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A BAYESIAN SPATIAL MIXTURE MODEL FOR FMRI

ANALYSIS

Maya Geliazkova

Abstract. We develop, implement and study a new Bayesian spatial mix-
ture model (BSMM). The proposed BSMM allows for spatial structure in the
binary activation indicators through a latent thresholded Gaussian Markov
random field. We develop a Gibbs (MCMC) sampler to perform posterior
inference on the model parameters, which then allows us to assess the pos-
terior probabilities of activation for each voxel. One purpose of this article
is to compare the HJ model and the BSMM in terms of receiver operating
characteristics (ROC) curves. Also we consider the accuracy of the spatial
mixture model and the BSMM for estimation of the size of the activation
region in terms of bias, variance and mean squared error. We perform a
simulation study to examine the aforementioned characteristics under a va-
riety of configurations of spatial mixture model and BSMM both as the size
of the region changes and as the magnitude of activation changes.

1. Introduction. Many fMRI experiments have a common objective of
identifying active voxels in a neuroimaging data set. This is done in single subject
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experiments for example by performing invidual voxel-wise tests of the null hy-
pothesis that the observed time course is not significantly related to an assigned
reference function [1, 5]. A voxel activation map is then constructed by apply-
ing a thresholding rule to the resulting t-statistics. Typically, the task-related
activation is expected to occur in clusters rather than in isolated single voxels.
Mixture models were proposed for the independent activation case by Everitt
and Bullmore [6], and were extended by Hartvig and Jensen [9] to account for
spatial clustering of activation. Two Bayesian spatial mixture models have been
proposed in the literature. Woolrich et al. [19] propose a spatial mixture model
with three groups representing nonactivation, activation and deactivation. The
authors approximate the discrete activation class labels with a vector of contin-
uous weights w, meant to approximate the delta function I(Ai = k), where i is
the corresponding voxel and k is the activation group index. Spatial clustering is
accounted for by using a conditional autoregressive model on a logistic transfor-
mation of the weight vector. However, it is unclear how well this approximation
to the discrete labels likelihood works.

Smith et al. apply an Ising model [10, 11, 18] to generate spatial structure
in the prior distributions. This results in a fast single-site sampler for generating
the posterior distributions. However, the Ising prior may have some potential
drawbacks such as not being adaptive to the degree of voxel activation.

In this paper we develop, implement and study a new Bayesian spatial
mixture model (BSMM). The proposed BSMM allows for spatial structure in
the binary activation indicators through a latent thresholded Gaussian Markov
random field, somewhat analogous to a spatial probit model. We develop a
Gibbs (MCMC) sampler to perform posterior inference on the model parameters,
which then allows us to assess the posterior probabilities of activation for each
voxel. This model also accounts appropriately for the variability in the model
parameters, unlike the spatial mixture model of Hartvig and Jensen [9], which
was based solely on maximum pseudo-likelihood estimates. A purpose of this
article is to compare the HJ model and the BSMM in terms of receiver operating
characteristics (ROC) curves. Another purpose of this paper is to consider the
accuracy of the spatial mixture model and the BSMM for estimation of the size of
the activation region in terms of bias, variance and mean squared error (MSE).
We perform a simulation study to examine the bias, variance, and MSE of a
variety of configurations of spatial mixture model and BSMM both as the size of
the region changes and as the magnitude of activation changes.

2. Spatial Mixture Models. In the following we assume that the
investigator has already performed an analysis to obtain a statistical parametric
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map, which is a matrix of test statistics corresponding to the null hypothesis of
no task-related activation. These could come for example from a series of univari-
ate regression analysis at each voxel, where the independent variables include a
linear drift term and a variable reflecting the task such as hemodynamic response
function or “boxcar” predictor. Under the null hypothesis, these test statistics
typically have a tν distribution, where ν is large, so that it can be approximated
by a normal distribution.

