Serdica J. Computing 4 (2010), 301–320

Serdica Journal of Computing

Bulgarian Academy of Sciences Institute of Mathematics and Informatics

AN IMPROVEMENT TO THE ACHIEVEMENT OF THE GRIESMER BOUND

Noboru Hamada, Tatsuya Maruta^{*}

ABSTRACT. We denoted by $n_q(k,d)$, the smallest value of n for which an $[n,k,d]_q$ code exists for given q,k,d. Since $n_q(k,d) = g_q(k,d)$ for all $d \ge d_k + 1$ for $q \ge k \ge 3$, it is a natural question whether the Griesmer bound is attained or not for $d = d_k$, where $g_q(k,d) = \sum_{i=0}^{k-1} \left\lceil d/q^i \right\rceil$, $d_k = (k-2)q^{k-1} - (k-1)q^{k-2}$. It was shown by Dodunekov [2] and Maruta [9], [10] that there is no $[g_q(k,d_k),k,d_k]_q$ code for $q \ge k$, k = 3,4,5 and for $q \ge 2k-3$, $k \ge 6$. The purpose of this paper is to determine $n_q(k,d)$ for $d = d_k$ as $n_q(k,d) = g_q(k,d) + 1$ for $q \ge k$ with $3 \le k \le 8$ except for (k,q) = (7,7), (8,8), (8,9).

1. Introduction. Let \mathbb{F}_q^n denote the vector space of *n*-tuples over \mathbb{F}_q , the field of *q* elements, where *n* is an integer ≥ 4 and *q* is a prime or a prime power. A *q*-ary linear code \mathcal{C} of length *n* and dimension *k*, called an $[n, k]_q$ code, is a

ACM Computing Classification System (1998): E.4.

Key words: linear codes, Griesmer bound, projective geometry.

^{*}This research was partially supported by Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science under Contract Number 20540129.

k-dimensional subspace of \mathbb{F}_q^n , where $n > k \geq 3$. An $[n, k]_q$ code \mathcal{C} with minimum Hamming distance d is referred to as an $[n, k, d]_q$ code. Let $G = [\boldsymbol{g}_1^T, \boldsymbol{g}_2^T, \dots, \boldsymbol{g}_n^T]$ be a $k \times n$ generator matrix of an $[n, k, d]_q$ code \mathcal{C} with $\boldsymbol{g}_1, \dots, \boldsymbol{g}_n \in \mathbb{F}_q^k$, where \boldsymbol{g}^T denotes the transpose of the vector \boldsymbol{g} . If there is no zero vector in $\{\boldsymbol{g}_1, \dots, \boldsymbol{g}_n\}$, an $[n, k, d]_q$ code \mathcal{C} is called a *nontrivial code*. A fundamental problem in coding theory is to solve the following problem.

Problem 1. Find the smallest value of n, denoted by $n_q(k,d)$, for which an $[n, k, d]_q$ code exists for given integers q, k, d.

An $[n, k, d]_q$ code is called *optimal* if $n = n_q(k, d)$. There is a lower bound on $n_q(k, d)$ called the Griesmer bound [3], [11]:

$$n_q(k,d) \ge g_q(k,d) := \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil,$$

where $\lceil x \rceil$ denotes the smallest integer greater than or equal to x. A $[g_q(k, d), k, d]_q$ code is called a *Griesmer code*. In order to solve Problem 1, we consider the following problem for given integers $k \geq 3$ and $q \geq 3$.

Problem 2. For given integers k and q, find the value c(k,q) such that (a) $n_q(k,d) \ge g_q(k,d) + 1$ for d = c(k,q);

(b) $n_q(k,d) = g_q(k,d)$ for any integer $d \ge c(k,q) + 1$.

It is known (Theorem 2.12 in [6] or [1]) that the following theorem holds. See [6] for linear codes of type BV.

Theorem 1.1. For given q, k and d, write

$$d = sq^{k-1} - \sum_{i=1}^{t} q^{u_i - 1}$$

where $s = \lfloor d/q^{k-1} \rfloor$, $k > u_1 \ge u_2 \ge \cdots \ge u_t \ge 1$, and at most q-1 u_i 's take any given value. Then there exists a $[g_q(k,d), k, d]_q$ code of type BV if and only if the following condition holds:

$$\sum_{i=1}^{\min\{s+1,t\}} u_i \le sk.$$

Corollary 1.2. If q and k are integers with $q \ge k \ge 3$, then

- (1) there is no $[g_q(k,d), k, d]_q$ code of type BV for $d = (k-2)q^{k-1} (k-1)q^{k-2}$,
- (2) $n_q(k,d) = g_q(k,d)$ for any integer $d \ge (k-2)q^{k-1} (k-1)q^{k-2} + 1$.

Problem 3. For given integers k and q, find the value b(k,q) such that (a) there is no $[g_q(k,d),k,d]_q$ code of type BV for d = b(k,q);

(b) $n_q(k,d) = g_q(k,d)$ for any integer $d \ge b(k,q) + 1$.

In the case $q \ge k \ge 3$, Corollary 1.2 shows that if there is no $[g_q(k,d), k, d]_q$ code for $d = (k-2)q^{k-1} - (k-1)q^{k-2}$, then $c(k,q) = (k-2)q^{k-1} - (k-1)q^{k-2}$. Hence we consider the following problem.

Problem 4. Investigate whether a $[g_q(k,d), k, d = (k-2)q^{k-1} - (k-1)q^{k-2}]_q$ code exists or not for given integers k and q with $q \ge k \ge 3$.

Hamada conjectured as follows.

Conjecture 1.3. There is no $[g_q(k,d), k, d = (k-2)q^{k-1} - (k-1)q^{k-2}]_q$ code for any integers k and q with $q \ge k \ge 3$. That is,

$$c(k,q) = (k-2)q^{k-1} - (k-1)q^{k-2}$$

for any integers k and q with $q \ge k \ge 3$.

Conjecture 1.4. c(k,q) = b(k,q) for any integers $k \ge 3$ and $q \ge 3$.

As for Conjecture 1.3, the following is known, see Dodunekov [2] and Maruta [9], [10].

Theorem 1.5 ([10]). For $d = (k-2)q^{k-1} - (k-1)q^{k-2}$, it holds that $n_q(k,d) \ge g_q(k,d) + 1$ for $q \ge k$ when k = 3, 4, 5 and for $q \ge 2k-3$ when $k \ge 6$.

Hence Problem 4 is unsolved for any integers k and q with $2k - 3 > q \ge k \ge 6$. For example, the cases in the next remark are still open.

Remark 1.6. For $6 \le k \le 13$, Problem 4 is unsolved for the following k and q.

 In this paper we prove the following two theorems.

Theorem 1.7. There is no $[g_q(k,d), k, d = (k-2)q^{k-1} - (k-1)q^{k-2}]_q$ code for any integers $k \ge 6$ and q with q = 2k - 2u and k > 4u - 6 for u = 2, 3.

Theorem 1.8. There is no $[g_q(k,d), k, d = (k-2)q^{k-1} - (k-1)q^{k-2}]_q$ code for any integers $k \ge 6$ and q with q = 2k - 2u - 1 and k > 4u - 4 for u = 2, 3.

Theorems 1.7 and 1.8 imply that Conjecture 1.3 is valid for the following k and q:

(1) k = 6 and q = 7, 8, (2) k = 7 and q = 8, 9, (3) k = 8 and q = 11, (4) k = 9 and q = 11, 13, (5) k = 10 and q = 13, 16, (6) k = 11 and q = 16, 17, (7) k = 12 and q = 17, 19, (8) k = 13 and q = 19.

