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APPROXIMATING THE MAXMIN AND MINMAX AREA

TRIANGULATIONS USING ANGULAR CONSTRAINTS∗

J. Mark Keil, Tzvetalin S. Vassilev

Abstract. We consider sets of points in the two-dimensional Euclidean
plane. For a planar point set in general position, i.e. no three points collinear,
a triangulation is a maximal set of non-intersecting straight line segments
with vertices in the given points. These segments, called edges, subdivide the
convex hull of the set into triangular regions called faces or simply triangles.
We study two triangulations that optimize the area of the individual triangles:
MaxMin and MinMax area triangulation. MaxMin area triangulation is the
triangulation that maximizes the area of the smallest area triangle in the
triangulation over all possible triangulations of the given point set. Similarly,
MinMax area triangulation is the one that minimizes the area of the largest
area triangle over all possible triangulations of the point set. For a point set
in convex position there are O(n2 logn) time and O(n2) space algorithms
that compute these two optimal area triangulations. No polynomial time
algorithm is known for the general case. In this paper we present an approach
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to approximation of the MaxMin and MinMax area triangulations of a
general point set. The algorithm, based on angular constraints and perfect
matchings between triangulations, runs in O(n3) time and O(n2) space. We
determine the approximation factors as functions of the minimal angles in
the optimal (unknown) triangulation and the approximating one.

1. Introduction. We consider the problems of finding the MaxMin and
MinMax area triangulations of general point sets in the plane. These problems are
of unknown complexity [2]. The two named triangulations are collectively called
optimal area triangulations.

Examples of n-point sets (n ≥ 4) that require arbitrarily small angles in
their exact MaxMin and MinMax area triangulation exist. However, triangulations
with small angles are not suitable for most practical purposes. Therefore, we
are looking for an approximation of these two optimal area triangulations. The
approximation should be computable in (low?) polynomial time. To build the
approximation we will use two known triangulations: the Delaunay triangulation
and the optimal 30◦-triangulation (as discussed in the subsequent sections) if it
exists. Thus, we intend to introduce angular restrictions to the triangulations and
study how these angular restrictions influence the quality (MinMax and MaxMin
Area) of the triangulation.

Throughout this text we will use β to denote the smallest angle in the
optimal area triangulation (either MinMax or MaxMin). We do not know what the
value of β is since we cannot solve the problem exactly. We want to approximate
the optimal triangulation, which is a β-triangulation (triangulation of which all
angles are greater than or equal to β), by another triangulation, which is “fatter”,
i.e. has larger value of the minimum angle. We will denote this value by α. Thus the
approximation will be an α-triangulation, where α > β. Naturally, α ∈ (0◦, 60◦].

Here we will just note that if α∗ is the smallest angle of the Delaunay
triangulation, then α-triangulations exist if and only if α ≤ α∗. The Delaunay
triangulation can be computed in O(n log n) time and O(n) space. Further, any
relaxation of the Delaunay triangulation based on edge flips can be computed in
O(n2) time and linear space. In the case when α∗ ≥ 30◦, the exact optimal area
triangulation(s) can be computed in O(n3) time and O(n2) space by a modified
Klincsek algorithm [4], based on the fact that the relative neighborhood graph is
part of these triangulations [3].

2. Angular restrictions and forbidden zones. Given the fact that
all angles of the α-triangulation will be larger than α, we can define a region, called
forbidden zone, surrounding each possible edge between a pair of points of the
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given point set. The forbidden zone of an edge is by definition a region that is
empty of points of the original point set if the edge is in any α-triangulation. This
is a polygonal region, recursively defined by adding to the edge isosceles triangles
with the edge itself is a base, and base angles of α, and continuing this process
outwards of the already tiled area. The first four steps are shown in Figure 1.
The parameters of the forbidden zone are fully determined by the length of the
edge a and the angle α. The forbidden zone entirely contains a trapezoid with the
given edge as a base, base angles of 3α and heighth of (a/2) tan α. The zone also
entirely contains a circle surrounding each of the endpoints of the edge.

