
Serdica J. Computing 4 (2010), 349–370

EXTENSION OF THE C-XSC LIBRARY WITH SCALAR

PRODUCTS WITH SELECTABLE ACCURACY∗

Michael Zimmer, Walter Krämer, Gerd Bohlender, Werner Hofschuster

Abstract. The C++ class library C-XSC for scientific computing has been
extended with the possibility to compute scalar products with selectable ac-
curacy in version 2.3.0. In previous versions, scalar products have always
been computed exactly with the help of the so-called long accumulator. Ad-
ditionally, optimized floating point computation of matrix and vector opera-
tions using BLAS-routines are added in C-XSC version 2.4.0. In this article
the algorithms used and their implementations, as well as some potential
pitfalls in the compilation, are described in more detail. Additionally, the
theoretical background of the employed DotK algorithm and the necessary
modifications of the concrete implementation in C-XSC are briefly explained.
Run-time tests and numerical examples are presented as well.

1. Introduction and Notation. C-XSC [10, 8] is a C++-class
library for verified scientific computing.In addition to basic types for calculating
with real and complex (floating point) data, C-XSC also provides corresponding

ACM Computing Classification System (1998): G.1.0, G.4.
Key words: DotK algorithm, error-free transformations, C-XSC, scalar products, long accu-

mulator, K-fold accuracy.
*Preliminary version of this paper was presented at the International Workshop on Mathe-

matical Modelling and Scientific Computations (MMSC’09), September 23-26, 2009, Velingrad,
Bulgaria.

350 Michael Zimmer, Walter Krämer, Gerd Bohlender, Werner Hofschuster

matrix and vector data types and in particular data types and algorithms for
interval arithmetic.

For all calculations of scalar products, which may be explicit or implicit
(in the relevant operators), the so-called long accumulator [13, 14, 5] is used and is
realized in the dotprecision data types. In the accumulator all scalar products
of vectors with floating point components are calculated exactly in a sufficiently
long fixed-point representation. With that, all calculations relevant for scalar
products can be accomplished exactly. Only the final result has to be rounded
into working precision. However, unless supported by hardware, such a scalar
product calculation with the long accumulator is very time-consuming and is the
main reason for the low run-time performance of C-XSC, e.g. in comparison to
Intlab [18].

The goal of the changes described in this article is to introduce the se-
lectable accuracy K (with respect to double-accuracy) for scalar products. De-
pending on the chosen accuracy, a different algorithm will be used (long accu-
mulator, normal floating-point calculation, DotK algorithm [16]). To assure the
compatibility with older programs, the changes were conducted in such a way
that without any special declaration the case K = 0 will be assumed. This means
that, the long accumulator is used, which is consistent with the behavior of older
C-XSC versions.

With these changes, programs can now be better adapted to a particu-
lar task. This means that, calculations which don’t require maximal accuracy
can now be executed considerably faster, depending on the chosen accuracy K.
Additionaly, pure floating-point calculations based on optimized BLAS routines
are also available for some operations, leading to drastically improved run time
performance in certain situations.

Let F denote the set of floating-point numbers and F
n the set of floating-

point vectors of length n. The real operations +,−, · have to be replaced with the
floating-point operations ⊞,⊟,⊡. If a real-valued term E has to be calculated in

floating-point arithmetic, we denote it in the short form fl(E). E. g. fl(
n−1∑

i=1

pi+pn)

denotes the floating-point evaluation of the term
n−1∑

i=1

pi + pn, which is the result

of the calculation of p1 ⊞ p2 ⊞ . . . ⊞ pn (all operations of the real-valued term are
replaced by the corresponding floating-point operations). This article assumes the
double format of the IEEE standard [2] as the underlying floating point format.
eps denotes the relative error bound of rounded floating-point operations; for
IEEE double operations, eps = 2−53 holds.

Extension of the C-XSC Library. . . 351

The article is structured as follows. First, the current status with regard
to explicit as well as implicit (i. e. hidden in operator calls) scalar product cal-
culations in C-XSC is clarified in simple examples. In section 3 the theoretical
background of the DotK algorithm is briefly explained. Section 4 describes the ac-
tual implementation, especially the modifications which were applied to the DotK
algorithm and how and where optimized BLAS routines are used. In section 5
some important points concerning compilation are highlighted, especially regard-
ing performance and numerical accuracy. Finally, in section 6 some examples for
the usage and also time measurements are presented.

2. Computation of Exact or Maximally Accurate Scalar Prod-
ucts in C-XSC. The following code in C-XSC

//Real matrices

rmatrix A(m,n); //m-by-n

rmatrix B(n,p); //n-by-p

rmatrix R(m,p); //m-by-p

//..matrices A and B are

//initialized with double values...

//maximally accurate matrix-matrix

//multiplication

R= A*B;

computes the result R of the multiplication of the real floating point matrix
A with the real floating point matrix B. Each element of the resulting matrix
R is computed with maximal accuracy. For the calculation of the end result
with maximal accuracy, internally, the scalar product of the corresponding row of
matrix A with the corresponding column of matrix B is calculated componentwise
exactly(!) in the so-called long accumulator. The exact result is rounded to the
nearest floating point number (maximally accurate floating point result). This
long accumulator is realized with the data type dotprecision offered in C-XSC,
which is also directly available to the user. The scalar product of two floating-
point vectors can thus be calculated exactly as follows:

rvector x(n);

rvector y(n);

//...components of x and y are

//initialized with double values...