For $d' = (k-2)q^{k-2} - (k-1)q^{k-3}$ with $q \ge k \ge 3$, there exists a $[g_q(k-1, d'), k-1, d']_q$ code, say \mathcal{C}' , by Theorem 1.1. Applying Theorem 4.5 of [5] to \mathcal{C}' , one can get a $[g_q(k, d) + 1, k, d]_q$ code for $d = (k-2)q^{k-1} - (k-1)q^{k-2}$. Hence, the nonexistence of Griesmer codes determines the exact value of $n_q(k, d)$. As a result of the previous theorems, Theorem 1.5 for $k \le 13$ can be improved to the following.

Theorem 1.9. For $d = (k-2)q^{k-1} - (k-1)q^{k-2}$, it holds that $n_q(k,d) = g_q(k,d) + 1$ for $q \ge k$ with $3 \le k \le 13$ except for (k,q) = (7,7), (8,8), (8,9), (9,9), (10,11), (11,11), (11,13), (12,13), (12,16), (13,13), (13,16), (13,17).

Remark 1.10. (1) If q = 2k - 2u and k > 4u - 6, then 2q - (3k - 6) = k - 4u + 6 > 0. If q = 2k - 2u - 1 and k > 4u - 4, then 2q - (3k - 6) = k - 4u + 4 > 0. Hence it holds that q > (3k - 6)/2 for both cases. When $q \le (3k - 6)/2$ (e.g. (k,q) = (7,7)), the situation is quite complicated, see Section 4. (2) For the nonexistence of a $[g_q(k,d), k, d]_q$ code for $d = (k - 2)q^{k-1} - (k - 2)q^{k-1}$

 $1)q^{k-2} - \varepsilon$ for some small ε , see Klein [8].

2. A geometric method. To obtain a necessary and sufficient condition for the existence of a $[g_q(k,d),k,d]_q$ code for the case $d \leq q^{k-1}$, the concept of minihyper has been introduced by Hamada [4]. To prove Theorems 1.7 and 1.8, we generalize the concept of minihyper for the case $d > q^{k-1}$ and we give a necessary and sufficient condition for the existence of a nontrivial $[n, k, d]_q$ code for given integers n, k, d, q with $n > k \ge 3$, $q \ge 3$ and $(s-1)q^{k-1} < d \le sq^{k-1}$ for some positive integer s.

For $k \geq 3$, let $\Sigma = PG(k-1, q)$ be the finite projective space of dimension k-1 over \mathbb{F}_q and let \mathcal{F}_j be the set of all *j*-flats in Σ , where a *j*-flat is a projective subspace of dimension *j* in Σ . 0-flats, 1-flats, 2-flats, 3-flats and (k-2)-flats are called *points*, *lines*, *planes*, *solids* and *hyperplanes*, respectively. The number of points in a *j*-flat is denoted by θ_j , where

$$\theta_j = (q^{j+1} - 1)/(q - 1) = q^j + q^{j-1} + \dots + q + 1$$

for $j = 0, 1, \ldots, k - 1$. We set $\theta_{-1} = 0$ for convenience.

A point in Σ is denoted by (\mathbf{h}) using a nonzero vector $\mathbf{h} \in \mathbb{F}_q^k$, where two points (\mathbf{h}_1) and (\mathbf{h}_2) are same points if and only if there exists a nonzero element $\sigma \in \mathbb{F}_q$ with $\mathbf{h}_2 = \sigma \mathbf{h}_1$. Each hyperplane of Σ can be expressed as the set of all points $(\mathbf{g}) \in \mathcal{F}_0$ such that $(\mathbf{g}, \mathbf{h}) = 0$ and $\mathbf{g} \in \mathbb{F}_q^k \setminus \{\mathbf{0}\}$ for some nonzero vector $\mathbf{h} \in \mathbb{F}_q^k$, where (\mathbf{g}, \mathbf{h}) denotes the inner product of two vectors \mathbf{g} and \mathbf{h} , i.e., $(\mathbf{g}, \mathbf{h}) = \mathbf{g}\mathbf{h}^{\mathrm{T}}$ over \mathbb{F}_q . In this case, the hyperplane H is denoted by $H(\mathbf{h})$, i.e.,

$$H(\boldsymbol{h}) = \{(\boldsymbol{g}) \mid (\boldsymbol{g}, \boldsymbol{h}) = 0 \text{ and } \boldsymbol{g} \in \mathbb{F}_q^k \setminus \{\boldsymbol{0}\}\}$$

for some nonzero vector $\boldsymbol{h} \in \mathbb{F}_q^k$.

Let \mathcal{C} be a nontrivial $[n, k, d]_q$ code and let $G = [\mathbf{g}_1^{\mathrm{T}}, \mathbf{g}_2^{\mathrm{T}}, \dots, \mathbf{g}_n^{\mathrm{T}}]$ be a generator matrix of \mathcal{C} with $\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_n \in \mathbb{F}_q^k$. Let $\mathbf{M}(G)$ be the multiset of n points of Σ corresponding to the n columns of G, i.e.,

$$\mathbf{M}(G) = \{(\boldsymbol{g}_1), \dots, (\boldsymbol{g}_n)\}.$$

A point P of Σ is an *i-point* if P has multiplicity *i* in $\mathbf{M}(G)$. Let γ_0 be the maximum multiplicity of points in Σ and let C_i be the set of *i*-points in Σ . For any subset K of \mathcal{F}_0 we define the multiplicity of K as

$$m(K) = \sum_{i=1}^{\gamma_0} i \cdot |K \cap C_i|,$$

where |T| denotes the number of points in a subset T of \mathcal{F}_0 . Then the multiset $\mathbf{M}(G)$ gives a partition $\bigcup_{i=0}^{\gamma_0} C_i$ of \mathcal{F}_0 . For a *t*-flat Π in Σ we define

$$\gamma_j(\Pi) = \max\{m(\Delta) \mid \Delta \subset \Pi, \ \Delta \in \mathcal{F}_j\}, \ 0 \le j \le t.$$

We denote simply by γ_j instead of $\gamma_j(\mathcal{F}_0)$. A line *l* is called a *w*-line if m(l) = w. A *w*-plane, a *w*-solid and so on are defined similarly. We prove Theorems 1.7 and 1.8 using the following theorem.

Theorem 2.1. For $k \geq 3$, there exists a nontrivial $[n, k, d]_q$ code if and only if there exists a partition $\bigcup_{i=0}^{\gamma_0} C_i$ of \mathcal{F}_0 which satisfies the following conditions:

- (a) $m(\mathcal{F}_0) = n$,
- (b) $\gamma_{k-2} = n d$.

Proof. Suppose there exists a nontrivial $[n, k, d]_q$ code C which has a generator matrix $G = [\boldsymbol{g}_1^{\mathrm{T}}, \boldsymbol{g}_2^{\mathrm{T}}, \dots, \boldsymbol{g}_n^{\mathrm{T}}]$. Then it holds that $m(\mathcal{F}_0) = n$. Since the minimum weight of C is equal to d, C must satisfies the following conditions:

(2.1)
$$d = \min\{wt(hG) \mid h \in \mathbb{F}_q^k \setminus \{\mathbf{0}\}\}$$

where $wt(\mathbf{c})$ stands for the number of nonzero entries in the vector $\mathbf{c} \in \mathbb{F}_q^n$. Since $wt(\mathbf{h}G)$ denotes the number of vectors \mathbf{g}_i such that $(\mathbf{g}_i, \mathbf{h}) \neq 0$ and $m(H(\mathbf{h}))$ denotes the number of vectors \mathbf{g}_i such that $(\mathbf{g}_i, \mathbf{h}) = 0$, we have $wt(\mathbf{h}G) + m(H(\mathbf{h})) = n$. It follows from (2.1) that $\gamma_{k-2} = \max\{m(H(\mathbf{h})) \mid \mathbf{h} \in \mathbb{F}_q^k \setminus \{\mathbf{0}\}\} = n - d$. Hence the part of "only if" holds.

