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ABSTRACT. We denoted by ng(k,d), the smallest value of n for which an
[n, k,d]q code exists for given g, k,d. Since ny(k,d) = gq(k,d) for all d >
dir + 1 for ¢ > k > 3, it is a natural question whether the Griesmer bound is
attained or not for d = dj, where g, (k, d) = Zf:_ol [d/q"|, di, = (k—2)¢" ' —
(k —1)¢*=2. It was shown by Dodunekov [2] and Maruta [9], [10] that there
is no [gq(k,dr), k,di]q code for ¢ > k, k = 3,4,5 and for ¢ > 2k — 3,
k > 6. The purpose of this paper is to determine ny(k,d) for d = dj as
ng(k,d) = gq(k,d) + 1 for ¢ > k with 3 < k < 8 except for (k,q) = (7,7),
(8,8), (8,9).

1. Introduction. Let Fy denote the vector space of n-tuples over F,,
the field of ¢ elements, where n is an integer > 4 and ¢ is a prime or a prime power.
A g-ary linear code C of length n and dimension k, called an [n, k], code, is a
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mn

k-dimensional subspace of Fy/, where n > k > 3. An [n, k], code C with minimum

Hamming distance d is referred to as an [n, k,d], code. Let G = [g],g3,...,g1]
be a k x n generator matrix of an [n, k,d|, code C with g,,...,g, € IE";, where gT
denotes the transpose of the vector g. If there is no zero vector in {gy,...,9,},

an [n,k,d), code C is called a nontrivial code. A fundamental problem in coding
theory is to solve the following problem.

Problem 1. Find the smallest value of n, denoted by ny(k,d), for which
an [n, k,d], code exists for given integers q,k,d.

An [n, k,d], code is called optimal if n = ny(k,d). There is a lower bound
on ngy(k,d) called the Griesmer bound [3], [11]:

na(bd) > gulkd) = 3 [ﬂ ,

i=0
where [x] denotes the smallest integer greater than or equal to z. A [g4(k,d), k,d],

code is called a Griesmer code. In order to solve Problem 1, we consider the fol-
lowing problem for given integers k > 3 and ¢ > 3.

Problem 2. For given integers k and q, find the value c(k,q) such that
(a) ng(k,d) > gq(k,d) + 1 for d = c(k,q);
(b) ng(k,d) = gq(k,d) for any integer d > c(k,q) + 1.
It is known (Theorem 2.12 in [6] or [1]) that the following theorem holds.
See [6] for linear codes of type BV.

Theorem 1.1. For given q,k and d, write
t

d= qu,1 . uni,1

i=1

where s = [d/q* 1], k> up > uy > -+ > u; > 1, and at most ¢ — 1 u;’s take any
given value. Then there exists a [g4(k,d), k,d]q code of type BV if and only if the

following condition holds:
min{s+1,t}

Z u; < sk.

i=1

Corollary 1.2. If q and k are integers with ¢ > k > 3, then
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(1) there is no [g,(k,d), k,d], code of type BV ford = (k—2)¢"~1 —(k—1)¢"*2,
(2) ny(k,d) = g,(k,d) for any integer d > (k —2)¢* "t — (k — 1)g* 2 + 1.

Problem 3. For given integers k and q, find the value b(k,q) such that
(a) there is no [gq(k,d), k,d], code of type BV for d = b(k,q);
(b) ng(k,d) = gq(k,d) for any integer d > b(k,q) + 1.

In the case ¢ > k > 3, Corollary 1.2 shows that if there is no [g4(k, d), k, d,
code for d = (k —2)¢"* ' — (k — 1)¢* 2, then c(k,q) = (k — 2)¢" ' — (k — 1)¢*2.
Hence we consider the following problem.

Problem 4. [Investigate whether a [g,(k,d),k,d = (k — 2)¢"~! —
(k — 1)¢"*2], code exists or not for given integers k and q with ¢ > k > 3.

Hamada conjectured as follows.

Conjecture 1.3. There is no [gq(k,d), k,d = (k—2)¢* "t — (k— 1)¢" 2],
code for any integers k and q with ¢ > k > 3. That is,

c(k,q) = (k= 2)¢"! — (k = 1)¢"*
for any integers k and q with ¢ > k > 3.

