , Vn−1)
T in the form Vi(ξ, γ) = aiξ

2 +

biξγ + ciγ
2 with unknown coefficients ai, bi, ci, i = 1, 2, . . . , n − 1. The latter

are determined by substituting V (ξ, γ) in (8) and equating the coefficients of the

powers ξ2, ξγ and γ2. Then the reduced dynamics on the center manifold is

ξ̇ = ψ(ξ, γ), ψ(ξ, γ) = ϕ(ξ, V (ξ, γ), γ)

γ̇ = 0, ξ, γ ∈ R1.
(9)

Step 5. Normal forms of the bifurcations.

Note that the equalities ψ(0, 0) = 0 and
∂ψ

∂ξ
(0, 0) = 0 (for nonhyperbol-

icity of (0, 0)) are satisfied in (9). Check the genericity conditions for the fixed

point bifurcations.

(i) Saddle-node bifurcation:
∂ψ

∂γ
(0, 0) 6= 0 and

∂2ψ

∂ξ2
(0, 0) 6= 0. The normal

form of the bifurcation is

ξ̇ = σ1γ + σ2ξ
2, σ1 = sign

∂ψ

∂γ
(0, 0) = ±1, σ2 = sign

∂2ψ

∂ξ2
(0, 0) = ±1.

Figure 1 presents the saddle-node bifurcation diagrams; the stable branches are

denoted by solid lines, the unstable ones by dashed lines.

Fig. 1. Diagrams for saddle-node bifurcation; (a) σ1 = σ2 = 1; (b) σ1 = σ2 = −1;
(c) −σ1 = σ2 = 1; (d) σ1 = −σ2 = 1
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(ii) Transcritical bifurcation:
∂ψ

∂γ
(0, 0) = 0,

∂2ψ

∂ξ∂γ
(0, 0) 6= 0,

∂2ψ

∂ξ2
(0, 0) 6=

0. The normal form of the bifurcation is

ξ̇ = σ1γξ + σ2ξ
2, σ1 = sign

∂2ψ

∂ξ∂γ
(0, 0) = ±1, σ2 = sign

∂2ψ

∂ξ2
(0, 0) = ±1.

Figure 2 presents the bifurcation diagrams; the stable branches are denoted by

solid lines, the unstable ones by dashed lines.

Fig. 2. Diagrams for transcritical bifurcation; (a) σ1 = σ2 = 1; (b) σ1 = σ2 = −1;
(c) −σ1 = σ2 = 1; (d) σ1 = −σ2 = 1

(iii) Pitchfork bifurcation:
∂ψ

∂γ
(0, 0) = 0,

∂2ψ

∂ξ2
(0, 0) = 0,

∂2ψ

∂ξ∂γ
(0, 0) 6= 0

and
∂3ψ

∂ξ3
(0, 0) 6= 0. The normal form of the bifurcation is

ξ̇ = σ1γξ + σ2ξ
3, σ1 = sign

∂2ψ

∂ξ∂γ
(0, 0) = ±1, σ2 = sign

∂3ψ

∂ξ3
(0, 0) = ±1.

Figure 3 presents the bifurcation diagrams; the stable branches are denoted by

solid lines, the unstable ones by dashed lines.

Fig. 3. Diagrams for pitchfork bifurcation; (a) σ1 = −σ2 = 1; (b) −σ1 = σ2 = 1;
(c) σ1 = σ2 = −1; (d) σ1 = σ2 = 1
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3. Andronov–Hopf bifurcation. Assume that the linearization

D(x∗,p) of the dynamical system (1) has at (x∗, p) for sufficiently small |p − p∗|
a pair of complex conjugate eigenvalues λR(p) ± λI(p), such that λR(p∗) = 0,

and all the remaining eigenvalues have nonzero real parts; denote for simplicity

λI(p
∗) = ω > 0. In this case the dynamics (1) is topologically equivalent to a

two-dimensional dynamical system, exhibiting under some genericity conditions

the Andronov-Hopf bifurcation. The algorithm presented below follows [2].

Step 1. Transform the critical point (x∗, p∗) into the origin using the

coordinate change y = x− x∗, α = p− p∗. Then (1) becomes

ẏ = f(y + x∗, α+ p∗) ≡ g(y, α), y ∈ Rn, α ∈ R1.

Step 2. Find a Taylor approximation of g(y, α) about (0, 0)

(10) ẏ = Dyg(0, 0)y +R(y),

where the nonlinear part R(y) = R(y, 0) is evaluated at α = 0 and R(0) =

DyR(0) = 0 holds true.

Step 3. Construct the transformation matrix T such that

T−1Dyg(0, 0)T =





0 −ω 0
ω 0 0
0 0 B



 ,

where the (n − 2) × (n − 2) matrix B has eigenvalues with nonzero real parts.

Make the coordinate change u = T−1y to obtain

u̇ = T−1Dyg(0, 0)Tu + T−1R(Tu).