//accu is initialized with 0

dotprecision accu(0);

352 Michael Zimmer, Walter Krämer, Gerd Bohlender, Werner Hofschuster

accumulate(accu,x,y);

//exact value of the scalar product

//x*y is available in accu

The leading r in the name of the data types rvector and rmatrix indicate
that their element are real.

After execution of this program fragment, the dotprecision variable accu
contains the exact value of the scalar product of the two floating point vectors
x and y. The C-XSC routine accumulate allows to exactly add the exact value
of the scalar product of vectors x and y to the previous value which is already
stored in the dotprecision variable accu (here, this is 0). In this computation,
neither overflow nor underflow can occur (but this can, of course, happen in a
later assignment of the (rounded) exact value to a floating-point variable). The
exact value of such a scalar product is typically not a floating-point number.

The described feature of the exact calculation of scalar products of floating-
point vectors is used in C-XSC to implement all basic operations with maximum
accuracy. This applies also to all matrix and vector operations, to complex op-
erations and to operations with floating-point intervals. The long accumulator
(dotprecision data type) is right now unfortunately not supported by any spe-
cial hardware. Thus, the long accumulator is implemented in software as a fixed-
point format with sufficient mantissa length, so that operations which use this
data type are relatively slow (e.g. matrix-matrix multiplication).

In order to improve the run-time of C-XSC programs two modifications
are introduced. First, so-called error-free transformations are used to accelerate
the higher-precision scalar products (compared to the software solution of the
long accumulator). This is the central theme in this article. The second step
is to use highly optimized BLAS-routines for some floating-point operations (es-
pecially matrix-matrix multiplications), which will also be elaborated on later in
this paper.

The DotK algorithm described in the following section uses only floating
point operations for calculations of scalar products of floating point vectors in
a simulated higher precision. This algorithm is significantly faster compared to
scalar product calculations with a software emulation of the long accumulator.
In contrast, the hardware realization of the long accumulator (which is possible
with moderate additional hardware cost [15]) would be significantly faster than
the DotK algorithm. It should also be noted that the DotK algorithm normally
does not guarantee matrix-vector-operations with maximum accuracy. A hard-
ware solution of the long accumulator would always be maximally accurate. The

Extension of the C-XSC Library. . . 353

availability of the DotK algorithms in C-XSC is motivated only by the unfortunate
non-availability of the long accumulator in hardware.

3. The DotK-Algorithm. The DotK algorithm for the fast calcula-
tion of scalar products of floating point vectors in simulated higher precision (K-
fold double accuracy is simulated) was introduced in original form in [16, 20]. It
is based on the use of error-free transformations: For all a, b ∈ F and ◦ ∈ {+,−, ·}
there exists a y ∈ F with a ◦ b = x + y and x = fl(a ◦ b).

Each of the operations occurring in a scalar product can be converted
exactly into the sum of two floating point numbers x and y, where x is the result
of the normal floating point calculation and y represents the emerging rounding
error. This also applies whenever (intermediate) results are produced in the un-
derflow range. Each scalar product of vectors with floating point components can
thus be transformed error-free into a sum of floating point numbers.

The calculation of error-free transformations is possible with mere floating-
point operations [7, 6, 16, 20, 19]. Error-free transformations were already used in
the 1970s in order to compute scalar products with higher accuracy [17] or even
with maximum accuracy [4].

The algorithm 1 (TwoSum) is used for the transformation of the sum of two
floaing point numbers, the algorithm 3 (TwoProduct) is used for the tranformation
of the multiplication. It utilizes algorithm 2 (Split), which splits a floating
point number into the sum of two floating point numbers with non-overlapping
mantissas.

Input : Two floating-point numbers a, b ∈ F

Output: Two floating-point numbers x, y ∈ F with x = a ⊞ b and
a + b = x + y

x = a ⊞ b

z = x ⊟ a

y = (a ⊟ (x ⊟ z)) ⊞ (b ⊟ z)

Algorithm 1: TwoSum

These algorithms can be implemented directly in C++, where factor of
the algorithm Split should be implemented as a constant. In the implementation
extreme care should be taken that all calculations are conducted according to
the IEEE standard for double precision. In particular, many modern processors
use 80 bit wide registers for floating point calculations. The usage of such excess
precision registers can lead to wrong results during the error-free transformations.
Details on this topic can be found in section 5.

354 Michael Zimmer, Walter Krämer, Gerd Bohlender, Werner Hofschuster

Input : A floating-point number a ∈ F

Output: Two floating-point numbers x, y ∈ F with a = x + y

factor = 227
⊞ 1

c = factor ⊡ a

x = c ⊟ (c ⊟ a)
y = a ⊟ x

Algorithm 2: Split

Input : Two floating-point numbers a, b ∈ F

Output: Two floating-point numbers x, y ∈ F with a · b = x + y

x = a ⊡ b

[a1, a2] =Split(a)
[b1, b2] =Split(b)
y = a2 ⊡ b2 ⊟ (((x ⊟ a1 ⊡ b1) ⊟ a2 ⊡ b1) ⊟ a1 ⊡ b2)

Algorithm 3: TwoProduct

Based on the error-free calculations, the summation of the single elements
of a vector of floating-point numbers can be implemented in K-times working
precision (algorithm 4, SumK). The principle in doing so is to implement the sum-
mation with the help of TwoSum, carrying the floating point result along and saving
the error-terms as the corresponding element of the vector. With each run, the
condition number improves by almost a factor eps (relative rounding error). Af-
ter K − 1 repetitions and a final summation in normal floating point, K-times
accuracy is achieved.