Conjecture 1.4. c(k,q) = b(k,q) for any integers k > 3 and q > 3.

As for Conjecture 1.3, the following is known, see Dodunekov [2] and
Maruta [9], [10].

Theorem 1.5 ([10]). For d = (k — 2)¢*~' — (k — 1)¢*~2, it holds that
ng(k,d) > gq(k,d)+1 for ¢ > k when k = 3,4,5 and for ¢ > 2k — 3 when k > 6.

Hence Problem 4 is unsolved for any integers k£ and ¢ with 2k —3 > g >
k > 6. For example, the cases in the next remark are still open.

Remark 1.6. For 6 < k < 13, Problem 4 is unsolved for the following
k and q.

(1) k=6 and ¢=T1,8, (
(3) k=8 and g¢=38,9,11, (
(5) k=10 and gq=11,13,16, (
(7) k=12 and ¢=13,16,17,19, (

2) k=7 and ¢=1,8,9,

4) k= and ¢=29,11,13,
) k=11 and g¢=11,13,16,17,
)

6
8) k=13 and g¢=13,16,17,19.
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In this paper we prove the following two theorems.

Theorem 1.7. There is no [g,(k,d), k,d = (k — 2)¢*~1 — (k — 1)¢*72],
code for any integers k > 6 and q with ¢ = 2k — 2u and k > 4u — 6 for u = 2, 3.

Theorem 1.8. There is no [g,(k,d), k,d = (k — 2)¢*~1 — (k — 1)¢*72],
code for any integers k > 6 and q with ¢ = 2k—2u—1 and k > 4u—4 for u = 2, 3.

Theorems 1.7 and 1.8 imply that Conjecture 1.3 is valid for the following
k and gq:

(1) k=6 and ¢=71,8, (2) k=7 and ¢=38,9,
3) k= and ¢ =11, (4 k=9 and g¢g=11,13,
(5) k=10 and q=13,16, (6) k=11 and gq= 16,17
(7) k=12 and ¢=17,19, (8) k=13 and ¢=19.

For d' = (k—2)¢" 2 — (k—1)¢* 3 with ¢ > k > 3, there exists a [g,(k—1,d'), k —
1,d']; code, say C’, by Theorem 1.1. Applying Theorem 4.5 of [5] to C’, one
can get a [g,(k,d) + 1,k,d], code for d = (k —2)g"~! — (k — 1)¢*~2. Hence,
the nonexistence of Griesmer codes determines the exact value of ny(k,d). As a
result of the previous theorems, Theorem 1.5 for £ < 13 can be improved to the
following.

Theorem 1.9. Ford = (k—2)¢" ' — (k—1)¢"2, it holds that ny(k,d) =
gq(k,d) + 1 for ¢ > k with 3 < k < 13 except for (k,q) = (7,7), (8,8), (8,9),
(9,9), (10,11), (11,11), (11,13), (12,13), (12,16), (13,13), (13,16), (13,17).

Remark 1.10. (1) If ¢ =2k —2u and k > 4u — 6, then 2q — (3k — 6) =
k—4u+6 > 0. If ¢ = 2k—2u—1 and k > 4u—4, then 2¢—(3k—6) = k—4u+4 > 0.
Hence it holds that ¢ > (3k — 6)/2 for both cases. When ¢ < (3k —6)/2 (e.g.
(k,q) = (7,7)), the situation is quite complicated, see Section 4.

(2) For the nonexistence of a [g,(k,d), k,d], code for d = (k — 2)¢" ! — (k —
1)¢"=2 — ¢ for some small ¢, see Klein [8].

2. A geometric method. To obtain a necessary and sufficient condi-
tion for the existence of a [g,(k, d), k, d], code for the case d < ¢*~1, the concept
of minihyper has been introduced by Hamada [4]. To prove Theorems 1.7 and
1.8, we generalize the concept of minihyper for the case d > ¢*~! and we give a
necessary and sufficient condition for the existence of a nontrivial [n, k, d], code
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for given integers n,k,d,q with n > k >3, ¢ > 3 and (s — 1)¢* ! < d < s¢"!
for some positive integer s.