Conversely, suppose there exists a partition in Theorem 2.1 which satisfies the conditions (a) and (b). Let λ_i denote the number of points in C_i . We construct a matrix G consisting of i matrices G_i for $1 \le i \le \gamma_0$ as follows.

$$G = [G_1, G_2, G_2, G_3, G_3, G_3, \dots, G_{\gamma_0}, G_{\gamma_0}, \dots, G_{\gamma_0}]$$

where G_i denotes a matrix constructed by λ_i colomun vectors $\boldsymbol{g}^{\mathrm{T}}$ with $\boldsymbol{g} \in \mathbb{F}_q^k$ such that $(\boldsymbol{g}) \in C_i$. Then G is a generator matrix of a nontrivial $[n, k, d]_q$ code \mathcal{C} . \Box

For $d = (k-2)q^{k-1} - (k-1)q^{k-2}$, $g_q(k,d)$ can be expressed as follows.

(2.2)
$$g_q(k,d) = (k-2)q^{k-1} - \theta_{k-2}$$

If $n = g_q(k, d)$, then $n - d = (k - 1)q^{k-2} - \theta_{k-2} = (k - 2)q^{k-2} - \theta_{k-3}$. Hence we have the following corollary from Theorem 2.1.

Corollary 2.2. For $q \ge k \ge 3$, there exists a $[g_q(k,d), k, d = (k-2)q^{k-1} - (k-1)q^{k-2}]_q$ code if and only if there exists a partition $\bigcup_{i=0}^{k-2} C_i$ of \mathcal{F}_0 with $\gamma_0 = k-2$ in PG(k-1,q) which satisfies the following conditions:

307

- (a) $m(\mathcal{F}_0) = (k-2)q^{k-1} \theta_{k-2},$
- (b) $\gamma_{k-2} = (k-2)q^{k-2} \theta_{k-3}$.

Hence in order to prove Theorems 1.7 and 1.8, it is sufficient to prove the following theorem for integers k and q in the theorems.

Theorem 2.3. For any integers k and q in Theorems 1.7 and 1.8, there is no partition $\bigcup_{i=0}^{k-2} C_i$ of \mathcal{F}_0 with $\gamma_0 = k-2$ in PG(k-1,q) which satisfies the following conditions:

- (a) $m(\mathcal{F}_0) = (k-2)q^{k-1} \theta_{k-2}$,
- (b) $\gamma_{k-2} = (k-2)q^{k-2} \theta_{k-3}$.

In Sections 3, 4, 5, 6, we shall use repeatedly the following well known result.

Proposition 2.4. Let k, u, w be integers such that $k \ge 3$, $k-1 \ge w \ge u+2$ and $u \ge 0$. Let $\delta \in \mathcal{F}_u$, $\Pi \in \mathcal{F}_w$.

- (1) In Π , there are b flats $\Delta_1, \Delta_2, \ldots, \Delta_b \in \mathcal{F}_{u+1}$ containing δ , where $b = \theta_{w-u-1}$.
- (2) If there exists such a partition of \mathcal{F}_0 as Theorem 2.1, then

(2.3)
$$\sum_{i=1}^{b} m(\Delta_i) = m(\Pi) + (b-1)m(\delta).$$

Remark 2.5. In Proposition 2.4 (2), there is a partition of Π as follows.

(2.4)
$$\left(\bigcup_{i=1}^{b} (\Delta_i \setminus \delta)\right) \cup \delta = \Pi.$$

Remark 2.6. In the case $d = sq^{k-1}$ for some positive integer s, it is known that there exists a $[g_q(k,d) = s\theta_{k-2}, k, d = sq^{k-1}]_q$ code (take s copies of

 Σ as the multiset $\mathbf{M}(G)$). Hence, to solve Problem 1, we only need to consider the case $(s-1)q^{k-1} < d < sq^{k-1}$ for some positive integer s.

3. Preliminary results. Recall from the previous section that γ_j is defined for $1 \le j \le k-1$ as

(3.1)
$$\gamma_j = \max\{m(\Delta) \mid \Delta \in \mathcal{F}_j\}.$$

Throughout this section, we assume that there exists a partition $\bigcup_{i=0}^{k-2} C_i$ of \mathcal{F}_0 with $\gamma_0 = k - 2$ in $\operatorname{PG}(k - 1, q)$ which satisfies the conditions (a) and (b) in Corollary 2.2 for $q \ge k \ge 5$. The following lemma due to Maruta [10] plays an important role in proving Theorems 1.7 and 1.8.

Lemma 3.1 ([10]).

- (1) $\gamma_j = (k-2)q^j \theta_{j-1}$ for $0 \le j \le k-1$.
- (2) A *j*-flat Δ satisfies $m(\Delta) = \gamma_j$ if and only if $\gamma_0(\Delta) = k-2$, for $1 \le j \le k-2$.

It is already known by Lemma 3.4 of [10] that every line l satisfies $\gamma_0(l) \ge$

Lemma 3.2.
$$m(l) \ge tq - 1$$
 for any line l with $\gamma_0(l) = t$.

Proof. Our assertion follows from the previous lemma for t = k - 2. Let l be a line with $\gamma_0(l) = t, 1 \le t \le k-3$. Take a point P of C_{k-2} and let $\delta = \langle l, P \rangle$, where $\langle \chi_1, \chi_2, \ldots \rangle$ denotes the smallest flat containing subsets χ_1, χ_2, \ldots of \mathcal{F}_0 . Then $m(\delta) = \gamma_2 = (k-2)q^2 - \theta_1$ by Lemma 3.1. Let Q be a t-point on l and let l_1, \ldots, l_q be the lines in δ through Q other than l. It follows from (2.3) that

$$m(l) + \sum_{i=1}^{q} m(l_i) = m(\delta) + m(Q)q = \gamma_2 + tq.$$

Since $m(l_i) \leq \gamma_1 = (k-2)q - 1$ for $1 \leq i \leq q$, we have

$$m(l) \ge \gamma_2 + tq - q\gamma_1 = tq - 1.$$

Lemma 3.3. Assume that there is no line l with $\gamma_0(l) = k - 3$ and m(l) = (k - 3)q + s, $0 \le s \le k - 3$, where $q \ge k \ge 5$. If l_0 is a line with $\gamma_0(l_0) = t \le k - 4$, then $m(l_0) = tq - 1$.

1.

Proof. Suppose $\gamma_0(l_0) = t$ and $m(l_0) = tq + t'$, $0 \le t' \le t \le k - 4$. Let δ be a plane containing l_0 and a (k-2)-point. Then, by Lemma 3.1, we have $m(\delta) = \gamma_2$. Let P be a t-point on l_0 and let l_1 be another line through P in δ . Considering the lines through P in δ , we obtain

$$\gamma_2 = m(\delta) \le m(l_0) + m(l_1) + (q-1)\gamma_1 - qt,$$

whence $m(l_1) \ge (k-2)q - 2 - t' > (k-3)q - 1$, for $t' + 1 \le k - 3 < k \le q$. This implies that all lines through P in δ other than l_0 are γ_1 -lines from our assumption, and we have $\gamma_2 = \gamma_1 q + t' > \gamma_2$, a contradiction. \Box

Lemma 3.4. Let Π be a hyperplane of Σ with $\gamma_0(\Pi) = t$, $1 \le t \le k-3$. Assume that every line l in Π with $\gamma_0(l) = u \le k-3$ satisfies $m(l_0) = uq - 1$. Then

- (1) $c(\Pi) = tq^{k-2} \theta_{k-3}$.
- (2) For a (t+1)-flat π in Π containing a t-point, the partition $\pi = \bigcup_{i=0}^{t} (\pi \cap C_i)$ gives a $[tq^{t+1} - \theta_t, t+2, tq^{t+1} - (t+1)q^t]_q$ code.