Denote G(u) = T−1R(Tu). Then (10) is topologically equivalent near the origin

with

(

u̇1

u̇2

)

=

(

0 −ω
ω 0

)(

u1

u2

)

+

(

G1(u)
G2(u)

)

(11)







u̇3
...
u̇n






= B







u3
...
un






+







G3(u)
...

Gn(u)






.(12)
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Introduce complex coordinates z = u1+iu2, z̄ = u1−iu2, and denote for simplicity

F = G1 + iG2, H = (G3, . . . , Gn)T, v = (u3, . . . , un)T. Then the system (11–12)

takes the form

ż = iωz + F (z, z̄, v), F (0, 0, 0) = DF (0, 0, 0) = 0

v̇ = Bv +H(z, z̄, v), H(0, 0, 0) = DH(0, 0, 0) = 0.
(13)

Find Taylor approximations of F (z, z̄, v) and H(z, z̄, v) about (0, 0, 0):

F (z, z̄, v) =
1

2
F20z

2+F11zz̄+
1

2
F02z̄

2+
1

2
F21z

2z̄+〈F10, v〉z+〈F01, v〉(14)

H(z, z̄, v) =
1

2
H20z

2 +H11zz̄ +
1

2
H02z̄

2,

where 〈·, ·〉 means the scalar product in Cn−2 and

Fij =
∂i+j

∂zi∂z̄j
F (z, z̄, v)

∣

∣

∣

∣

(0,0,0)

, i+ j ≥ 2

F 10,i =
∂2

∂vi∂z
F (z, z̄, v)

∣

∣

∣

∣

(0,0,0)

, i = 1, 2, . . . , n− 2

F 01,i =
∂2

∂vi∂z̄
F (z, z̄, v)

∣

∣

∣

∣

(0,0,0)

, i = 1, 2, . . . , n− 2;

Hij =
∂i+j

∂zi∂z̄j
H(z, z̄, v)

∣

∣

∣

∣

(0,0,0)

, i+ j = 2.

Step 4. Reduction on the center manifold.

The center manifold W c(0, 0, 0) is locally represented as

W c(0, 0, 0) = {(z, z̄, v) : v = V (z, z̄), V (0, 0) = DV (0, 0) = 0}

for sufficiently small |z|. Denote v = (v1, . . . , vn−2)
T, V = (V1, . . . , Vn−2)

T. Find

an approximation of V (z, z̄) in the form V (z, z̄) =
1

2
az2 + bzz̄ +

1

2
cz̄2, where a,

b, c are unknown vectors, b ∈ Rn−2, a, c ∈ Cn−2 with a = c̄.

Using the invariance of v = V (z, z̄) under the dynamics (13) we obtain

that the function V (z, z̄) satisfies the equation

(15)

aiωz2 − ciωz̄2 + (az + bz̄)F (z, z̄, V (z, z̄)) + (bz + cz̄)F̄ (z, z̄, V (z, z̄))

= BV (z, z̄) +
1

2
H20z

2 +H11zz̄ +
1

2
H02z̄

2.
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Equating the coefficients of z2 and zz̄ in (15) implies

z2 : (2iωE −B)a = H20

zz̄ : −Bb = H01.

E denotes the (n− 2)× (n− 2) identity matrix. Solving the above linear systems

delivers the coefficient vectors a, b and c = ā. Then (13) and (14) lead to

ż = iωz +
1

2
F20z

2 + F11zz̄ +
1

2
F02z̄

2 +

(

1

2
F21 + 〈F10, b〉 + 〈F01,

1

2
a〉

)

z2z̄ + · · ·

Denote for convenience g20 = F20, g11 = F11, g21 = F21 + 2〈F10, b〉+ 〈F01, a〉; the

reduced equation on the center manifold is

(16) ż = iωz +
1

2
g20z

2 + g11zz̄ +
1

2
g21z

2z̄.

Step 5. Normal form of the Andronov-Hopf bifurcation.

Compute
d

dα
λR(α)

∣

∣

∣

∣

α=0

= λ′R(0), and the first Lyapunov coefficient l1(0)

using (16),

l1(0) =
1

2ω2
Re (ig20g11 + ωg21) .

If the genericity conditions λ′R(0) 6= 0 and l1(0) 6= 0 are satisfied, denote

σ0 = λ′R(0) = ±1, σ1 = sign l1(0) = ±1.

The topological normal form of the generic Andronov-Hopf bifurcation is

ż = (σ0α+ i)z + σ1z|z|2

or with z = ξ + iη,

ξ̇ = σ0αξ − η + σ1(ξ
2 + η2)ξ

η̇ = ξ + σ0αη + σ1(ξ
2 + η2)η.

(17)

Stability analysis of the normal form (17)

(i) σ0 = σ1 = 1: (0, 0) is asymptotically stable for α < 0 and unstable for

α > 0; an unstable limit cycle exists for α < 0 (subcritical bifurcation), Figure

4. (ii) σ0 = σ1 = −1: (0, 0) is asymptotically stable for α > 0 and unstable for
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Fig. 4. Subcritical Andronov-Hopf bifurcation in the case σ0 = σ1 = 1; (a) α < 0;
(b) α = 0; (c) α > 0

α < 0; a stable limit cycle exists for α < 0 (supercritical bifurcation).