Now the actual algorithms for the computation of the scalar product in K-
fold accuracy can be formulated. For this purpose the scalar product is converted

Input : A vector p ∈ F
n, desired accuracy K

Output: The sum fl(
∑

pi), in K-fold working accuracy
for k = 1 : K-1 do

for i = 2: n do
[pi, pi−1] = TwoSum(pi,pi−1)

res = fl(
n−1∑

i=1

pi + pn)

Algorithm 4: SumK

Extension of the C-XSC Library. . . 355

Input : Two vectors x, y ∈ F
n

Output: The scalar product res = x · y, as if calculated with
double working accuracy

[p,s] = TwoProduct(x1,y1)
for i=2:n do

[h,r] = TwoProduct(xi,yi)
[p,q] = TwoSum(p,h)
s = s ⊞ (q⊞r)

res = p ⊞ s

Algorithm 5: Dot2

Input : Two vectors x, y ∈ F
n, desired accuracy K

Output: The scalar product x · y, as if calculated with K-times
working accuracy

[p,r1] = TwoProduct(x1,y1)
for i=2:n do

[h,ri] = TwoProduct(xi,yi)
[p,rn+i−1] = TwoSum(p,h)

r2n = p
res = SumK(r, K-1)

Algorithm 6: DotK

into a sum of floating point numbers with the help of the error free transforma-
tions, which can then be calculated in K-fold precision with the algorithm SumK.
In the case of K = 2, an optimized version of the algorithm (algorithm 5, Dot2)
is used, because it is not necessary to store the error-terms of the error-free trans-
formations in an array or a vector. For K > 2 the algorithm 6 (DotK) will be
used.

It is also possible to determine an error bound for these algorithms via
mere floating-point calculation. This method is not further illustrated here, more
detailed information can be found in [16]. The necessary calculations are specified
in section 4 in the exemplification of the concrete implementation. In this sec-
tion, some modifications of the original version of the DotK algorithm (described
above) are enlarged on, which essentially serve for a reasonable integration in the
accumulator classes.

In [12, 21] a more detailed summary of the DotK algorithm can be found,
as well as the description of an earlier implementation for C-XSC in the form of

356 Michael Zimmer, Walter Krämer, Gerd Bohlender, Werner Hofschuster

an additional package of separate classes. It is also possible to convert the result
of a dot product to staggered precision, this is described in [3].

4. Implementation. In this section, the changes to the C-XSC library
and the modifications to the algorithm from section 3 are described in more detail.
The changes were implemented in such a way that existing programs behave
exactly the same as with previous C-XSC versions. Absolutely no changes in the
code should be necessary to retain compatibility.

4.1. Changes to the dotprecision-Classes. Since the accuracy for
the calculation of scalar products should now be selectable (i. e. switchable at run
time), the dotprecision classes need a new member variable for the currently cho-
sen accuracy. For this the following changes are conducted in all dotprecision-
classes:

• A new member variable int k to store the current accuracy with the fol-
lowing meaning:

– k = 0: Calculation with accumulator (as in old C-XSC versions).

– k = 1: Pure floating-point calculations (enclosure or error-bound is
calculated via switching of the rounding mode).

– k ≥ 2: Use of the DotK algorithm for calculation in K-fold accuracy.

• New member functions void set_k(unsigned int) and int get_k() for
setting and reading-out the current accuracy level.

• Corresponding adjustment of the constructors (accuracy is by default set
to 0, in the copy-constructor the accuracy of the original is chosen) and
assignment operators (accuracy is not assigned but always retained).

In addition, an error variable err of type real for the class dotprecision
is required, because now the currently saved value does not need to be exact any-
more. During the call of the function rnd to round the result to double precision
this error bound is now taken into account. The same applies to comparison oper-
ators. All other dotprecision classes do not need such an error variable, because
they are composed of real dotprecision objects (the class idotprecision uses
e.g. two dotprecision objects for representing the infimum and the supremum
of the resulting interval, respectively).

4.2. Implementation of the new Computation Functions. For the
actual computation of the scalar product, a new function (or rather several over-
loaded versions) addDot(dotprecision&, const S&, const T&) is introduced,

Extension of the C-XSC Library. . . 357

which is available only internally. This function is implemented as a template
with parameters S and T. This is done to directly support auxiliary data types
of C-XSC such as rvector_slice which are used for cutting out slices of vectors
and matrices. Thus, one does not have to write an adapted version of the function
for each auxiliary data type (since corresponding data types have the same set of
operators, the source code for the computation would be identical).

This function, with all required auxiliary functions (implementation of
the error-free transformations as well as the algorithm SumK, which is required
by the DotK algorithm for K > 2), is implemented in a new file dotk.inl (and
idotk.inl, cdotk.inl and cidotk.inl for the appropriate data type). The
declarations of the function do not appear in any header-file. They can thus not
be called by the user of the library directly (instead, the user calls the accumulate
function, which in turn calls addDot if necessary).

These new files have to be included in the .cpp-files in which the scalar
product calculations are required (see section 4.3). In this way the code for
the computations is compiled directly into the library, the definitions are not,
as usual in C-XSC, embedded into the header. This is required because in many
cases special compiler flags are needed to guarantee the correct execution of error-
free transformations. Otherwise, the user would have to set these flags in each
compilation of a C-XSC program using the DotK algorithm to guarantee correct
results (see also section 5).