Proof. See Lemma 3.5 of [10]. \Box

Since there exists no $[tq^{t+1} - \theta_t, t+2, tq^{t+1} - (t+1)q^t]_q$ code for $q \ge t+2$ with $1 \le t \le 3$ from Theorem 1.5, we get a contradiction using induction on k for $k \ge 6$. Hence, from Lemmas 3.3 and 3.4, we get the following theorem.

Theorem 3.5. For $q \ge k \ge 5$, there is no $[g_q(k,d), k, d = (k-2)q^{k-1} - (k-1)q^{k-2}]_q$ code if there is no line l in Σ with $\gamma_0(l) = k-3$ and m(l) = (k-3)q+s for $0 \le s \le k-3$.

4. A γ_3 -solid containing a putative ((k-3)q+s)-line. In this section, we assume that there exists a partition $\bigcup_{i=0}^{k-2} C_i$ of \mathcal{F}_0 with $\gamma_0 = k-2$ in $\Sigma = PG(k-1,q)$ which satisfies the conditions (a) and (b) in Corollary 2.2 for given integers q and k with q > (3k-6)/2, $k \ge 6$. Since it is known that Theorems 1.7 and 1.8 hold for $q \ge 2k-3$ and $k \ge 6$, it is sufficient to prove the theorems for q and k with

(4.1)
$$2k-4 \ge q > (3k-6)/2$$
 and $k \ge 6$.

Hence, to prove the theorems, it suffices to prove the following three theorems by Theorem 3.5.

Theorem 4.1. For any integers k and q with (a) q = 2k - 4, $k \ge 6$ or (b) q = 2k - 5, $k \ge 6$, there is no line l in $\Sigma = PG(k - 1, q)$ such that $\gamma_0(l) = k - 3$ and m(l) = (k - 3)q + s for some integer s with $0 \le s \le k - 3$.

Theorem 4.2. For any integers k and q with q = 2k - 6, $k \ge 7$, there is no line l in $\Sigma = PG(k - 1, q)$ such that $\gamma_0(l) = k - 3$ and m(l) = (k - 3)q + s for some integer s with $0 \le s \le k - 3$.

Theorem 4.3. For any integers k and q with q = 2k - 7, $k \ge 9$, there is no line l in $\Sigma = PG(k - 1, q)$ such that $\gamma_0(l) = k - 3$ and m(l) = (k - 3)q + s for some integer s with $0 \le s \le k - 3$.

The proofs of Theorems 4.2 and 4.3 are given in Sections 5 and 6, respectively. In order to prove these theorems, we shall prepare four lemmas in this section. Theorem 4.1 is a corollary of one of these lemmas. Suppose for some integers k and q satisfying the condition (4.1) that there exists a line l in Σ such that $\gamma_0(l) = k - 3$ and

(4.2)
$$m(l) = (k-3)q + s$$

for some integer s with $0 \le s \le k-3$. Let Δ be a solid in Σ containing l and a (k-2)-point. Then $m(\Delta) = \gamma_3 = (k-2)q^3 - \theta_2$ by Lemma 3.1. Let $\delta_0, \delta_1, \ldots, \delta_q$ be the planes in Δ containing l. Without loss of generality, we may assume that $m(\delta_0) \le m(\delta_1) \le \cdots \le m(\delta_q)$. It follows from (2.3) and (4.2) that

(4.3)
$$\sum_{i=0}^{q} m(\delta_i) = m(\Delta) + m(l)q = (k-2)q^3 + (k-4)q^2 + (s-1)q - 1.$$

If $\gamma_0(\delta_i) = k - 2$ for all *i* with $0 \le i \le q$, it follows from Lemma 3.1 that the left hand side of (4.3) is equal to

$$(q+1)((k-2)q^2 - \theta_1) = (k-2)q^3 + (k-4)q^2 + (q-2)q - 1$$

> $(k-2)q^3 + (k-4)q^2 + (s-1)q - 1$,

a contradiction, since

$$(q-2) - (s-1) = q - s - 1 > (3k - 6)/2 - (k - 3) - 1 = (k - 2)/2 > 0$$

by (4.1). Hence $\gamma_0(\delta_0) = k - 3$. Since $m(\delta_i) \leq \gamma_2$, it follows from (4.3) and Lemma 3.1 that

(4.4)
$$m(\delta_0) + m(\delta_1) + m(\delta_2) \ge (3k - 7)q^2 + (s - 2)q - 3.$$

311

Lemma 4.4. If 2q > 3k - 6, then $\gamma_0(\delta_0) = k - 3$ and $\gamma_0(\delta_i) = k - 2$ for $2 \le i \le q$.

Proof. It suffices to prove $\gamma_0(\delta_2) = k - 2$. Suppose $\gamma_0(\delta_2) = k - 3$. Then it holds that

$$m(\delta_0) + m(\delta_1) + m(\delta_2) \le 3(k-3)\theta_2.$$

If 2q > 3k - 6, then

$$((3k-7)q^2 + (s-2)q - 3) - 3(k-3)\theta_2 = (2q - 3k + 6)(q+1) + (s-1)q \ge sq+1 > 0,$$

which implies that

$$m(\delta_0) + m(\delta_1) + m(\delta_2) < (3k - 7)q^2 + (s - 2)q - 3$$

This is contradictory to (4.4). Hence $\gamma_0(\delta_2) = k - 2$. \Box

Let P be a (k-3)-point in l and let l_1, \ldots, l_q be the lines in δ_q through P other than l. Without loss of generality, we may assume that $m(l_1) \leq \cdots \leq m(l_q)$. It follows from (2.3) and m(P) = k-3 that

(4.5)
$$\sum_{i=1}^{q} m(l_i) + m(l) = m(\delta_q) + m(P)q = (k-2)q^2 + (k-4)q - 1.$$

If $\gamma_0(l_i) = k - 2$ for $2 \le i \le q$, it follows from Lemma 3.1 and (4.5) that $m(l_i) = (k-2)q - 1$ for $2 \le i \le q$ and

(4.6)
$$m(l) + m(l_1) = (2k - 5)q - 2.$$

Since $m(l_i) \leq \gamma_1$, it follows from (4.5) that

(4.7)
$$m(l) + m(l_1) + m(l_2) \ge (3k - 7)q - 3.$$

Lemma 4.5. If 2q > 3k - 6, then $\gamma_0(l_i) = k - 2$ for $2 \le i \le q$, $\gamma_0(l_1) = k - 3$ and $m(l_1) = (k - 3)q + q - s - 2$.