Fig. 1. Recursive construction, boundary and parameters of the forbidden zone

3. Matching triangles, cases. To evaluate the approximation ratio
between a known α-triangulation and the optimal β-triangulation, we shall to
use a result by Aichholzer et al. [1] that establishes the existence of a one-to-
one matching between the triangles of any two triangulations of a point set. The
matched triangles share at least one vertex and interior points. Based on this we
have a number of possible cases that will be considered below. We shall also use
the angular constraints we introduced. In an α-triangulation, all the angles are
in the interval [α, 180◦ − 2α]. Based on the angular constraints we can identify
the “forbidden zone” around each edge of the triangulation — the region of the
plane that is empty of points from the original point set. For an edge of length

a, the forbidden zone properly includes a trapezoid of height
a

2
· tanα that has

base angles of 3α. The non-parallel sides of this trapezoid are, therefore, of length
a

2
·

tanα

sin 3α
. With respect to an edge (of length a) of an α-triangulation, any other

point from the set can be either outside of the strip of height
a

2
· tanα (Zone 1),

inside a circle with radius
a

2
·

tanα

sin 3α
centered at one of its endpoints but outside

the trapezoid (Zone 2), or inside the strip and outside the circles (Zone 3). The
situation is illustrated in Figure 2.

We will denote a triangle of the α-triangulation by △ABC and will use
the standard notation for its side lengths a, b, c. Similarly the matching triangle of
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Fig. 2. The forbidden zone of the edge AB and zones 1, 2, and 3

the β-triangulation will be △A1B1C1 and the sides will be a1, b1, c1. We use the
following two formulae for the area of a triangle: two sides and the angle between

them A△ =
ab

2
sin θ or a side and three angles A△ =

a2

2
·

sinφ sinψ

sin θ
(here φ,

ψ, θ are the angles opposite sides a, b, c, of the triangle, respectively) which is

equivalent to A△ =
a2

2
·

sinφ sinψ

sin(φ+ ψ)
.

Lemma 1. Given a triangle with a side a, all the angles of which are

greater than or equal to α, the minimal and maximal area of such a triangle are

given by: Amin =
a2

4
· tanα (occurring when the triangle is an isosceles with both

base angles equal to α) and Amax =
a2

4
· cot

α

2
=
a2

4
·

1

tan α
2

(occurring when the

triangle is an isosceles with a top angle of α).

We now consider the cases as to how the matched triangles from the α-
triangulation and β-triangulation interact.

3.1. Three shared vertices. Trivial: the triangles are the same, the ratio
of areas is equal to one.

3.2. Two shared vertices (shared edge) Assume that the two matched
triangles share an edge of length a. According to Lemma 1:

(Aα)
min

=
a2

4
· tanα, (Aα)

max
=
a2

4
·

1

tan α
2

,

(Aβ)
min

=
a2

4
· tan β, (Aβ)

max
=
a2

4
·

1

tan β
2
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Therefore, we can compute:
(

Aα

Aβ

)

min

≥
(Aα)

min

(Aβ)
max

≥ tanα · tan
β

2
,

(

Aα

Aβ

)

max

≤
(Aα)

max

(Aβ)
min

≤
1

tan β · tan α
2

3.3. Exactly one shared vertex. Assume that the two matched triangles
share the vertex A (or A ≡ A1). Then depending on the mutual position of the
vertices B, C, B1, C1 we can have two different situations, as illustrated in Figure
3. Namely, exactly one side intersecting two of the sides of the matched triangle
(as shown on the left) or two pairs of mutually intersecting sides (as shown on
the right).

Crucial for all sub-cases that arise in this case is the intersection between
a pair of sides, one from each of the matched triangles.