Listing 1: Computation function for real scalar products
template < typename S, typename T>
inline void addDot(dotprecision &val ,

const S &x, const T &y) {
int n = Ub(x)-Lb(x)+1;
int lb1 = Lb(x);
int lb2 = Lb(y);
real res ,err =0.0;
int rnd;

// Check rounding mode
if((rnd=getround ()) != 0) {

setround (0);
}

if(val.k == 0) { // use accumulator
for(int i=1 ; i<=n ; i++)

accumulate (val ,x[i+lb1 -1],y[i+lb2 -1]);
} else if(val.k == 1) { // use floating point

real resd = 0.0, resu = 0.0;

setround (-1);
for(int i=1 ; i<=n ; i++)

resd += x[i+lb1 -1] * y[i+lb2 -1];

358 Michael Zimmer, Walter Krämer, Gerd Bohlender, Werner Hofschuster

setround (1);
for(int i=1 ; i<=n ; i++)

resu += x[i+lb1 -1] * y[i+lb2 -1];

setround (0);
res = resd +(resu -resd)*0.5;
setround (1);
val.err = val.err + resu -res;
val += res;

} else if(val.k == 2) { // use DotK optimized for K=2
real p, s, h, r, q, t;

TwoProduct (x[lb1],y[lb2],p,s);

err += abs(s);

for(int i=2 ; i<=n ; i++) {
TwoProduct (x[lb1+i-1],y[lb2+i-1],h,r);
TwoSum(p,h,p,q);
t = q + r;
s += t;
err += abs(t);

}

val += p;
val += s;
res = p+s;

real alpha , delta , error;

delta = (n*Epsilon) / (1.0 -2* n*Epsilon);
alpha = (Epsilon*abs(res)) +

(delta*err +3* MinReal/Epsilon);
error = alpha / (1.0 - 2* Epsilon);

setround (1);
val.err = val.err + error;

} else { // use DotK
real r = 0, h;
real * t = new real [2*n];

for(int i=1 ; i<=n ; i++) {
TwoProduct (x[lb1+i-1], y[lb2+i-1],

h, t[i -1]);
TwoSum(r, h, r, t[n+i -2]);

}

t[2*n -1] = r;
SumK (t, 2*n, val.k-1, err , val);

setround (1);
val.err = val.err + err;

delete [] t;
}

// Reset rounding mode to former value
setround (rnd);
}

Extension of the C-XSC Library. . . 359

Listing 1 shows the implementation of addDot for the real scalar product.
According to the value of the member variable k of the dotprecision object, an
appropriate calculation method is used. The case K = 2 shows how the error
bound can be computed with simple floating-point calculations. For K > 2 the
error bound is calculated in a similar manner in the SumK function.

If no interval scalar product is calculated, a special variant of addDot exists
in which the computation of the error bound is omitted. This version is used in the
real or complex operators of the matrix and vector classes (see section 4.4), since
these operators do not compute enclosures and thus need no error bound. That
way, the execution time can be reduced. This variant without error calculation is
also directly available for the user in the form of the function accumulate_approx

(as described, this function is not available for interval scalar products, since then
correct enclosures are expected in general).

An important modification compared to the original algorithm is made
possible through the usage of the accumulator. Since the result of every scalar
product calculation must be saved intermediately in the respective accumulator
anyway, one can take advantage of its ability to store very long numbers exactly.
The result may be calculated in such a way that the data in the accumulator can be
converted to a staggered representation later on, if necessary. For this purpose,
the current error term (the sum of the error terms of the single operations) is
individually added to the accumulator in every run of the DotK algorithm. This
error term decreases by a factor of eps in every run. Finally, at the end of the
calculation, the computed end result is added. The remaining error terms are
used to compute the final error. Thus, the result stored in the accumulator has
K-fold double length. Together with the error bound, all necessary information
for a staggered representation of the result is stored in the dotprecision object.
For intervals and complex numbers, equivalent implementations are used. This
topic is described in more detail in [3].

For K = 1, i. e. pure floating-point calculation, the normal operators of
the class interval are not used in the real interval case, since this would be very
slow due to the frequent switching of the rounding mode. Instead, the vectors for
the scalar products to compute the infimum and the supremum the result vector
generated according to the interval multiplication chart. The scalar product for
the infimum and supremum of the result can then be calculated separately.In this
way, in total, the rounding mode has to be switched only twice. Complex intervals
use midpoint-radius representation for performance reasons [18]. However, the
real part and the imaginary part are computed separately, so no complex disc
arithmetic is used.

360 Michael Zimmer, Walter Krämer, Gerd Bohlender, Werner Hofschuster

4.3. Adjustment of the Calls of accumulate. The actual computation
of the scalar product is always started with a call of an accumulate function, both
for direct calculation with the dotprecision data types and also for the usage of
an appropriate operator. Due to the fact that the calculation source code has to
be directly compiled into the library for the abovementioned reasons, the calls of
accumulate can no more be carried out “inline”.

But all newly added functions, especially addDot, are declared as inline,
which means the function call in the accumulate function is for free in the best
case. Unfortunately, the call of accumulate itself can no more be carried out
"inline" for the mentioned reasons. Time measurements show that this seems to
have only minor consequences on the execution time in general.