Proof. Suppose $\gamma_0(l_2) = k-3$. Then, from our assumptions $\gamma_0(l) = k-3$ and $m(l_1) \le m(l_2)$, we have $m(l) + m(l_1) + m(l_2) \le 3(k-3)\theta_1$. If 2q > 3k - 6, then $(3k-7)q - 3 - 3(k-3)\theta_1 = 2q - 3k + 6 > 0$. This implies that

$$m(l) + m(l_1) + m(l_2) < (3k - 7)q - 3,$$

contradicting (4.7). Hence $\gamma_0(l_i) = k - 2$ for $2 \leq i \leq q$, and $m(l_1) = (k - 3)q + q - s - 2$ by (4.6). It holds that $\gamma_0(l_1) = k - 3$ by Lemma 3.1 since $(k-3)q + q - s - 2 < \gamma_1$. \Box

Let $s_1 = q - 2 - s$. When 2q > 3k - 6, we have $m(l_1) = (k - 3)q + s_1$ by Lemma 4.5. Since $s + s_1 = q - 2$, we may assume without loss of generality that

(4.8)
$$s \ge s_1, \quad (q-2)/2 \le s \le k-3.$$

Thus, if $\gamma_0(\delta_i) = k - 2$, there always exists a pair of lines l and l_{i1} in δ_i such that

$$m(l) = (k-3)q + s, \quad m(l_{i1}) = (k-3)q + s_1,$$

where $s + s_1 = q - 2$. Hence, to prove Theorem 4.1, it is sufficient to show that there is no line l in Σ such that $\gamma_0(l) = k - 3$ and m(l) = (k - 3) + s for any integer s satisfying the condition (4.8).

Assume 2q > 3k-6, $k \ge 6$. Let l be a ((k-3)q+s)-line with $0 \le s \le k-3$ and let Δ be a γ_3 -solid containing l and a (k-2)-point in Σ . Let $\delta_0, \delta_1, \ldots, \delta_q$ be the planes through l in Δ with $m(\delta_0) \le m(\delta_1) \le \cdots \le m(\delta_q)$. Then $\gamma_0(\delta_0) = k-3$, $\gamma_0(\delta_1) = k-3$ or k-2 and $\gamma_0(\delta_i) = k-2$ for $2 \le i \le q$ by Lemma 4.4. Let P be a (k-3)-point on l and let $l_{i1}, l_{i2}, \ldots, l_{iq}$ be the lines in δ_i through P other than l with $m(l_{i1}) \le m(l_{i2}) \le \cdots \le m(l_{iq})$ for $1 \le i \le q$. When $\gamma_0(\delta_i) = k-2$, it follows from Lemma 4.5 that $\gamma_0(l_{ij}) = k-2$ for $2 \le j \le q$ and that $\gamma_0(l_{i1}) = k-3$, $m(l_{i1}) = (k-3)q + s_1$, where $s_1 = q - s - 2$. Note that $s_1 \ge 0$ since $q > 3(k-2)/2 \ge 3(s+1)/2$.

Lemma 4.6. If 2q > 3k - 6, $k \ge 6$, then

(1)
$$\gamma_0(\delta_0) = k - 3$$
, $\gamma_0(\delta_i) = k - 2$ for $1 \le i \le q$ and $m(\delta_0) = (k - 3)q^2 + sq - 1$,

- (2) there are q ((k-3)q+s)-lines and one ((k-3)q-1)-line through P in δ_0 ,
- (3) there is a $((k-3)q^2+s_1q-1)$ -plane $\tilde{\delta_1}$ through P meeting δ_0 in a ((k-3)q-1)line,
- (4) for any (k-3)-point P' in δ_0 there are q ((k-3)q+s)-lines and one ((k-3)q-1)-line through P' in δ_0 ,
- (5) $s \le k 4, s_1 \le k 4$ and $q \le 2k 6$.

Proof. (1) To prove (1), it suffices to determine $\gamma_0(\delta_1)$ and $m(\delta_0)$ by Lemma 4.4. Recall that in a γ_2 -plane containing l, the lines through P consist of l and a $((k-3)q+s_1)$ -line and q-1 γ_1 -lines. So, the γ_2 -plane $\langle l_{q1}, l_{q-1,j} \rangle$ meets δ_0 in a ((k-3)q+s)-line, say l_{0j} , for $2 \leq j \leq q$. Hence $\langle l_{q1}, l_{q-1,j} \rangle$ with $2 \leq j \leq q$ meets δ_u in a γ_1 -line for $1 \leq u \leq q-2$. Thus $\gamma_0(\delta_1) = k-2$. By Lemma 3.1 we get

$$m(\delta_0) = m(\Delta) - \sum_{i=1}^q m(\delta_i) + m(l)q$$

= $\gamma_3 - \gamma_2 q + ((k-3)q + s)q = (k-3)q^2 + sq - 1.$

(2) From the proof of (1), there are q ((k-3)q+s)-lines $l, l_{02}, l_{03}, \ldots, l_{0q}$ through P in δ_0 . Let l_{01} be the other line through P in δ_0 . Then it follows from (1) that

$$m(l_{01}) = m(\delta_0) - \sum_{i=2}^{q} m(l_{0i}) - m(l) + m(P)q$$

= $(k-3)q^2 + sq - 1 - ((k-3)q + s)q + (k-3)q = (k-3)q - 1.$

(3) Put $\tilde{\delta_1} = \langle l_{q1}, l_{q-1,1} \rangle$. Then $\tilde{\delta_1}$ meets δ_u in a $((k-3)q+s_1)$ -line for $1 \leq u \leq q$. Hence $\gamma_0(\tilde{\delta_1}) = k-3$. Since $m(\delta_0 \cap \tilde{\delta_1}) = m(l_{01}) = (k-3)q-1$, it holds that

$$m(\tilde{\delta}_1) = \sum_{i=0}^q m(\delta_i \cap \tilde{\delta}_1) - m(P)q = (k-3)q - 1 + ((k-3)q + s_1)q - (k-3)q$$

= $(k-3)q^2 + s_1q - 1.$

(4) Note from (1) that for any ((k-3)q+s)-line l with $0 \le s \le k-3$, there is only one plane through l in Δ which has no (k-2)-point. If all the lines through P' in δ_0 are ((k-3)q-1)-lines, then

$$m(\delta_0) = ((k-3)q - 1)\theta_1 - (k-3)q = (k-3)q^2 - \theta_1,$$

a contradiction. Hence there is a ((k-3)q+s')-line l' in δ_0 through P' for some $0 \le s' \le k-3$. In Δ there is only one plane, say δ' , through l' which has no (k-2)-point. From (1) we have $m(\delta') = (k-3)q^2 + s'q - 1$. Since δ_0 is also a plane containing l' which has no (k-2)-point, we obtain $\delta' = \delta_0$ and s' = s. Hence our assertion follows from (1) and (2).

(5) Suppose s = k - 3. Then $l \subset C_{k-3}$, and every line in δ_0 contains a (k-3)-point. So, from (4), every line in δ_0 is a $((k-3)\theta_1)$ -line or a ((k-3)q-1)-line. Let R be a t-point on a ((k-3)q-1)-line in δ_0 with $t \leq k-4$. Since all the

lines in δ_0 through R are ((k-3)q-1)-lines, we get $m(\delta_0) = ((k-3)q-1)\theta_1 - tq$, whence k-4-t = s = k-3, i.e., t = -1, a contradiction. Hence $s \neq k-3$. Since $s \geq s_1$ from (4.8), we have $s_1 \leq k-4$. From $s \leq k-4$ and $s_1 = q-s-2 \leq k-4$, we have $q-k+2 \leq s \leq k-4$, so $q \leq 2k-6$. \Box

Remark 4.7. (1) In the proof of Lemma 4.6(3), it is easily checked that the q-1 planes through l_{01} other than δ_0 , $\tilde{\delta_1}$ are γ_2 -planes.