Fig. 3. Exactly one shared vertex

3.3.1. A pair of intersecting sides. Let the sides AC = b and B1C1 =
a1 intersect at the point X, and in addition both pairs of vertices are outside the
strip of the other edge (Zone 1). Please refer to Figure 4 for an illustration. Then,
using the fact that the points C and A are outside of the forbidden zone of the
edge B1C1, and the fact that the forbidden zone has a width of a1

2
· tan β, we

have: XC >
a1

2
· tan β and XA >

a1

2
· tan β, but XC +XA = CA = b, therefore:

b > a1 · tan β. We can rewrite this as a1 <
b

tan β
. Similarly, because of the fact

that points C1 and B1 are outside of the forbidden zone of the edge AC, and the

fact that the forbidden zone has a width of
b

2
· tanα, we have: XB1 >

b

2
· tanα

and XC1 >
b

2
· tanα, but XB1 +XC1 = B1C1 = a1, therefore: a1 > b · tanα. We

can rewrite this as b <
a1

tanα
. Using these we can obtain the following bounds for
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Fig. 4. A pair of intersecting sides B1C1 and AC

the area of the β-triangle:

(Aβ)
min

=
a2

1

4
· tan β ≥

b2

4
· tan2 α · tan β,

(Aβ)
max

=
a2

1

4
·

1

tan β
2

≤
b2

4
·

1

tan2 β · tan β
2

Then using the results of Lemma 1 for (Aα)
min

and (Aα)
max

we can compute the
bounds for the ratio of the areas as follows:

(

Aα

Aβ

)

min

≥
(Aα)

min

(Aβ)
max

≥ tanα · tan2 β · tan
β

2
,

(

Aα

Aβ

)

max

≤
(Aα)

max

(Aβ)
min

≤
1

tan β · tan2 α · tan α
2

Once again, these are the best bounds that we will be able to obtain when only
one of the sides of the β-triangle intersects a side (or more exactly two of the
sides) of the α-triangle, as shown on the left in Figure 3 and in Figure 4.

3.3.2. Two pairs of intersecting sides. As Figure 5 and the right part
of Figure 3 show, we can have three intersections between the sides of the matched
triangles. Then we will obtain better bounds, based on the formula for the area
that uses the product of two sides and the included angle. As shown in Figure 5,
the sides BC = a and A1B1 = c1 intersect. Again, assuming that both pairs of
vertices are in Zone 1 with respect to the edge formed by the other two, we will

have: b · tanα < a1 <
b

tan β
and a · tanα < c1 <

a

tan β
.
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Fig. 5. Two pairs of intersecting sides B1C1, AC and A1B1, BC

Also, for an α-triangle with sides a, b and angles restricted to be larger

than α, the minimum and maximum area are given by:
ab

2
· sinα ≤ Aα ≤

ab

2
.

That is, the minimum area is
ab

2
· sinα, when the angle at point C is exactly α,

and when the angle at C is right, we have the maximum area of
ab

2
. Similarly, for

the β-triangle △A1B1C1:
a1c1
2

· sin β ≤
a1c1
2

. Substituting, we obtain:

(Aβ)
min

≥
ab

2
· tan2 α · sin β, (Aβ)

max
≤
ab

2
·

1

tan2 β

Thus, the bounds in this case are:

(

Aα

Aβ

)

min

≥
(Aα)

min

(Aβ)
max

≥ sinα · tan2 β,

(

Aα

Aβ

)

max

≤
(Aα)

max

(Aβ)
min

≤
1

sin β · tan2 α

Recall that we are assuming β ≤ 30◦. To show that these bounds are better than
the ones derived with only one pair of intersecting sides (in Section 3.3.1), consider
the inequalities:

tanα · tan2 β · tan
β

2
< sinα · tan2 β ⇔ tan

β

2
< cosα,

which is true whenever α < arccos(tan 15◦) ≃ 74.45◦, since tan
β

2
< tan 15◦ <
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cosα, for the lower bound, and