4.4. Adjustment of the Operators with Implicit Scalar Products

and BLAS support. In many operators of the vector and matrix classes, one
or many scalar products are implicitly calculated. These calculations have to be
adapted to the previous changes. For this reason a new global variable opdotprec
is introduced (analogous to stagprec when using staggered arithmetic). This
variable indicates the desired accuracy of the scalar products, which are calculated
during the call of appropriate operators.

During the call of the operator, a local variable of type dotprecision is
now created, whose accuracy is set to the current value of opdotprec. With the
help of this variable all occurring scalar products can be calculated.

If precision opdotprec=1 is selected, the operators can also be computed
using BLAS-routines. For this, the compile switch CXSC_USE_BLAS has to be set
during compilation and the program hast to be linked to an appropriate BLAS
library and the CBLAS interface library. The computations of the operator are
then computed not by calls to accumulate, but by converting the C-XSC data
types into appropriate BLAS arrays and calling the corresponding BLAS routine.

For intervals, manipulation of the rounding mode of the processor is used
to compute reliable enclosures. Also, in some cases, especially for products of
interval matrices, midpoint radius representation is used to save run time. The
algorithms used in this case are similar to the ones described in [18].

With these changes all scalar products in C-XSC can now be calculated in
selectable accuracy, either by setting the member variable k of the dotprecision

data types for the direct calculation or by setting the global variable opdotprec for
the calculation with operators. An example is shown in section 6. When double

precision is sufficient, optimized BLAS routines can now be used, which can result
in huge speed-ups. Also, most BLAS routines are already multithreaded, so the
performance gain on multicore or multiprocessor machines may be even higher.

Extension of the C-XSC Library. . . 361

5. Remarks on the Compilation For the compilation of the library
some important aspects have to be taken into consideration, because on one hand
the performance of the DotK calculations can heavily collapse, and on the other
hand even totally wrong results can emerge, if the compiler flags are not set
appropriately. In the following some remarks will be given on important points
regarding performance and accuracy during the compilation.

5.1. Performance. A really crucial factor for the performance is – as
for the whole C-XSC library – the activation of inlining and its corresponding
application through the compiler. In the past, inlining in C-XSC had to be
activated by setting the compiler switch _CXSC_INLINE. Starting with version
2.3.0, inlining is activated by default.

To be able to use the speed advantages due to inlining, appropriate com-
piler options have to be set. For this, either compilation with full optimization
(-O3) is required or inlining has to be activated separately (-finline-functions).
(This refers to the GNU-compiler, other compilers might activate inlining at other
optimization levels or not at all without explicit setting of the switch.) However,
in general at least the optimization level -O1 in connection with inlining should
be set for the compilation of the DotK algorithms, in order to achieve an accept-
able performance. The optimization level is selectable during the installation of
C-XSC with the corresponding installation script.

The compiler version is also of great importance. In GCC version 4.3.x,
inlining support is innately much better than in version 4.0.x. This is due to the
considerably higher standard limits for the allowed size of inline functions. In older
versions the limits can be increased by setting some parameter (see [1], section
Command Options / Options That Control Optimization), which can possibly
lead to better results. However, the correct setting of the limits is not trivial
(the compilation time as well as the code size can increase dramatically if these
limits are set liberally). Generally, it is recommended to use a newer version of
the compiler. Similar considerations should also apply to other compilers.

5.2. Numeric Accuracy. Many modern processors, especially nearly
all Intel processors, use 80 bit wide registers for floating-point calculations, i. e.
they internally use a higher accuracy than the IEEE standard defines for the data
type double. With activated compiler optimization, intermediate results during
the computation of the error-free transformations are kept in the registers, be-
cause this offers enormous speed advantages compared to writing the intermediate
results back into the main memory or cache.

However, under these conditions the algorithms for the error-free transfor-
mations may deliver incorrect results, because they require accurate compliance

362 Michael Zimmer, Walter Krämer, Gerd Bohlender, Werner Hofschuster

with the IEEE standard. If within the compilation of the DotK-code no com-
piler switch is used which enforces this behavior, the program might compute
completely wrong results.

The best option on modern x86 processors is the usage of SSE registers
(Streaming SIMD Extensions) for floating-point calculations. The SSE instruc-
tion set extension was introduced by Intel for SIMD calculation (single instruc-
tion, multiple data) around the turn of the millennium, especially with regard
to multimedia application. Since the introduction of the SSE2 instruction set,
this extension also supports computations with double values in special registers
which are 128 bits wide (one register is able to hold two double values and can
apply a calculation at the same time). This instruction set with corresponding
registers is included in every x86 processor since to Pentium 3 (the same applies
for AMD).

For the usage of the SSE-registers for floating-point calculations a compiler
switch normally has to be activated:

• For GCC: The Option -mfpmath=sse for the usage of the SSE instruction set
for floating-point calculations as well as the option -msse2 for the activation
of the SSE2 instruction set should be activated (in newer processors, the
newer versions of the instruction set should be activated, e.g. -msse3).
When 64 bit code is generated, these options are activated by default.

• For the Intel-compiler: Option -msse2 (or -msse3 etc.) has to be activated,
floating-point calculation will be automatically adapted. The activation of
this option also activates auto-vectorization, which means that the compiler
tries to optimize parts of the code, like for-loops, for the SIMD instructions
which may increase the performance. Similar optimizations are also possible
in GCC since version 4.4.0.

If the processor uses excess precision, but does not support the SSE in-
struction set (or an equivalent solution), a different option has to be activated.
The Intel compiler offers the possibility to control the accuracy and the speed
of floating-point calculation with the option -fp-model [9]. During the usage of
-fp-model source e.g. the accuracy given in the source code (here double) is
strictly maintained. This normally leads to performance losses, since the interme-
diate results are not maintained in the registers but are stored in main memory.