In 1999, Everitt and Bullmore [6] proposed an alternative approach for
detecting activated voxels in the human brain under a cognitive task. They fitted
a finite mixture distribution to the observed distribution of the test statistic. The
mixture distribution has two components, one of which accounts for the activated
voxels and the other represents the non-activated voxels. They also estimated the
proportion of voxels which are activated, denoted by p, and the parameter that
characterizes the activation distribution µ using maximum likelihood methods.
Posterior probabilities of activation are expressed for each voxel in terms of these
estimated parameters. These posterior probabilities can be thresholded (e.g.,
taking 0.5 as a threshold) to identify which voxels are activated and which are
not. I would like to point out that the approach is not fully Bayesian. There are
only point estimates of the model parameters. The authors used only the point
estimates in order to compute the posterior probabilities of activation, rather
than posterior distribution of the model parameters.

Hartvig and Jensen [9] extended this mixture model to allow for associ-
ation between neighboring voxels in terms of activation status. This association
mimics the clustering of activation typically seen in fMRI data.

Let Ai be the indicator for voxel i being activated. In terms of Ai, the
nonspatial mixture distribution model is given by

f(ti;µ, p) = (1 − p)f(ti|Ai = 0) + pf(ti|Ai = 1;µ),

where p represents the marginal probability of a voxel (e.g., voxel i) being ac-
tivated, P (Ai = 1). Then the posterior probability of activation for voxel i
assuming independent voxels is

P (Ai = 1|ti) =
p̂f(ti|Ai = 1; µ̂)

f(ti; µ̂, p̂)
.

Hartvig and Jensen [9], however, consider not only voxel i, but also neighbors, in
determining activation at voxel i. They denote by C the set of k+1 voxels, given
voxel i together with its k neighbors. AC is the vector of activation in C, denoted
AC = (A,A1, . . . , Ak), and tC is the vector of the test statistic for activation in
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C, denoted tC = (t, t1, . . . , tk). The posterior probabilities of activation have the
form

P (A = 1|tC) =
∑

AC :A=1

P (AC |tC)

=
∑

AC :A=1

f(tC |AC)P (AC)

P (tC)

∝
1∑

A1=0

. . .
1∑

Ak=0

f(tC |AC = (1, A1, . . . , Ak))P (AC = (1, A1, . . . , Ak)).

Under conditional independence of ti given Ai, the density of tC given AC can
be written as

f(tC |AC = aC) = f(t|a)
k∏

j=1

f(tj|aj),

where f(t|a) is the density of t given A = a. Hartvig and Jensen [9] present three
models for the joint prior distribution for AC , denoted P (AC). We will describe
two of them; the third one is omitted for brevity.

2.1. Model 1. For an activation configuration aC let l be the number
of ones (or active voxels) in aC , l = a + a1 + . . . + ak.

Model 1 defines the marginal probability of activation in neighborhood C
as

P (AC = aC) =

{
q0 if l = 0

q1 if 0 < l ≤ k + 1

The model may be parameterized through the mixture probability p of a voxel
being activated as p = q12

k or q1 = p2−k and q0 = 1−(2−2−k)p. The conditional
probabilities of activation given the values of ti in the neighborhood are calculated
as

P (A = 1|tC) =

{
1 +

f(t|0)

f(t|1)

[
1 +

(
q0

q1
− 1

)
r

]}−1

,

where

r =




k∏

j=1

(
1 +

f(tj|1)

f(tj|0)

)


−1

.
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2.2. Model 2. Model 2 defines the marginal probability of activation in
a neighborhood to be related to the number of active voxels in the neighborhood,

P (AC = aC) =

{
q0 if l = 0

φγl−1 if 0 < l ≤ k + 1

The model can be parameterized through the marginal probability p of a
voxel being activated. A simple combinatorial argument gives that p = φ(1+γ)k.
The parameter γ can be interpreted as a measure of correlation of neighboring
voxels. The last parameter q0 is given by the constraint that the probabilities
must sum up to 1. Hartvig and Jensen [9] show that the conditional probability
of activation given the values ti in the neighborhood is given by

P (A = 1|tC) =

{
1 +

f(t|0)

f(t|1)

[
γ−1 +

1 − φ(1 + γ)k+1/γ

φ
r̃(γ)

]}−1

,

where

r̃(γ) =




k∏

j=1

(
1 + γ

f(tj |1)

f(tj |0)

)


−1

.