1

sin β · tan2 α
<

1

tan β · tan2 α · tan α
2

⇔ tan β · tan2 α · tan
α

2
< sin β · tan2 α⇔ tan

α

2
< cosβ,

which is true whenever β < arccos(tan 30◦) ≃ 54.74◦, since tan
α

2
< tan 30◦ <

cos β, for the upper bound. This concludes the cases when all the vertices of the
two triangles are situated so that they lie in Zone 1 with respect to the edges
of the other triangle. From this point on, at least one of the points will be in
Zone 2 or Zone 3 with respect to some edge of the other triangle. When we have
exactly one of the points in Zone 2, we can show that the area of the triangle will
be dominated from both above and below by other possible triangles that belong
to the cases considered in the following section. The same is true if at least one
point is in Zone 3. Therefore, the only cases remaining are those when exactly
two points lie in Zone 2.

3.3.3. Placements of points in Zone 2. When vertex A is shared, the
two points B1 and C1 can be placed in the circles defining Zone 2, centered at B
and C, in four different ways. Here we recall that the radius of the circle defining

Zone 2 for an edge of length a is r =
a

2
·

tanα

sin 3α
.

For convenience, we will introduce the constant k =
1

2
·

tanα

sin 3α
, thus r = k ·a. The

four possible distributions of the points in the circles are illustrated in Figure 6. We
will consider the possible placements and derive bounds for the ratio of the areas.
Starting with the placement (a), where we can use the approach of the Section
3.3.2 by constraining two of the sides of the β-triangle, namely b− r ≤ b1 ≤ b+ r,
and having in mind that r = k · b we obtain b(1 − k) ≤ b1 ≤ b(1 + k), and

similarly c(1 − k) ≤ c1 ≤ c(1 + k). For the areas we have:
bc

2
· sinα ≤ Aα ≤

bc

2
,

b1c1
2

· sin β ≤ Aβ ≤
b1c1
2

, and therefore

(Aα)
min

=
bc

2
· sinα, (Aα)

max
=
bc

2
,

(Aβ)
min

≥
bc

2
(1 − k)2 · sin β, (Aβ)

max
≤
bc

2
(1 + k)2.
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Fig. 6. Possible placements of B1 and C1 in zone 2

Thus, for the ratio of the areas we have:

(

Aα

Aβ

)

min

≥
(Aα)

min

(Aβ)
max

≥

bc
2
· sinα

bc
2
(1 + k)2

≥
sinα

(1 + k)2
,

(

Aα

Aβ

)

max

≤
(Aα)

max

(Aβ)
min

≤

bc
2

bc
2
(1 − k)2 · sin β

≤
1

(1 − k)2 · sinβ

In placement (b), we can constrain two of the sides of the β-triangle with relation
to only one side of the α-triangle: b − r ≤ b1 ≤ b + r, b − r ≤ c1 ≤ b + r, which
leads to the following: b(1− k) ≤ b1 ≤ b(1 + k), b(1− k) ≤ c1 ≤ b(1 + k). Further
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b2

4
· tanα ≤ Aα ≤

b2

4
·

1

tan α
2

,
b1c1
2

· sin β ≤ Aβ ≤
b1c1
2

, and therefore

(Aβ)
min

≥
b2

2
(1 − k)2 · sin β, (Aβ)

max
≤
b2

2
(1 + k)2.

For the bounds we obtain:
(

Aα

Aβ

)

min

≥
(Aα)

min

(Aβ)
max

≥

b2

4
· tanα

b2

2
(1 + k)2

≥
tanα

2(1 + k)2
,

(

Aα

Aβ

)

max

≤
(Aα)

max

(Aβ)
min

≤

b2

4
· 1

tan
α

2

b2

2
(1 − k)2 · sin β

≤
1

2(1 − k)2 · sinβ · tan α
2

Comparing these bounds with the bounds for placement (a), we can see that:

tanα

2(1 + k)2
<

sinα

(1 + k)2
⇔

1

2
< cosα,

which is true whenever α < 60◦, for the lower bound, and

1

(1 − k)2 · sin β
<

1

2(1 − k)2 · sinβ · tan α
2

⇔ tan
α

2
<

1

2
,

which is true whenever α < 2 arctan

(

1

2

)