For k > 3, let ¥ = PG(k—1, q) be the finite projective space of dimension
k—1 over IF, and let F; be the set of all j-flats in 3, where a j-flat is a projective
subspace of dimension j in 3. O-flats, 1-flats, 2-flats, 3-flats and (k — 2)-flats are
called points, lines, planes, solids and hyperplanes, respectively. The number of
points in a j-flat is denoted by 6;, where

=@ -1/la-1)=¢ +¢ "+ +q+1

for j=0,1,...,k—1. We set §_1 = 0 for convenience.

A point in ¥ is denoted by (h) using a nonzero vector h € Flg, where
two points (h1) and (hgy) are same points if and only if there exists a nonzero
element o € [F, with hy = ohy. Each hyperplane of ¥ can be expressed as the
set of all points (g) € Fp such that (g,h) =0 and g € IFI; \ {0} for some nonzero
vector h € FI; , where (g, h) denotes the inner product of two vectors g and h,
ie., (g,h) = gh" over [F,. In this case, the hyperplane H is denoted by H(h),
ie.,

H(h)={(g) | (g.h) =0 and g € Fy \ {0}}

for some nonzero vector h € FI; .

Let C be a nontrivial [n,k,d], code and let G = [g],g3,...,g}] be a
generator matrix of C with g,,95,...,9, € IF'I;. Let M(G) be the multiset of n
points of ¥ corresponding to the n columns of G, i.e.,

M(G) = {(91),---(gn)}-

A point P of ¥ is an i-point if P has multiplicity ¢ in M(G). Let vy be the
maximum multiplicity of points in X and let C; be the set of i-points in . For
any subset K of Fg we define the multiplicity of K as

Y0
m(K) =Y i-|[KNCyl,

=1

where |T'| denotes the number of points in a subset T of Fy. Then the multiset
M(G) gives a partition |J}°, C; of Fy. For a t-flat IT in ¥ we define

;) =max{m(A) | ACII, Ae F;}, 0<j <t
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We denote simply by v; instead of v;(Fp). A line [ is called a w-line if m(l) = w.
A w-plane, a w-solid and so on are defined similarly. We prove Theorems 1.7 and
1.8 using the following theorem.

Theorem 2.1. For k > 3, there exists a nontrivial [n,k,d], code if
and only if there exists a partition | J°, C; of Fo which satisfies the following
conditions:

(a) m(Fo) =n,
(b) Yg—2 =n —d.

Proof. Suppose there exists a nontrivial [n,k,d], code C which has a
generator matrix G = [g1, g4 ,...,g.]. Then it holds that m(Fy) = n. Since the
minimum weight of C is equal to d, C must satisfies the following conditions:

(2.1) d = min{wt(hG) | h € F¥\ {0}}

where wt(c) stands for the number of nonzero entries in the vector ¢ € Fy. Since
wt(hG) denotes the number of vectors g; such that (g;,h) # 0 and m(H (h))
denotes the number of vectors g; such that (g;,h) = 0, we have wt(hG) +
m(H(h)) = n. It follows from (2.1) that y4,_o = max{m(H(h)) | h € FI;\{O}} =
n — d. Hence the part of “only if” holds.

Conversely, suppose there exists a partition in Theorem 2.1 which satisfies
the conditions (a) and (b). Let A\; denote the number of points in C;. We construct
a matrix GG consisting of ¢ matrices G; for 1 < i < g as follows.

G = [G1,G2,G2,G3,G3,G3,...,Gyy, Gy, .., Gy

where G; denotes a matrix constructed by \; colomun vectors g* with g € FZ
such that (g) € C;. Then G is a generator matrix of a nontrivial [n, k, d], code
C. O

For d = (k —2)¢" 1 — (k — 1)¢*72, g,(k,d) can be expressed as follows.
(2.2) 9ok, d) = (k= 2)¢"" = 05 5.

If n = g,(k,d), then n —d = (k — 1)¢* 2 — p_o = (k — 2)¢* "2 — 0 _3. Hence we
have the following corollary from Theorem 2.1.