An alternative version in GCC is -ffloat-store, with which all interme-
diate results are written back to the memory. This also causes dramatic perfor-
mance losses.

Extension of the C-XSC Library. . . 363

The relevant compiler switches are set automatically by the installation
script on many platforms. If not, they have to be added by hand during the
optimization option, or the Makefile has to be adjusted accordingly.

6. Examples and Time Measurements. In the following, a short
example for the usage of the changed C-XSC library will be given. Then some time
measurements will follow demonstrating which performance and which accuracy
can be expected with the correct compilation of the library according to section
5 and the remarks presented here.

6.1. Example. Listing 2 shows a small example which clarifies the usage
of the new scalar products with corresponding comments.

Listing 2: Code Example
int n=1000;
rvector x(n), x2(n);
ivector y(n);
rmatrix A(n,n);
imatrix B(n,n);
interval z;

// fill vectors and matrices

dotprecision dot (0.0);
idotprecision idot (0.0);

// set accuracy for scalar products
//in operators
opdotprec = 1;

// dot calculates with two -fold double accuracy
dot.set_k (2);
// idot calculates with maximal accuracy (accu)
idot .set_k (0);

// calculate z in floating point , since opdotprec =1
//(uses BLAS if CXSC_USE_BLAS is set)
z = x*y;

opdotprec = 3;

//is calculated in three -fold accuracy
B = A*y;

// calculates x2=A*x in two -times accuracy
// without error -bound
for(int i=1 ; i <=1000 ; i++) {

dot = 0.0;
accumulate_approx (dot , A[i], x);
x2[i] = rnd(dot);

}

364 Michael Zimmer, Walter Krämer, Gerd Bohlender, Werner Hofschuster

// calculates y = B*x in maximal accuracy
for(int i=1 ; i <=1000 ; i++) {

idot = 0.0;
accumulate (idot , B[i], x);
y[i] = rnd(idot);

}

6.2. Time Measurements. The following output was produced by a
test program which can be downloaded from

http://www.math.uni-wuppertal.de/~xsc/cxsc/examples/#SJC1

For real scalar products on a machine with two Intel Xeon 2.26 GHz processors
(Nehalem architecture) and 24GB RAM the listed results were achieved (however,
since no threading was used, only one core of one processor is involved in the
computations). The GNU compiler version 4.4.1 was used with full optimizations.
The accuracy and the relative speed should be similar on most other systems,
when compiled correctly. The dimension of the scalar product is n = 1000 000,
the condition is 10100, i. e. extremely ill conditioned, and every calculation was
repeated 10 times.

Exact result: +1.0000000000000000E-100

k=0:
[+1.0000000000000000E-100,+1.0000000000000001E-100]
Is an enclosure of the correct result!
Time used: 0.890723s

k=1:
[-1.0667230210259506E-008,+1.0652418946932587E-008]
Is an enclosure of the correct result!
Time used: 0.0423551s

k=2:
[-9.9645319516326720E-020,+9.9645373537521509E-020]
Is an enclosure of the correct result!
Time used: 0.102189s

k=3:
[-1.0537382008712601E-033,+1.0537377990909645E-033]
Is an enclosure of the correct result!
Time used: 0.185942s

k=4:
[-1.6669881848134855E-047,+1.6669879319579374E-047]
Is an enclosure of the correct result!
Time used: 0.229s

k=5:
[-9.5915709584447162E-062,+9.5915715380081772E-062]
Is an enclosure of the correct result!
Time used: 0.286885s

k=6:
[-1.1797502641781892E-075,+1.1797502950635348E-075]

Extension of the C-XSC Library. . . 365

Is an enclosure of the correct result!
Time used: 0.356305s

k=7:
[-7.0011492809898146E-090,+7.0011493687712463E-090]
Is an enclosure of the correct result!
Time used: 0.404176s

k=8:
[+9.9999718505357947E-101,+1.0000028149462135E-100]
Is an enclosure of the correct result!
Time used: 0.458884s

k=9:
[+9.9999999999999989E-101,+1.0000000000000002E-100]
Is an enclosure of the correct result!
Time used: 0.515731s

k=10:
[+1.0000000000000000E-100,+1.0000000000000001E-100]
Is an enclosure of the correct result!
Time used: 0.573675s

Table 1 shows an overview over the measured run-times on the above
system for corresponding scalar products with all four basic data types. Here the
dimension is also n = 1000 000 and all measurements were repeated ten times.

Table 1. Time measurement for scalar products with dimension n = 1 000 000 in
seconds, each repeated ten times

K real interval complex cinterval

0 0.89 2.10 3.50 8.52

1 0.04 0.31 0.10 0.52

2 0.10 0.46 0.30 1.84

3 0.19 0.70 0.97 2.88

4 0.23 0.82 1.19 3.36

5 0.29 0.94 1.42 3.82

6 0.36 1.06 1.65 4.28

7 0.40 1.17 1.88 4.74

8 0.46 1.29 2.11 5.21

9 0.52 1.40 2.34 5.67

10 0.57 1.52 2.57 6.13

366 Michael Zimmer, Walter Krämer, Gerd Bohlender, Werner Hofschuster

The results show that even with an accuracy of K = 10 the DotK al-
gorithm is still faster on the test system than the old calculation method using
the long accumulator. If the accuracy does not matter, e.g. in the calculation
of approximate solutions, a speed increase by the factor of 10 to even 40 can be
achieved by setting the accuracy to K = 1.