(2) It follows from Lemma 4.6(4) that every ((k-3)q + s')-line with $0 \le s' \le k-3$ in δ_0 satisfies s' = s since $(k-3)q + s' > (k-4)\theta_1$.

(3) We obtain Theorem 4.1 as a consequence of Lemma 4.6(5).

Lemma 4.8. Assume that δ_0 contains an s-point S and that l_{01} contains a 0-point R and a (k-4)-point Q. Then

- (1) $l_R = \langle R, S \rangle$ is an ((s+1)q-1)-line containing q-1 (s+1)-points and $l_Q = \langle Q, S \rangle$ is a ((k-4)q+s)-line with $l_Q \setminus \{S\} \subset C_{k-4}$, and any point of $\delta_0 \setminus (l_Q \cup l_R)$ is a (k-3)-point.
- (2) Every line through R in δ_0 other than l_R is a ((k-3)q-1)-line.
- (3) Every line through Q in δ_0 other than l_{01}, l_Q is a ((k-3)q+s)-line.

Proof. Since $m(l_{01}) = (k-3)q - 1$, l_{01} contains q - 1 (k-3)-points, say $P_1, P_2, \ldots, P_{q-1}$. It follows from Lemma 4.6(4) that each line $\langle S, P_i \rangle$ is a ((k-3)q+s)-line containing q (k-3)-points for $1 \le i \le q-1$. Hence any line l' through R in δ_0 other than l_R, l_{01} contains q-1 (k-3)-points. Then we have m(l') = (k-3)q - 1 by Lemma 4.6(4) again, and l' meets l_Q in a (k-4)-point. Thus $m(l_Q) = (k-4)q + s$ and l_Q contains q (k-4)-points except the s-point S. Hence

$$m(l_R) = m(\delta_0) - ((k-3)q - 1)q = (s+1)q - 1.$$

If $\gamma_0(l_R) \ge s+2$, we have $m(l_R) \ge (s+2)q-1$ by Lemma 3.4, a contradiction. It follows from $(s+1)q-1 > s\theta_1$ that $\gamma_0(l_R) = s+1$ and that l_R contains q-1(s+1)-points. Hence our assertions follow. \Box

5. Proof of Theorem 4.2. Throughout this section, we assume that $2k-6 \ge q > (3k-6)/2, k \ge 6, s = k-4$ and that $l, P, \Delta, \delta_0, l_{01}, l_{02}, \ldots, l_{0q}, \tilde{\delta_1}, s_1$ are as in the proof of Lemma 4.6. We also use the following notations:

$$\eta_1 = (k-3)q + k - 4, \ \eta_j = \eta_{j-1}q - 1 \text{ for } 2 \le j \le k-2,$$

$$\mu_1 = (k-3)q - 1, \ \mu_j = \mu_{j-1}q - 1 \text{ for } 2 \le j \le k-2.$$

Note that $\gamma_1 = (k-2)q - 1$ and $\gamma_j = \gamma_{j-1}q - 1$ for $2 \le j \le k-2$ by Lemma 3.1.

Lemma 5.1. Assume $2k - 6 \ge q > (3k - 6)/2$, $k \ge 6$ and s = k - 4.

- (1) The η_2 -plane δ_0 consists of one 0-point R, θ_1 collinear (k-4)-points and $q^2 1$ (k-3)-points.
- (2) The lines in δ_0 are the $((k-4)\theta_1)$ -line $L(\subset C_{k-4})$, $\theta_1 \mu_1$ -lines through R and $q^2 1 \eta_1$ -lines.

Proof. We first note that each of η_1 -lines $l, l_{02}, \ldots, l_{0q}$ through a (k-3)-point P in the η_2 -plane δ_0 contains exactly q (k-3)-points and one (k-4)-point. Let Q_0, Q_2, \ldots, Q_q be the (k-4)-points in $l, l_{02}, \ldots, l_{0q}$, respectively and let $P_1, P_2, \ldots, P_{q-1}$ be the (k-3)-points in l_{0q} other than P.

Suppose that l_{01} contains no *t*-point for $t \leq k-5$. Then the number of (k-4)-points in the μ_1 -line l_{01} in δ_0 through P is $(k-3)\theta_1 - \mu_1 = k-2$. Since $k \geq 6$, there are at least four (k-4)-points in l_{01} . Since P_i is a (k-3)-point in δ_0 for $1 \leq i \leq q-1$, it follows from Lemma 4.6 and $m(Q_0) = k-4$ that $\langle Q_0, P_i \rangle$ must be an η_1 -line for $1 \leq i \leq q-1$. That is, $\langle Q_0, P_i \rangle$ contains q (k-3)-points and one (k-4)-point Q_0 for $1 \leq i \leq q-1$. This implies that the q points Q_0, Q_2, \ldots, Q_q must be on the line $\langle Q_0, Q_q \rangle$ and that there are q (k-3)-points and at most one (k-4)-point in l_{01} , a contradiction. Hence there is a t-point R in l_{01} with $t \leq k-5$.

Next, we show that every line in δ_0 through R is a μ_1 -line. Actually, such a line other than $\langle Q_0, R \rangle$ is a μ_1 -line since it meets l in a (k-3)-point. Hence we have

$$m(\langle Q_0, R \rangle) = m(\delta_0) - \mu_1 q + tq = (k - 3 + t)q - 1.$$

Since $\gamma_0(\delta_0) = k-3$, it follows from Lemma 3.1 that t = 0. Hence the line $\langle Q_0, R \rangle$ is also a μ_1 -line, and l_{01} contains exactly one (k-4)-point, say Q_1 . The points of l_{01} other than R, Q_1 are (k-3)-points. Note that each of other lines in δ_0 through R also contains only one (k-4)-point. Put $L = \delta_0 \cap C_{k-4} = \{Q_0, Q_1, Q_2, \ldots, Q_q\}$. Then L forms a line by Lemma 4.8. Hence our assertions follow. \Box

Since $m(\Delta) = m(\delta_0) + \gamma_2 q - m(L)q - q^2$ and $\gamma_2 - q^2 = (k-3)q^2 - \theta_1 > (k-4)\theta_2$, it holds that $m(\Delta) > m(\delta_0) + \gamma_2(q-1) + (k-4)\theta_2 - m(L)q$. Hence we get the following.

Lemma 5.2. Every plane δ' in Δ through L with $m(\delta') < \gamma_2$ satisfies $\gamma_0(\delta') = k - 3$.

From now on, we assume that q = 2k - 6 in this section. Then, $s_1 = q - s - 2 = k - 4 = s$ and $k \ge 7$ from our assumption q > (3k - 6)/2. Hence, $\tilde{\delta}_1$ in Lemma 4.6 is an η_2 -plane meeting δ_0 in the μ_1 -line l_{01} . By Lemma 5.1, $\tilde{\delta}_1$ contains a $((k - 4)\theta_1)$ -line $(\subset C_{k-4})$, say \tilde{L} . Put $\delta_L = \langle L, \tilde{L} \rangle$. Suppose $\gamma_0(\delta_L) = k - 2$. Considering the lines in δ_L through the (k - 4)-point $L \cap \tilde{L}$, we get

$$\gamma_2 \le 2(k-4)\theta_1 + \gamma_1(q-1) - (k-4)q = \gamma_2 - q < \gamma_2,$$

a contradiction. Hence we have $\gamma_0(\delta_L) = k-3$ by Lemma 5.2. Next, we determine $m(\delta_L)$. Suppose there is another plane $\delta'(\neq \delta_L)$ in Δ through L with $\gamma_0(\delta') = k-3$. Then, by Lemma 5.1, δ' meets $\tilde{\delta_1}$ in an η_1 -line, which contradicts to the fact that there is only one plane in Δ containing no (k-2)-point through a fixed η_1 -line by Lemma 4.6(1). Thus, all planes through L other than δ_L and δ_0 are γ_2 -planes, and we have