Corollary 2.2. For ¢ > k > 3, there exists a [gq(k,d), k,d = (k —
2)g* 1 — (k — 1)¢¥=2], code if and only if there exists a partition Uf:g Ci of Fo
with vg = k — 2 in PG(k — 1, q) which satisfies the following conditions:
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(a) m(Fo) = (k—2)g"" = Ox_2,
(b) Y2 = (k —2)¢" 2 — O
Hence in order to prove Theorems 1.7 and 1.8, it is sufficient to prove the
following theorem for integers k and ¢ in the theorems.

Theorem 2.3. For any integers k and q in Theorems 1.7 and 1.8, there
is no partition Uf:_(? C; of Fo with v =k —2 in PG(k — 1,q) which satisfies the

following conditions:
(a) m(Fo) = (k —2)g"" — by,
(b) 2= (k=2)¢"% = Op_3.
In Sections 3, 4, 5, 6, we shall use repeatedly the following well known
result.

Proposition 2.4. Let k, u, w be integers such that k > 3, k—12> w >

u+2 andu>0. Let 6 € Fy, Il € F.
(1) In II, there are b flats Ay,Ag,..., Ay € Fyy1 containing §, where b =

Hw—u—l-
(2) If there exists such a partition of Fo as Theorem 2.1, then

(2.3)

Remark 2.5. In Proposition 2.4 (2), there is a partition of II as follows.

b
(2.4) (U(Ai \ 5)) Ué =TI

i=1

Remark 2.6. In the case d = s¢*~! for some positive integer s, it is
k=11 code (take s copies of

known that there exists a [g4(k,d) = s0x_2,k,d = sq
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¥ as the multiset M(G)). Hence, to solve Problem 1, we only need to consider
the case (s — 1)¢" ! < d < s¢"~! for some positive integer s.

3. Preliminary results. Recall from the previous section that v; is
defined for 1 < j < k—1 as

(3.1) v; = max{m(A) | A € F;}.

Throughout this section, we assume that there exists a partition Uf;OQ C; of Fy
with 79 = k — 2 in PG(k — 1,¢) which satisfies the conditions (a) and (b) in
Corollary 2.2 for ¢ > k > 5. The following lemma due to Maruta [10] plays an
important role in proving Theorems 1.7 and 1.8.

Lemmma 3.1 ([10]).
(1) ~; :(k:—2)qj—¢9j71 Jor0<j<k-1

(2) A j-flat A satisfies m(A) = ~y; if and only if yo(A) = k=2, for1 < j < k=2.

It is already known by Lemma 3.4 of [10] that every line [ satisfies yo(I) >

Lemma 3.2. m(l) > tq— 1 for any line | with vy(l) = t.

Proof. Our assertion follows from the previous lemma for t = k — 2. Let
[ be aline with vy (l) = t, 1 <t < k—3. Take a point P of Cy_5 and let § = (I, P),
where (x1, x2,...) denotes the smallest flat containing subsets x1, x2,... of Fo.
Then m(0) = 72 = (k — 2)¢? — 01 by Lemma 3.1. Let Q be a t-point on [ and let
li,...,l; be the lines in ¢ through @ other than [. It follows from (2.3) that

q

m(l) + Z m(l;) = m(8) + m(Q)q = 72 + tq.

Since m(l;) < v = (k—2)qg— 1 for 1 <i < g, we have
m(l) = 2 +tq—qn =tg—1. O
Lemma 3.3. Assume that there is no line | with vyo(l) = k — 3 and

m(l) = (k—3)g+s, 0<s < k-3, where ¢ > k > 5. Ifly is a line with
Y (lo) =t < k —4, then m(lp) = tq— 1.
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Proof. Suppose y(lp) =t and m(ly) =tq+t', 0 <t <t <k—4. Let
d be a plane containing ly and a (k — 2)-point. Then, by Lemma 3.1, we have
m(d) = v2. Let P be a t-point on [y and let 1 be another line through P in §.
Considering the lines through P in §, we obtain

v =m(0) < m(lp) +m(ly) + (¢ — 1)1 — gt,

whence m(ly) > (k—2)g—2—-t > (k—=3)¢g—1, for ' +1 < k-3 <k <gq.
This implies that all lines through P in ¢ other than [y are 7;-lines from our
assumption, and we have v = y1q +t' > 79, a contradiction. O

Lemma 3.4. Let II be a hyperplane of ¥ with vo(II) =t, 1 <t <k — 3.
Assume that every line 1 in II with vo(l) = u < k — 3 satisfies m(ly) = ug — 1.
Then

(1) e(Il) = tq"~2 — 4.