In order to estimate δ, p, and γ, Hartvig and Jensen [9] propose to max-
imize the pseudo-likelihood function

L =

k∑

i=1

log f(tCi
;µ, p),

where f(tCi
) is the density function of the neighborhood centered at voxel i.

Hartvig and Jensen [9] do not recommend Model 3. Geliazkova and Logan
[7] study the performance of the various spatial mixture models and recommend
Model 2 with eight neighbors.

2.3. Bayesian Spatial Mixture Model. Now we will describe the
proposed Bayesian Spatial Mixture model. The parameters of the model are γ, β
and µ. In this model γ is a latent Gaussian spatial process, β is the overall level of
activation, and µ is the mean of the test statistics of the active voxels. We assume
a mixture model for the z-statistics testing for a task-related activation at each
voxel, depending on voxel i’s unknown binary activation status, denoted Ai. The

density function of the normal distribution is P (zi) =
1

2π
exp

(
−

1

2

(zi − µ)

σ

)
,

where µ is the mean and σ is the standard deviation. The active voxels follow
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normal distribution with mean µ and standard deviation 1 N(µ, 1), while the
nonactive voxels follow normal distribution with mean 0 and standard deviation
1 N(0, 1).

Assuming conditional independence given Ai, the likelihood is

L =
∏

i

[
1

2π
exp(−

1

2
z2
i )

]1−Ai
[

1

2π
exp(−

1

2
(zi − µ)2)

]Ai

,

where µ is the mean of the test statistics of the active voxels.
The spatial model for the binary activation indicators is induced by a

latent Gaussian spatial process γ = (γ1, . . . , γm), where Ai = I(β + γi > 0) and
I is an indicator function. Here β reflects the overall level of activation in the
image. The process γ is assumed to follow a Gaussian conditional autoregressive
(CAR) model [2].

The conditional specification of the CAR model will be given on the next
several lines, where the symbol ∼ means follow.

P (γi|γ−i, φ) ∼ N
(
γi, φ̃i

−1
)

,

where
∑

j∼i

wijγj

wi+
= γi, the symbol ∼ on that line means that voxel i is a neighbor

of j, φ̃i
−1

=
φ

wi+
. γ−i = {γj , j 6= i}, wij = 1 if i ∼ j (i.e., voxel i is a neighbor

of voxel j), otherwise wij = 0 and wi+ =
∑

j

wij is the number of neighbors of

voxel i.
The joint density of γ in the CAR model has the form

P (γ1, . . . , γm|φ) ∝ exp


−

1

2φ

∑

i6=j

wij(γi − γj)
2


 ,

where m is the total number of voxels in the image.
The hyperprior for β is assumed to come from a N(µβ, σ2

β) distribution,
so that

P (β) ∝ exp

(
−

(β − µβ)2

2σ2
β

)
.

The hyperparameters µβ and σ2
β on β, which regulates the proportion of

active voxels, is selected so that a priori there is a low likelihood of a voxel being
active.
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To complete the Bayesian specification of the prior distributions, we con-
sider a prior distribution for µ. We will take a normal prior for µ with mean µ0

and standard deviation
µ0

3
.

P (µ) ∝ exp

(
−

(µ − µ0)
2

2 ·
µ2

0

9

)
.

This standard deviation is chosen so that µ will be nonnegative with high prob-
ability.

Closed-form expressions for the full posteriors can be obtained using this
specification, leading to a fast implementation of the Gibbs sampler. We are in-
terested in using this model to estimate the posterior probability of activation of
voxel i given the t-statistics map pi = P (Ai = 1|t1, . . . , tm) = E(Ai|t1, . . . tm). Un-

fortunately this mean is intractable. Let (A
(l)
1 , . . . , A

(l)
m , µ(l), β

(l)
0 ) for l = 1, . . . , L

be a set of Gibbs samples from the joint posterior of A1, . . . , Am, µ, β0. Then

considering voxel i for example, A
(1)
i , . . . , A

(L)
i is a sample from the posterior

marginal distribution of Ai given t1, . . . , tm. From this the posterior probability
of activation for voxel i can be estimated by

P (Ai = 1|t1, . . . , tm) =
A

(1)
i + . . . + A

(L)
i

L
.