$$m(\delta_L) = m(\Delta) - \gamma_2(q-1) - m(\delta_0) + m(L)q = \mu_2.$$

It follows from

$$\mu_2 = \mu_1 \theta_1 - (k-3)q$$

= $\mu_1(q-1) + 2(k-4)\theta_1 - (k-4)q$

that every line in δ_L through a (k-3)-point is a μ_1 -line and that every line in δ_L through the (k-4)-point $L \cap \tilde{L}$ other than L, \tilde{L} is a μ_1 -line. Recall from Lemma 4.6 that for any (k-3)-point P on the η_1 -line l, there is another η_2 -plane through P meeting the η_2 -plane δ_0 in a μ_1 -line. Hence, for any μ_1 -line l'_1 in δ_0 through R, one can find an η_2 -plane meeting δ_0 in l'_1 . Since there is only one plane through L (other than δ_0) containing no (k-2)-point, each (k-4)-point of L is on exactly two $((k-4)\theta_1)$ -lines in δ_L . Thus there are exactly q+2 $((k-4)\theta_1)$ -lines in δ_L , say L, L_0, L_1, \ldots, L_q . Put $\mathcal{L} = \{L, L_0, L_1, \ldots, L_q\}$. Let $L \cap L_i = \{Q_i\}$ and let ℓ_i be any line in δ_L through the (k-4)-point Q_i other than $L, L_i, 0 \leq i \leq q$. Since ℓ_i is a μ_1 -line, ℓ_i must contain q/2 (k-4)-points and q/2 (k-3)-points except for Q_i . Since $|\ell_i \cap L_j| = 1$ for $0 \le i \le q$, $0 \le j \le q$ with $i \ne j$, this implies that no three lines of \mathcal{L} are concurrent. Thus \mathcal{L} forms a (q+2)-arc of lines in δ_L (see [7] for arcs). Hence $|\delta_L \cap C_{k-4}| = |L \cup L_0 \cup L_1 \cup \cdots \cup L_q| = \binom{q+2}{2}$ and any point of δ_L out of the $((k-4)\theta_1)$ -lines is a (k-3)-point. Just like δ_0 or $\tilde{\delta_1}$, the plane $\langle R, L_i \rangle$ is an η_2 -plane for $1 \leq i \leq q$. Any line l^* in δ_L containing a (k-3)-point is a μ_1 -line and l^* contains exactly (q+2)/2 (k-4)-points and q/2 (k-3)-points, since \mathcal{L} forms a (q+2)-arc of lines. It follows from $m(\Delta) = \gamma_2 q + m(\delta_L) - \mu_1 q$ that

every plane through l^* other than δ_L is a γ_2 -plane. Hence, $\langle R, l^* \rangle$ is a γ_2 -plane. Since every line containing R and a (k-4)-point of l^* is a μ_1 -line, the other q/2 lines through R and a (k-3)-point of l^* are γ_1 -lines containing exactly q-1 (k-2)-points. Therefore we get the following.

Lemma 5.3. Assume q = 2k - 6, $k \ge 7$ and that a γ_3 -solid Δ contains an η_1 -line. Then

- (1) Δ has one 0-point R and one μ_2 -plane δ_L .
- (2) δ_L contains a (q+2)-arc of lines \mathcal{L} . Each line of \mathcal{L} consists of (k-4)-points. And any point of δ_L out of the lines in \mathcal{L} is a (k-3)-point.
- (3) The plane $\langle R, L \rangle$ is an η_2 -plane for any $L \in \mathcal{L}$.
- (4) The line $\langle P, R \rangle$ contains q 1 (k 2)-points for any $P \in \delta_L \cap C_{k-3}$, and the line $\langle Q, R \rangle$ contains q - 1 (k - 3)-points for any $Q \in \delta_L \cap C_{k-4}$.
- (5) Any plane in Δ other than δ_L and $q + 2 \eta_2$ -planes in (3) is a γ_2 -plane.

Now, let Π be a 4-flat with $m(\Pi) = \gamma_4$ containing the γ_3 -solid Δ . Let $\Delta_1, \Delta_2, \ldots, \Delta_q$ be the solids in Π other than Δ containing the η_2 -plane δ_0 with $m(\Delta_1) \leq m(\Delta_2) \leq \cdots \leq m(\Delta_q) \leq m(\Delta) = \gamma_3$. It can be proved similarly to Lemma 4.4 that $\gamma_0(\Delta_1) = k - 3$ and $\gamma_0(\Delta_q) = k - 2$. Let l_0 be any line in δ_0 through the 0-point R. Then l_0 is a μ_1 -line, and there is only one η_2 -plane, say δ_1 , in Δ through l_0 other than δ_0 . Let $\delta_{i1}, \delta_{i2}, \ldots, \delta_{iq}$ be the planes in Δ_i through l_0 other than δ_0 with $m(\delta_{i1}) \leq \cdots \leq m(\delta_{iq})$ for $1 \leq i \leq q$. When $\gamma_0(\Delta_i) = k - 2$, we have

(5.1)
$$m(\delta_{i1}) = \eta_2, \ m(\delta_{ij}) = \gamma_2 \text{ for } 2 \le j \le q$$

by Lemma 5.3. Put $\Delta_{1j} = \langle \delta_1, \delta_{qj} \rangle$ for $1 \leq j \leq q$. Then, from (5.1), we have $\gamma_0(\Delta_{1j}) = k - 2$ for $2 \leq j \leq q$. For $2 \leq j \leq q$, Δ_{1j} contains only one η_2 -plane, say δ'_j , through l_0 other than δ_0 so that $\Delta_{1j} \cap \Delta_1 = \delta'_j$. Hence the q - 1 γ_2 -planes through l_0 in Δ_{1j} other than δ_0, δ'_j are the planes $\Delta_{1j} \cap \Delta_2, \ldots, \Delta_{1j} \cap \Delta_q$. Hence, $m(\Delta_j) = \gamma_3$ for $2 \leq j \leq q$, and we get

$$m(\Delta_1) = m(\Pi) - \sum_{j=2}^{q} m(\Delta_j) - m(\Delta) + m(\delta_0)q = \gamma_4 - \gamma_3 q + \eta_2 q = \eta_3.$$

Since $\Delta_{1j} \cap \Delta_1$ is an η_2 -plane through l_0 for $2 \leq j \leq q$, we have

$$m(\Delta_{11} \cap \Delta_1) = m(\Delta_1) - \eta_2 q + m(l_0)q = \eta_3 - \eta_2 q + \mu_1 q = \mu_2$$

Thus it holds that $m(\delta_{11}) = \mu_2$ and $m(\delta_{1j}) = \eta_2$ for $2 \le j \le q$.

Let Q_0 be the (k-4)-point on l_0 . Take a (k-4)-point $Q_1 \neq Q_0$ in δ_0 and put $l_1 = \langle Q_1, R \rangle$. Then, like as for l_0 , the planes in Δ_1 through l_1 are η_2 -planes except for one plane (which is a μ_2 -plane). These $q \eta_2$ -planes meet δ_{11} in a μ_1 -line through R. Hence the remaining line, say \tilde{l} , through R in δ_{11} satisfies

$$m(l) = m(\delta_{11}) - \mu_1 q = \mu_2 - \mu_1 q = -1,$$

a contradiction. This completes the proof of Theorem 4.2.