(2) For a (t+1)-flat w in II containing a t-point, the partition © = \Ji_o(7NC;)
gives a [tg"™t — Ot + 2,tg" — (¢ + 1)qt], code.

Proof. See Lemma 3.5 of [10]. O

Since there exists no [tg'™! — 0;,t + 2,tq"™! — (t + 1)¢%], code for ¢ >t + 2
with 1 <t < 3 from Theorem 1.5, we get a contradiction using induction on k
for £ > 6. Hence, from Lemmas 3.3 and 3.4, we get the following theorem.

Theorem 3.5. For q > k > 5, there is no [g,(k,d), k,d = (k — 2)¢* ! —
(k—1)g*=2), code if there is no line | in & with vo(1) = k—3 and m(l) = (k—3)q+s
for0<s<k-3.

4. A ~3-solid containing a putative ((k — 3)q + s)-line. In this
section, we assume that there exists a partition Uf:_o2 C; of Fg with vg =k — 2
in ¥ = PG(k — 1,¢q) which satisfies the conditions (a) and (b) in Corollary 2.2
for given integers ¢ and k with ¢ > (3k — 6)/2, k > 6. Since it is known that
Theorems 1.7 and 1.8 hold for ¢ > 2k — 3 and k > 6, it is sufficient to prove the
theorems for ¢ and k with

(4.1) % —4>q> (3k—6)/2 and k> 6.

Hence, to prove the theorems, it suffices to prove the following three theorems by
Theorem 3.5.
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Theorem 4.1. For any integers k and q with (a) ¢ =2k—4, k > 6 or (b)
q =2k —5, k> 6, there is no line l in ¥ = PG(k — 1,q) such that vo(l) =k — 3
and m(l) = (k — 3)q + s for some integer s with 0 < s < k — 3.

Theorem 4.2. For any integers k and q with ¢ =2k —6, k > 7, there is
no line l in ¥ =PG(k —1,q) such that vo(l) =k —3 and m(l) = (k —3)q+ s for
some integer s with 0 < s < k — 3.

Theorem 4.3. For any integers k and q with g =2k —7, k > 9, there is
no line l in ¥ = PG(k —1,q) such that vo(l) =k —3 and m(l) = (k — 3)q+ s for
some integer s with 0 < s < k — 3.

The proofs of Theorems 4.2 and 4.3 are given in Sections 5 and 6, respec-
tively. In order to prove these theorems, we shall prepare four lemmas in this
section. Theorem 4.1 is a corollary of one of these lemmas. Suppose for some
integers k and ¢ satisfying the condition (4.1) that there exists a line [ in ¥ such
that y0(l) = k — 3 and

(4.2) m(l) = (k—3)g+s

for some integer s with 0 < s < k — 3. Let A be a solid in ¥ containing [ and a
(k —2)-point. Then m(A) = v3 = (k—2)g® — 02 by Lemma 3.1. Let do,d1,...,d,
be the planes in A containing [. Without loss of generality, we may assume that
m(dp) < m(d1) < --- <m(dy). It follows from (2.3) and (4.2) that

43) > m(6) =m(A) +m(l)g = (k—2)¢* + (k — 4)¢* + (s — 1)g — L.
=0

If v9(8;) = k — 2 for all ¢ with 0 < ¢ < ¢, it follows from Lemma 3.1 that
the left hand side of (4.3) is equal to

(a+ D((k—2)¢* = 01) = (k —2)g* + (k — 4)¢> + (g — 2)g — 1
> (k—=2)¢> +(k—4)¢g* + (s — 1)qg — 1,
a contradiction, since
(g—2)—(s—1)=q—s—-1>Bk—-6)/2—(k—-3)—-1=(k—2)/2>0

by (4.1). Hence 79(d9) = k — 3. Since m(d;) < 72, it follows from (4.3) and
Lemma 3.1 that

(4.4) m(do) +m(d1) +m(d2) > (3k —7)¢* + (s — 2)q — 3.
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Lemma 4.4. If2q > 3k — 6, then vy(d9) = k — 3 and v(6;) = k — 2 for
2<:1<q.