3. FMRI Simulation Study.

Part 1: ROC curves. The first part of the simulation study compares
the characteristics of these spatial thresholding procedures in terms of their sen-
sitivity to voxel activation. We use ROC curves [15] to display the results. ROC
curves are a plot of the sensitivity (on the y-axis) versus 1 minus the specificity
(on the x-axis), plotted over a range of test statistic thresholds. Each thresh-
old determines an (x,y) point on the curve. Here sensitivity is the probability
of identifying an active voxel as active because it is over the threshold, while 1
minus the specificity is the false positive rate, or the probability of incorrectly
identifying an inactive voxel as active because it is above the threshold. ROC
curves range from (0,0) to (1,1), and ideally the researcher wants the curve to be
as close to the upper left point (1,0) as possible. ROC analysis has been used in
several prior studies to validate approaches in fMRI [4, 13, 14, 17, 20].

In each case, data is generated to simulate a t-statistic SPM where the
regions of activation (ROAs) are known. A 64 by 64 image slice is selected for
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Fig. 1. ROC curve for 3 by 3 region

Fig. 2. ROC curve for 7 by 7 region, BSMM
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Fig. 3. Bias of ROA size estimate as a function of the width, BSMM

Fig. 4. Bias of ROA size estimate as a function of the mean of the activated voxels, µ,
BSMM
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analysis within which two square ROAs are designated to have activation. For
this slice, simulated fMRI t-statistics (assuming large d.f.) outside the ROAs are
generated from a N(0,1) distribution, while inside the ROAs they are generated
from a N(µ,1). Here µ can be interpreted as the mean of the standardized t-
statistics for activated voxels. We use µ = 1.5 and ROAs varying from 3 by 3 to
7 by 7. Figure 9 illustrates sample 7 by 7 ROAs as considered in the two parts of
the simulation study. To estimate the (x,y) point on the ROC curve, first a fixed
threshold in terms of the test statistic is set. Then using that threshold value,
the sensitivity and (1−Specificity) is computed for each image. These are then
averaged across 500 simulated images to generate the (x,y) point. This is repeated
for a range of thresholds to generate a curve. This is similar to the approach used
in Logan et al. [12]. A total of 500 simulations for each scenario are used in all
simulations. The spatial mixture model is done using a neighborhood of eight
neighbors, and is thresholded over a range of posterior probability of activation.

Part 2: Estimation of the size of ROA. In this simulation study, we
measure the bias and the variance of the estimate of the size of the activation
region for each procedure. The size of the activation region is the number of
truly active voxels across both ROAs, while the estimated size is the number of
voxels which are declared active by one of the thresholding procedures. The true
number of active voxels ranges from 18 for a 3 by 3 region to 98 for 7 by 7 regions.
Two scenarios are considered; in the first we study the bias and variance of each
procedure as the size of the activation regions gets larger, and in the second we
compare the bias and variance as the magnitude of activation changes. The data
generation model is as in Part 1. In the first scenario, we vary the dimensions
of the square ROAs from 3 by 3 to 5 by 5 to 7 by 7, with µ = 2.25. In the
second scenario, we use two 7 by 7 square ROAs while varying µ from 1.5 to 3.0
by increments of 0.5. Spatial mixture model 2 is made using a neighborhood of
eight neighbors, and is thresholded at a 0.5 posterior probability of activation.

4. A Real Data Example. A bilateral finger-tapping experiment was
performed to illustrate the spatial thresholding procedures investigated earlier.
To generate the functional data, bilateral finger tapping was performed in a block
design with 8 epochs of 16 s off and 16 s on, followed by 20 s off. Scanning was
performed using a GE 3T scanner, in which 15 axial slices of size 96 × 96 were
acquired. A mask was applied so that only the interior 64 × 64 image is used.
Each voxel has dimensions 2 mm cubic voxels with TE=48 ms. Observations
were taken every TR = 2, 000 ms so that there are 138 in each voxel. Data
from a single axial slice through the motor cortex were selected for analysis. A
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Fig. 5. SD of ROA size estimate as a function of the width, BSMM