To demonstrate the effect of the BLAS routines, the time needed for a
matrix-matrix product with two 500 × 500 matrices was measured for all four
basic datatypes for precision 0 to 5. The results can be seen in Table 2. The
Intel Math Kernel Library version 11.1 was used as BLAS library on the above
mentioned systems. The number of threads for the BLAS routine was set to one
so that again only one core was used in all computations.

Table 2. Time measurement for 500 × 500 matrix-matrix products

K real interval complex cinterval

0 10.66 23.54 41.93 107.6

1 0.65 3.16 0.81 6.78

1 (BLAS) 0.014 0.072 0.066 0.35

2 1.84 4.99 3.99 20.41

3 2.77 6.65 10.31 26.42

4 3.43 8.01 13.19 31.86

5 4.14 9.39 16.16 37.34

The results show that the optimized BLAS routines can significantly en-
hance run-time performance if no increased accuracy is needed (the times reported
using BLAS for the cases of interval matrices and complex interval matrices com-
prise the time needed for intermediate conversions to midpoint/radius represen-
tation). The results for the other precisions are consistent with the measurements
of the single scalar products.

7. Conclusion and Future Prospect. Scalar product calculations
are an essential element of most numeric calculations. They should be as accurate
and efficient as possible, or if both is not possible, the user should be able to decide
how the priorities have to be set. The safe error bounds which are required for
verified numeric methods are also delivered by the available routines [21, 12, 11, 3].

With the new possibilities in the calculation of scalar products, the C-XSC
library gains considerable flexibility. Scalar products, which need not be executed
with maximal accuracy, can be computed with a selected accuracy. Our run-time

Extension of the C-XSC Library. . . 367

measurements show clearly that remarkable speed increases can be achieved. Due
to the fact that the accuracy requirements in scalar product calculations can be
switched any time in the simplest way, the user has now the possibility to optimize
his program towards numeric accuracy as well as towards high performance.

Possible extensions for the future are e.g. the usage of the new summation
algorithm presented by Rump [19] which is faster than SumK, at least in theory.

Remark: The usage of the so-called DotK algorithm in C-XSC clearly
leads to improved execution times. This is, however, only due to the regret-
table fact that the long accumulator is still not supported in hardware on today’s
processors. With such commonly claimed hardware support, scalar products of
floating point vectors could always be computed exactly and with optimal speed
(that means clearly faster than with all known scalar product algorithms based
on error free transformations, even if supported by hardware as well).

R EFER EN CES

[1] GCC. Online documentation.
http://gcc.gnu.org/onlinedocs

[2] ANSI/IEEE. Std. 754-1985, A Standard for Binary Floating-Point Arith-
metic. New York, 1985, reprinted in SIGPLAN 22(1987), No 2, 9–25.

[3] Blomquist F., W. Hofschuster, W. Krämer. A Modified Staggered
Correction Arithmetic with Enhanced Accuracy and Very Wide Exponent
Range. In: Lecture Notes in Computer Science, Vol. 5492, Springer, 2009,
41–67.

[4] Bohlender G. Genaue Berechnung mehrfacher Summen, Produkte und
Wurzeln von Gleitkommazahlen und allgemeine Arithmetik in höheren Pro-
grammiersprachen. Dissertation, Universität Karlsruhe, 1978.

[5] Bohlender G. What do we need beyond IEEE Arithmetic? Computer
Arithmetic and Self-validating Numerical Methods, Academic Press, San
Diego, 1990, 1–32.

[6] Bohlender G., W. Walter , P. Kornerup, D. W. Matula. Seman-
tics for Exact Floating Point Operations. In: Proceedings of the 10th IEEE
Symposium on Computer Arithmetic, Grenoble, 26-28 June 1991, 22–26.

[7] Dekker T. J. A floating-point technique for extending the available preci-
sion. Numer. Math., 18 (1971), No 3, 224–242.

368 Michael Zimmer, Walter Krämer, Gerd Bohlender, Werner Hofschuster

[8] Hofschuster W., W. Krämer. C-XSC 2.0: A C++ Library for Extended
Scientific Computing.In: Numerical Software with Result Verification, Lec-
ture Notes in Computer Science, Vol. 2991, Springer-Verlag, Heidelberg,
2004, 15–35.

[9] INTEL. C++ Compiler User and Reference Guides.
http://software.intel.com/en-us/intel-compilers

[10] Klatte R., U. Kulisch, A. Wiethoff, C. Lawo, M. Rauch. C-XSC
- A C++ Class Library for Extended Scientific Computing. Springer-Verlag,
Heidelberg, 1993.

[11] Kolberg M. Parallel Self-Verified Solver for Dense Linear Systems. PhD
Thesis, PUCI, Porto Alegre, 2009.

[12] Krämer W., M. Zimmer. Fast (Parallel) Dense Linear System Solvers
in C-XSC Using Error Free Transformations and BLAS. Lecture Notes in
Computer Science, Vol. 5492, Springer, 2009, 230–249.

[13] Kulisch U., W. Miranker. The arithmetic of the digital computer: A
new approach. SIAM Rev., 28 (1986), No 1, 1–40.

[14] Kulisch U. Die fünfte Gleitkommaoperation für Top-Performance Com-
puter. Berichte aus dem Forschungsschwerpunkt Computerarithmetik, Inter-
vallrechnung und numerische Algorithmen mit Ergebnisverifikation, 1997.