6. Proof of Theorem 4.3. In this section, we assume that q = 2k - 7, $k \ge 9$ so that the condition 2q > 3k - 6 holds, and let $l, P, \Delta, \delta_0, l_{01}, \tilde{\delta_1}, s, s_1$ be as in the proof of Lemma 4.6. We also use the notations $\eta_1 = (k-3)q + k - 4$, $\eta_2 = \eta_1 q - 1$, $\mu_1 = (k-3)q - 1$ and $\mu_2 = \mu_1 q - 1$ as in the previous section and

$$\eta'_1 = (k-3)q + k - 5, \ \eta'_2 = \eta'_1q - 1.$$

Since $0 \le s \le k-4$ and $0 \le s_1 \le k-4$ with $s+s_1 = q-2 = 2k-9$ by Lemma 4.6(5), we may assume that s = k-4, $s_1 = k-5$. Hence we have

$$m(\delta_0) = \eta_2, \ m(\tilde{\delta_1}) = \eta'_2, \ m(\delta_0 \cap \tilde{\delta_1}) = m(l_{01}) = \mu_1$$

by Lemma 4.6. Since s = k - 4, the η_2 -plane δ_0 consists of one 0-point R, θ_1 collinear (k - 4)-points and $q^2 - 1$ (k - 3)-points by Lemma 5.1. Note that an η'_1 -line contains either one (k - 5)-point or two (k - 4)-points.

Lemma 6.1. $\tilde{\delta_1}$ contains no (k-5)-point.

Proof. Recall from the proof of Lemma 5.1 that the μ_1 -line l_{01} contains the 0-point R, a (k-3)-point P and the (k-4)-point Q_1 . Suppose $\tilde{\delta}_1$ contains a (k-5)-point S. Then, by Lemma 4.8, $l_{Q_1} = \langle Q_1, S \rangle$ is a ((k-4)q+k-5)-line containing q (k-4)-points and every line through R in $\tilde{\delta}_1$ other than $l_R = \langle R, S \rangle$ is a ((k-3)q-1)-line. If there exists a plane through L in Δ whose multiplicity is less than γ_2 except for δ_0 and $\delta_L = \langle L, l_{Q_1} \rangle$, it meets $\tilde{\delta}_1$ in an η'_1 -line, contradicting to Lemma 4.6(1). Hence we have

$$m(\delta_L) = m(\Delta) - \gamma_2(q-1) - m(\delta_0) + m(L)q = \mu_2$$

and $\gamma_0(\delta_L) = k - 3$ by Lemma 5.2. It can be proved similarly that every plane through l_{Q_1} other than $\tilde{\delta}_1, \delta_L$ is a γ_2 -plane.

Take a (k-4)-point $Q' \neq Q_1$ on l_{Q_1} and put $P' = \langle R, Q' \rangle \cap \langle S, P \rangle$. Since P' is a (k-3)-point on the η'_1 -line $\langle S, P \rangle$, one can find another η_2 -plane δ'_0 through P' meeting $\tilde{\delta_1}$ in the ((k-3)q-1)-line $\langle R, P' \rangle$. Let L' be the $((k-4)\theta_1)$ -line in δ'_0 . It turns out similarly to δ_L that the plane $\delta_{L'} = \langle L', l_{Q_1} \rangle$ is a μ_2 -plane with $\gamma_0(\delta_{L'}) = k - 3$. Since $\delta_{L'}$ contains l_{Q_1} , we have $\delta_{L'} = \delta_L$, and L' is on δ_L . It follows from the multiplicity of δ_L and Lemma 4.6(1) that every line l' in δ_L with $\gamma_0(l') = k - 3$ is a μ_1 -line. Considering the lines in δ_L through $L \cap L'$, we have

$$m(\delta_L) = m(L) + m(L') + \mu_1(q-1) - m(L \cap L')q - 1,$$

giving the existence of a $(\mu_1 - 1)$ -line in δ_L . This is a contradiction, for $\mu_1 - 1 > (k - 4)\theta_1$. \Box

It follows from Lemma 6.1 that every line through P in $\tilde{\delta_1}$ other than l_{01} contains exactly two (k-4)-points and that the points of $\tilde{\delta_1}$ out of l_{01} are the 2q (k-4)-points and $q^2 - 2q$ (k-3)-points. Let m_1, m_2, \ldots, m_q be the lines through R in $\tilde{\delta_1}$ other than l_{01} with $m(m_1) \leq m(m_2) \leq \cdots \leq m(m_q)$. If $\gamma_0(m_1) = k - 3$, we have

$$\eta_2' = m(\tilde{\delta_1}) = m(l_{01}) + \sum_{i=1}^q m(m_i) \ge \mu_1 \theta_1 = (k-3)q^2 + (k-4)q - 1 > \eta_2',$$

a contradiction. Hence $\gamma_0(m_1) = k - 4$ and m_1 contains $q \ (k - 4)$ -points. If m_q contains no (k - 4)-point, then we have $m(m_q) = (k - 3)q$, which is contradictory to Lemma 4.6(4). Hence each of m_2, \ldots, m_q contains a (k - 4)-point. Since the number of (k-4)-points in $\tilde{\delta_1}$ out of $l_{01} \cup m_1$ is equal to $(k-3)(q^2+q)-\eta'_2-(q+1) = q$, m_2 contains two (k - 4)-points. Hence $m(m_2) = \mu_1 - 1$, a contradiction again. This completes the proof of Theorem 4.3.

REFERENCES

- [1] DODUNEKOV S. M. Optimal linear codes. Doctor of Mathematical Sciences Dissertation, Institute of Mathematics, Sofia, 1985.
- [2] DODUNEKOV S. M. On the achievement of Solomon-Stiffler bound. Comptes Rendus del l'Academie Bulgare des Sciences, **39** (1986), 39–41.

- [3] GRIESMER J. H. A bound for error-correcting codes, *IBM J. Res. Develop.*, 4 (1960), 532–542.
- [4] HAMADA N. A characterization of some [n, k, d; q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry. Discrete Math., 116 (1993), 229–268.
- [5] HAMADA N. A survey of recent work on characterization of minihypers in PG(t, q) and nonbinary linear codes meeting the Griesmer bound, J. Comb. Inf. Syst. Sci., 18 (1993), 161–191.
- [6] HILL R. Optimal linear codes. In: Cryptography and Coding II (Ed. C. Mitchell), Oxford Univ. Press, Oxford, 1992, 75–104.
- [7] HIRSCHFELD J. W. P. Projective Geometries over Finite Fields. Clarendon Press, Oxford, 2nd ed., 1998.
- [8] KLEIN A. On codes meeting the Griesmer bound. Discrete Math., 274 (2004), 289–297.
- [9] MARUTA T. On the nonexistence of linear codes of dimension four attaining the Griesmer bound. In: Proc. of the International Workshop on Optimal Codes and Related Topics, Sozopol, Bulgaria, 1995, 117–120.
- [10] MARUTA T. On the achievement of the Griesmer bound. Des. Codes Cryptogr., 12 (1997), 83–87.
- [11] SOLOMON G., J. J. STIFFLER. Algebraically punctured cyclic codes. Inform. Control, 8 (1965), 170–179.

Noboru Hamada Emeritus Professor at Osaka Women's University e-mail: n-hamada@koala.odn.ne.jp

Tatsuya Maruta Department of Mathematics and Information Sciences Osaka Prefecture University Sakai, Osaka 599-8531, Japan e-mail: maruta@mi.s.osakafu-u.ac.jp

Received December 2, 2009 Final Accepted February 5, 2010