Fig. 6. SD of ROA size estimate as a function of the mean of the activated voxels, µ,
BSMM
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Fig. 7. MSE of ROA size estimate as a function of the width, BSMM

Fig. 8. MSE of ROA size estimate as a function of the mean of the activated voxels, µ,
BSMM
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multiple regression model was fit to the data with an intercept, a time trend
and a reference function. The time trend was a column of counting numbers
from a linear time trend. The first 6 seconds were omitted to remove warm-up
effects, and the reference function was a “boxcar” shape, shifted by 6 s to match
the hemodynamic response function. The “boxcar” predictor is simply a [−1, 1]
indicator of whether the subject is engaged in the cognitive task or not. Temporal
AR(1) autocorrelation was checked, found to be minimal, and so was not adjusted
for. Each of the methods discussed were applied to the dataset.

5. Results.

Simulation Study Part 1: ROC curves. The ROC curves for the
Bayesian spatial mixture model are given in Figure 1 for 3 by 3 ROAs and in
Figure 2 for 7 by 7 ROAs. As a comparison I also show the HJ spatial mixture
model in the same figure. The BSMM with a prior on β0 of N(−1.5, 1)(BSMM2)
for 3 by 3 activation regions seems to be performing almost as well as the HJ
model. However the BSMM with a prior of N(−3, 1)(BSMM1) seems to be less
sensitive than the HJ model and BSMM2 models. For 7 by 7 activation regions
the ROC curves for BSMM1 and BSMM2 turn out to be almost identical. This
indicates that for a larger region of activation the results are not sensitive to the
prior on β0. Also, the BSMM is more sensitive to activation than the HJ model.

Simulation Study Part 2. Estimation of Size of ROA. Figure 3
and Figure 4 contains the bias estimate of the size of the ROA for the BSMM
and HJ procedure. The BSMM seems to outperform the HJ model slightly. Both
models have a bias that approaches 0 as µ gets large.

Figure 5 and Figure 6 contain the SD estimation of the size of the ROA for
the BSMM and HJ procedures. In Figure 5 the SD is plotted against the width
of the square ROA, while in Figure 6 the SD is plotted against the magnitude of
activation. The BSMM seems to outperform the HJ model slightly, although the
difference diminish as µ gets large.

Figure 7 and Figure 8 contain the MSE of the estimates of the size of the
ROA for the BSMM and HJ procedure. In Figure 7 the MSE is plotted against
the width of the square ROA, while in Figure 8 the MSE is plotted against the
magnitude of activation. As before, the BSMM seems to outperform the HJ
model slightly, but the difference diminish as µ gets large.

Real Example. Figure 10 shows the results of the Hartvig and Jensen
spatial mixture model, with posterior probabilities thresholded at 0.5. Figure
11 and Figure 12 show the results of the BSMM with a prior on β0 N(−3, 1)
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Fig. 9. 7 by 7 regions of activation

Fig. 10. Posterior probabilities from HJ
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Fig. 11. Posterior probabilities from BSMM, with N(−3, 1) prior

Fig. 12. Posterior probabilities from BSMM, with N(−1.5, 1) prior
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and N(−1.5, 1) prior. Note that BSMM appears to capture more of the spatially
distributed signal than the HJ model, without suffering from the overestimation
of the activation region due to smoothing. Also, the BSMM in this case is not
sensitive to the prior on β0 since there is little difference between the posterior
probabilities of activation with N(−3, 1) prior on β0 and a N(−1.5, 1) prior.

All the simulations were programmed in C. The figures were produced
with Matlab.

Discussion. In terms of bias, standard deviation and MSE, the BSMM
tends to do better than the HJ spatial mixture model for a small- and modest-
magnitude signal, but the performance is almost identical when the magnitude
of the signal is high. The HJ model may be an option for large magnitude signals
because it performs similarly and is computationally less intensive.

The methods were illustrated on a real data set from a bilateral finger-
tapping fMRI experiment. The results from the real fMRI study confirm the
conclusions from the simulation study.
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