Proof. It suffices to prove vy(d2) = k — 2. Suppose vy(d2) = k— 3. Then
it holds that

If 2¢ > 3k — 6, then
(Bk—7)*+(s—2)g—3)—3(k—3)02 = (2¢—3k+6)(qg+1)+(s—1)g > sq+1 > 0,
which implies that
m (o) +m(d1) +m(d2) < 3k —7)g* + (s — 2)q — 3.
This is contradictory to (4.4). Hence vy(d2) =k —2. O

Let P be a (k—3)-point in [ and let l4,. .., be the lines in ¢, through P
other than [. Without loss of generality, we may assume that m(l;) < --- < m(ly).
It follows from (2.3) and m(P) = k — 3 that

(4.5) Z m(l;) +m(l) = m(8,) + m(P)q = (k — 2)¢* + (k — 4)q — 1.

If v(l;) =k — 2 for 2 < i < gq, it follows from Lemma 3.1 and (4.5) that
m(l;)) = (k—2)qg—1 for 2 <i<gqand

(4.6) m(l) +m(ly) = (2k — 5)q — 2.
Since m(l;) < 1, it follows from (4.5) that
(4.7) m(l) + m(ly) + m(ly) > (3k — 7)q — 3.

Lemma 4.5. If 2g > 3k — 6, then y(l;)) = k—2 for 2 < i < gq,
Y1) =k—=3 and m(lh) = (k—3)g+q—s—2.

Proof. Suppose yy(l2) = k—3. Then, from our assumptions v (l) = k—3
and m(ly) < m(ly), we have m(l) + m(ly) + m(le) < 3(k — 3)61. If 2¢ > 3k — 6,
then (3k —7)qg — 3 — 3(k — 3)0; = 2q — 3k + 6 > 0. This implies that

m(l) +m(ly) + m(le) < 3k —7)qg — 3,
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contradicting (4.7). Hence vo(l;) = k — 2 for 2 < i < g, and m(l;) = (k —
3)¢g +q—s—2 by (4.6). It holds that v(l;) = k£ — 3 by Lemma 3.1 since
(k—=3)g+q—s—2<v. O

Let s1 =q—2—s. When 2¢ > 3k — 6, we have m(ly) = (k — 3)q + s1 by
Lemma 4.5. Since s+ s; = ¢ — 2, we may assume without loss of generality that

(4.8) s>s1, (¢—2)/2<s<k-3.
Thus, if v9(d;) = k — 2, there always exists a pair of lines [ and l;; in ¢; such that
m(l) = (k—3)q+8, m(lll) = (k—3)q—|—31,

where s + s; = ¢ — 2. Hence, to prove Theorem 4.1, it is sufficient to show that
there is no line [ in ¥ such that vo(l) = k — 3 and m(l) = (k — 3) + s for any
integer s satisfying the condition (4.8).

Assume 2q > 3k—6, k > 6. Let I be a ((k—3)¢+s)-line with 0 < s < k—3
and let A be a 73-solid containing [ and a (k — 2)-point in X. Let dg,d1,...,d,4 be
the planes through [ in A with m(dp) < m(d1) < --- < m(d,). Then yo(dp) = k—3,
v(d1) = k—3 or k—2 and 7(d;) = k—2 for 2 < i < g by Lemma 4.4.
Let P be a (k — 3)-point on [ and let [;1,l2,...,l;q be the lines in §; through
P other than [ with m(l;1) < m(lip) < -+ < m(lyy) for 1 < i < q. When
Y0(0;) = k — 2, it follows from Lemma 4.5 that yo(l;;) =k — 2 for 2 < j < ¢ and
that v0(l;1) = k — 3, m(lin) = (kK — 3)q + s1, where s; = ¢ — s — 2. Note that
s1 > 0 since ¢ > 3(k—2)/2 > 3(s+1)/2.

Lemma 4.6. If2q > 3k — 6, k > 6, then
(1) 70(%) =k =3, 70(8;) = k=2 for 1 <i <q and m() = (k—3)¢* +sq— 1,
(2) there are q ((k —3)q+ s)-lines and one ((k —3)q — 1)-line through P in oy,

(3) there is a (k—3)q?+s1q—1)-plane &, through P meeting &y in a ((k—3)q—1)-
line,

(4) for any (k — 3)-point P" in oy there are q ((k — 3)q + s)-lines and one
((k — 3)q — 1)-line through P’ in &y,

(5) s<k—4,s1<k—4andq<2k—6.