(iii) σ0 = +1, σ1 = −1: (0, 0) is asymptotically stable for α < 0 and

unstable for α > 0; a stable limit cycle exists for α > 0 (supercritical bifurcation),

Figure 5.

Fig. 5. Supercritical Andronov-Hopf bifurcation in the case σ0 = +1, σ1 = −1;
(a) α < 0; (b) α = 0; (c) α > 0

(iv) σ0 = −1, σ1 = +1: (0, 0) is asymptotically stable for α > 0 and un-

stable for α < 0; an unstable limit cycle exists for α > 0 (subcritical bifurcation).

4. Implementation in Maple and examples. The two algorithms

presented above are implemented in CAS Maple 13 c© and designed as a Maple

package BifTools. The procedure for symbolic calculation of bifurcations of the

steady states with a single zero eigenvalue of the Jacobian is calcOneZeroEigen-

valueBif; the procedure for symbolic calculation of Andronov-Hopf bifurcation of
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the equilibrium points is calcHopfBif. Both procedures require as Maple input the

ODEs system, the phase variables, the bifurcation parameter, the critical steady

state and the parameter bifurcation value. Below we present two examples to

demonstrate the facilities of the package.

Example 1 [5]. After entering and executing the commands

> with(BifTools):

> ode1:=diff(x(t),t)=x(t)*(1-x(t))+a*x(t)*y(t)/(x(t)+y(t))-h:

ode2:=diff(y(t),t)=y(t)*(-d+b*x(t)/(x(t)+y(t))):

> BifTools:-calcOneZeroEigenvalueBif([ode1,ode2],[x(t),y(t)],

h,[1/2,0],1/4);

the following results are displayed

– The ODEs system –

d

dt
x(t) = x(t)(1 − x(t)) +

ax(t)y(t)

x(t) + y(t)
− h

d

dt
y(t) = y(t)

(

−d+
bx(t)

x(t) + y(t)

)

– The bifurcation point –

[x(t), y(t)] =

[

1

2
, 0

]

, h =
1

4

– Results from the analysis –

“The reduced ODEs system”:

d

dt
X(t) =

(−d+ b)γ

a
+
a X(t)2

−d+ b

d

dt
γ = 0

“Saddle-node bifurcation of the equilibrium point”

“Eigenvalues of the Jacobian at the equilibrium point”:

[0,−d + b]
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Example 2 [2]. Entering and executing the commands

> with(BifTools);

> ode1:=diff(x1(t),t)=r*x1(t)*(a+x1(t))*(1-x1(t))-c*x1(t)*x2(t):

ode2:=diff(x2(t),t)=-a*d*x2(t)+(c-d)*x1(t)*x2(t):

> assume(c>0): assume(d>0): assume(r>0):

> c:=2*d: a0:=(c-d)/(c+d):

x0[1]:=d/(c+d): x0[2]:=(r*c)/(c+d):

> BifTools:-calcHopfBif([ode1,ode2],[x1(t),x2(t)],a,[x0[1],x0[2]],a0);

produce the following results

– The ODEs system –

d

dt
x1(t) = r˜x1(t)(a + x1(t))(1 − x1(t)) − c˜x1(t)x2(t)

d

dt
x2(t) = −ad˜x2(t) + (c˜ − d˜)x1(t)x2(t)

– The bifurcation point –

[x1(t), x2(t)] =

[

1

3
,

2

9

r˜

d˜

]

, a =
1

3

– Results from the analysis –

“The transversality condition”:
d

dα
λR(α)

∣

∣

∣

∣

α=0

=
1

6
r˜ − 1

2
d˜

“The first Lyapunov coefficient”:

l1(0) = −9

2

√
d˜
√

3√
r˜
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“The normal form”:

d

dt
X(t) = σ0α X(t) − Y (t) − ( X(t)2 + Y (t)2) X(t)

d

dt
Y (t) = X(t) + σ0α Y (t) − ( X(t)2 + Y (t)2) Y (t)

σ0 = sign

(

1

6
r˜ − 1

2
d˜

)

5. Conclusion and future work. The paper is devoted to algorithms

for one-parameter local bifurcations of equilibrium points of dynamical systems

and their implementation in the computer algebra system Maple 13 c©. The

designed package BifTools consists of two main procedures: calcOneZeroEigen-

valueBif for symbolic calculation of bifurcations of the steady states with a sin-

gle zero eigenvalue of the Jacobian, and calcHopfBif for symbolic calculation of

Andronov-Hopf bifurcation of the equilibrium points. As mentioned above, both

procedures require as input the critical steady state and the parameter bifurca-

tion value, which means that they should be known to the user in advance. It is

natural to extend the package by additional procedures for (symbolic and/or nu-

meric) steady states computations, determining thereby critical parameter values

of possible bifurcations of the equilibrium points. Such an extension is already

in preparation.
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