[15] Kulisch U. Computer Arithmetic and Validity - Theory, Implementation
and Applications. De Gruyter, Berlin, 2008.

[16] Ogita T., S. M. Rump, S. Oishi. Accurate sum and dot product. SIAM

Journal on Scientific Computing, 26 (2005), No 6, 1955–1988.

[17] Pichat M. Correction d’une somme en arithmétique a virgule flottante.
Numer. Math., 19 (1972), 400–406.

[18] Rump S. M. Intlab - Interval Laboratory. In: Developments in Reliable
Computing (Ed. T. Csendes), Kluwer Academic Publishers, 1999, 77–104.

[19] Rump S. M. Ultimately Fast Accurate Summation. SIAM Journal on Sci-

entific Computing, 31 (2009), No 5, 3466–3502.

[20] Yamanaka N., T. Ogita , S. M. Rump, S. Oishi. A Parallel Algorithm
for Accurate Dot Product. Parallel Computing, 34 (2008), 392–410.

[21] Zimmer M. Laufzeiteffiziente, parallele Löser für lineare Intervall-
gleichungssysteme in C-XSC. Master Thesis, University of Wuppertal, 2007.

Extension of the C-XSC Library. . . 369

8. Appendix. A test program which measures the run-time of point
and interval scalar product calculations (real and complex) can be downloaded
from http://www.math.uni-wuppertal.de/~xsc/cxsc/examples/#SJC2.

The results give a first impression of the run-time savings to be expected
depending on the used algorithm. They are as far as possible self-explaing. A
penalty factor is printed for each specific kind of scalar product calculation. It
refers to a simple C++ loop for the calculation of a scalar product of floating-
point vectors, whose components are double precision numbers (this should be
the fastest kind of calculation, but possibly with imprecise or even totally wrong
numeric results).

Executing this program on an Intel Xeon 3.4GHz processor with 2GB
RAM, the following output (shortened by hand) is produced:

Time measurements for different kinds of
dot product computations
Vector length: 100000
repMax: 100
baseTime using IEEE double: 0.076174
ds: 1.21578e+06
1) Double ds+= dx*dy:
Penalty 1.0, time used 0.0764107704
ds: 1215777.3156745557
2) Double array ds+= dax[i]*day[i]:
Penalty 1.0, time used 0.0774068832
ds: 1215789.4735692909
2b) Double arrays created with new:
Penalty 1.0, time used 0.0777688026
ds: 1215789.4735692909
3) Real rs+= rx*ry:
Penalty 0.2, time used 0.0147631168
rs: 1.215777E+006
4) Real using rvector rs+= rvx[i]*rvy[i]:
Penalty 0.7, time used 0.0536749363
rs: 1.215777E+006
5) Interval is+= ix*iy:
Penalty 75.5, time used 5.7542631626
is: [1.215777E+006,1.215778E+006]
6) Dotprecision rdots+= rx*ry:
Penalty 7.4, time used 0.5653319359
rdots: 1.2157773158E+0006
7) Idotprecision with idots+= ix*iy:
Penalty 47.1, time used 3.5909459591
9) Dot product using rvectors and Dot1:
Penalty 0.7, time used 0.0548717976
10) Dot product using rvectors and Dot2:
Penalty 2.3, time used 0.1721401215
11) Dot product using rvectors

and Dot0 (accu):
Penalty 15.8, time used 1.2017669678
12) Interval dot product using

ivectors and Dot1:
Penalty 6.9, time used 0.5260379314
13) Interval dot product using

ivectors and Dot2:

370 Michael Zimmer, Walter Krämer, Gerd Bohlender, Werner Hofschuster

Penalty 8.5, time used 0.6460938454
14) Interval dot product using

ivectors and Dot0 (accu):
Penalty 35.0, time used 2.6678440571

These results show for example that the calculations of a real scalar prod-
uct with the help of the long accumulator (parameter K = 0) are 7.4 times slower
than the simple C++ loop on the selected machine (result 6). If one simulates
quadruple precision (double-double accuracy, parameter K = 2) with the help of
the DotK algorithm, it is just 2.3 times slower than the simple C++ loop and
thus more than 3 times faster than the calculation with the long accumulator.

Here it should be emphasized again that the usage of a long accumulator
realized in hardware would lead to identical working speed as the simple C++
loop. Unfortunately, this hardware support is not available on current processors.
The scalar product via the long accumulator would not only be always maximally
accurate (this also applies to the software solutions), but also about 2.3 times
faster than the DotK algorithm with K = 2. Since the DotK algorithm for K > 1
always needs more operations than the simple C-loop, this algorithm stays slower
even with appropriate hardware support and thus also slower than the always
exact scalar product using a hardware accumulator.

Michael Zimmer

Walter Krämer

Werner Hofschuster

Department of Mathematics and Computer Science

University of Wuppertal

Gaußstraße 20

D-42097 Wuppertal

e-mail: michael.zimmer@math.uni-wuppertal.de

e-mail: Walter.Kraemer@math.uni-wuppertal.de

e-mail: hofschuster@math.uni-wuppertal.de

Gerd Bohlender

Institute for Applied and Numerical Mathematics 2

KIT – Karlsruhe Institute of Technology

Kaiserstraße 12, D-76131 Karlsruhe

e-mail: gerd.bohlender@kit.edu

Received November 9, 2009

Final Accepted May 20, 2010