≃ 53.13◦, for the upper bound. Thus,

the bounds in placement (b) are always worse than those in placement (a).
In the third placement, (c) we again are going to relate two of the sides of

the β-triangle to only one side of the α-triangle: b−2r ≤ a1 ≤ b+2r, b−r ≤ b1 ≤

b+r, or equivalently: b(1−2k) ≤ a1 ≤ b(1+2k), b(1−k) ≤ b1 ≤ b(1+k). Similar

to the analysis of the previous placement, for the areas we have:
b2

4
·tanα ≤ Aα ≤

b2

4
·

1

tan α
2

,
a1b1
2

· sin β ≤ Aβ ≤
a1b1
2

, and therefore

(Aβ)
min

≥
b2

2
(1 − k)(1 − 2k) · sin β, (Aβ)

max
≤
b2

2
(1 + k)(1 + 2k).

The bounds are:
(

Aα

Aβ

)

min

≥
(Aα)

min

(Aβ)
max

≥
tanα

2(1 + k)(1 + 2k)
,

(

Aα

Aβ

)

max

≤
(Aα)

max

(Aβ)
min

≤
1

2(1 − k)(1 − 2k) · sinβ · tan α
2
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Again, we are going to compare these to the bounds obtained for placement (b).
We have:

tanα

2(1 + k)(1 + 2k)
<

tanα

2(1 + k)2
⇔ 1 + k < 1 + 2k,

which is true whenever k > 0, for the lower bound, and

1

2(1 − k)2 · sin β · tan α
2

<
1

2(1 − k)(1 − 2k) · sin β · tan α
2

⇔ 1 − 2k < 1 − k,

which is true whenever k > 0 and

1 − 2k > 0 ⇔ k <
1

2
⇔

tanα

2 sin 3α
<

1

2
⇔ tanα < sin 3α

The last inequality can be shown to be valid in the interval α ∈ (0◦, 30◦], which
is sufficient for our considerations. Thus, the bounds in placement (c) are always
worse than those in placement (b). Note that for the three placements considered
so far, the lower bound (the one that gives us the approximation constant for the
MaxMin Area triangulation) does not depend on the angle β.

Fig. 7. Two constraining circles in placement (d)

Finally, the placement (d) should be considered. There, the points B1 and
C1 are in the circle defining zone 2 for the shared vertex A. This is the worst case,
as B1 and C1 can be “very close” to A, thus making the area of the β-triangle small,
and increasing the upper bound (the one related to the approximation constant
for the MinMax Area triangulation). However, if we include the forbidden zones of
the edges in the vicinity of the point A, we can derive some constraints. Without
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loss of generality we can assume that b ≥ c for the two edges incident to A,
AB = c and AC = b. First, the angle of the α-triangle at A, ∠BAC ≥ α by our
assumption. Moreover, the trapezoid parts of the forbiden zones of the edges BA
and CA form angles of 3α with these edges at A. Therefore, there is a circular
sector with a central angle of 7α that is forbidden for the points B1 and C1. Hence,
the top angle of the β-triangle is ∠B1AC1 ≥ 7α. The first constraint therefore is
2β + 7α ≤ 180◦, using the sum of the angles of the triangle △B1AC1, which is a
β-triangle. Recall that β < α, thus this is only possible for β < 20◦.
To constrain the lengths of the sides B1A and C1A of the β-triangle, we are
going to use the fact that the forbidden zones of edges AB and AC contain

a circle around A. If i =

⌈

180◦

2α
−

1

2

⌉

it can be shown that the radius of the

forbidden circle is k1b for the edge AC (respectively k1c for the edge AB), where

k1 =
di

l
=

1

(2 cosα)i
. The lengths of the sides B1A and C1A of the β-triangle are

therefore constrained to k1c ≤ b1 ≤ kb, k1c ≤ c1 ≤ kb. Therefore, for the areas of

the two triangles we have:
b2

4
· tanα ≤ Aα ≤

c2

4
·

1

tan α
2

,
b1c1
2

·sin 2β ≤ Aβ ≤
b1c1
2

,

and therefore

(Aβ)
min

≥
c2

2
k2

1 · sin 2β, (Aβ)
max

≤
b2

2
k2.

The bounds in this case are:
(

Aα

Aβ

)

min

≥
(Aα)

min

(Aβ)
max

≥

b2

4
· tanα
b2

2
k2

≥
tanα

2k2
,

(

Aα

Aβ

)

max

≤
(Aα)

max

(Aβ)
min

≤

c2

4
· 1

tan
α

2

c2

2
k2
1
· sin 2β

≤
1

2k2

1
· sin2 β · tan α

2

It can be seen that when, depending on α and β, this case is possible, the bounds
are going to be worse than those of the other cases.

4. Algorithmic results and sample values. In Section 3 we considered
possible cases of matched triangles and positions of the points with respect to the
forbidden zones. Based on this we derived the following bounds of the approximation
factors for the MaxMin area triangulation:

f1 = max

(

1

tanα tan2 β tan β
2

,
2(1 + k)(1 + 2k)

tanα
,

2k2

tanα

)
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and for the MinMax area triangulation:

f2 = max

(

1

tan β tan2 α tan α
2

,
1

2(1 − k)(1 − 2k) sin β tan α
2

,
1

2k2

1
· sin2 β · tan α

2

)

The approximation factor f1 shows how many times the smallest area triangle
in the approximating α-triangulation is smaller than the smallest area triangle
in the optimal (MaxMin area) triangulation. Similarly, f2 gives the ratio of the
largest area triangle in the approximating triangulation, compared to the largest
area triangle in the optimal (MinMax area) triangulation.

As mentioned earlier, we can compute the optimal 30◦-triangulation (if it
exists) by modified Klincsek’s algorithm [4] in O(n3) time and O(n2) space, using
the fact that the Relative Neighbourhood Graph is a part of it [3]. Alternatively,
we can relax Delaunay by area equalizing flips, which will take O(n2) time and
O(n) space. Thus we achieve a (sub)cubic time algorithm that approximates the
optimal area triangulations, by the above given factors. The value of α can be
chosen from practical considerations. Sample results are presented in Table 1.

Table 1. Sample values for f1 and f2

α 30 30 25 25 20 20 15
β 25 20 20 15 15 10 10
f1 35.930 74.149 91.807 226.87 290.66 1010.1 1372.0
f2 24.010 30.716 56.994 77.418 311.28 455.06 7900.1

Values obtained for the approximation factors show two interesting trends.
The approximation factor for the MaxMin area triangulation, f1, is much more
dependent on the difference between α and β. The approximation factor for the
MinMax area triangulation, f2, initially increases slower than f1 with the decrease
of the angle α, however once a threshold is reached, i.e. once the placement
(d) becomes posible, the value of f2 jumps up sharply. There seems to be no
threshold value of α or specifically bad placement of points for the MaxMin area
triangulation. This partly supports the conjecture of Edelsbrunner [2] that the
MinMax area triangulation of a point set is computationally harder problem than
the MaxMin area triangulation in general.

Note that in practice the approximation factor will be smaller, due to the
fact that our case analysis does not take into account the “real” matching, i.e.,
the ratio between the areas of the respective worst (either smallest or largest
area) triangles. Thus, our results should be treated as upper bounds on the
approximation factors. We expect that improvement in these bounds is possible.
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One way to improve the bounds is to consider specific types of matchings in which
triangles are ordered by area and then matched against the triangles of the other
triangulation.
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