Proof. (1) To prove (1), it suffices to determine ~y(d1) and m(dy) by
Lemma 4.4. Recall that in a yo-plane containing [, the lines through P consist of
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I and a ((k —3)q + s1)-line and g — 1 ~y;-lines. So, the yo-plane (l41,1l4—1,;) meets
do in a ((k—3)q+ s)-line, say lo;, for 2 < j < ¢. Hence (lg1,1l4—1;) with 2 < j <g¢
meets J,, in a v;-line for 1 < u < ¢ — 2. Thus 49(d;) = k — 2. By Lemma 3.1 we
get

q

m(d) = m(A)—Zm(@‘)er(l)q

= v3— 720+ ((k—3)g+s)g=(k—3)¢* +sq— 1.

(2) From the proof of (1), there are ¢ ((k —3)q + s)-lines I, loz2, lp3, - . . , log
through P in §y. Let ly; be the other line through P in ég. Then it follows from
(1) that

m(lor) = m(do) — Y m(lo;) —m(l) + m(P)q
=2
= (k-3)¢*+s¢—1—((k—3)g+s)g+ (k—3)g=(k—3)g— 1.

(3) Put o = <l~q1,lq_1,1>. Then §; meets §, in a ((k — 3)q + s1)-line for

1 < u < ¢. Hence v(6,) = k — 3. Since m(dy N dy) = m(lpy) = (k — 3)g — 1, it
holds that

m(0) = Y m(6ind) —m(P)g=(k—3)g— 1+ ((k—3)g+s1)g— (k—3)q
0

= (k‘—?))q2 + s1qg — 1.

(4) Note from (1) that for any ((k —3)g + s)-line [ with 0 < s < k — 3,
there is only one plane through [ in A which has no (k — 2)-point. If all the lines
through P’ in dy are ((k — 3)q — 1)-lines, then

m(d0) = ((k — 3)g — 1)0; — (k — 3)q = (k — 3)a® — 0y,

a contradiction. Hence there is a ((k — 3)q + s’)-line I’ in §y through P’ for some
0 < s <k—3. In A there is only one plane, say ¢’, through !’ which has no
(k — 2)-point. From (1) we have m(8') = (k — 3)¢® + s'q — 1. Since dy is also
a plane containing !’ which has no (k — 2)-point, we obtain ¢’ = §y and s’ = s.
Hence our assertion follows from (1) and (2).

(5) Suppose s = k — 3. Then [ C Cy_3, and every line in dy contains a
(k—3)-point. So, from (4), every line in &y is a ((k—3)6;)-line or a ((k—3)qg—1)-
line. Let R be a t-point on a ((k —3)g — 1)-line in §p with ¢ < k —4. Since all the
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lines in g through R are ((k—3)g— 1)-lines, we get m(dg) = ((k—3)q—1)01 —tq,
whence k—4—t=s=k—3,1i.e,t=—1, a contradiction. Hence s # k—3. Since
s > s1 from (4.8), we have s; < k—4. From s <k—4and sy =q—s—2<k—4,
wehave  —k+2<s<k—4,s0¢q<2k—6. O

Remark 4.7. (1) In the proof of Lemma 4.6(3), it is easily checked that
the ¢ — 1 planes through ly; other than dg, b1 are ~vo-planes.

(2) It follows from Lemma 4.6(4) that every ((k — 3)gq + §')-line with
0 <s <k—3ind satisfies s’ = s since (k — 3)g+ s’ > (k — 4)6;.

(3) We obtain Theorem 4.1 as a consequence of Lemma 4.6(5).

Lemma 4.8. Assume that 09 contains an s-point S and that lgy contains
a 0-point R and a (k — 4)-point Q. Then

(1) ir = (R,S) is an ((s + 1)g — 1)-line containing ¢ — 1 (s + 1)-points and
lg=(Q,S) is a (k—4)qg+ s)-line with g \ {S} C Ck_4, and any point of
9o \ (lg UlR) is a (k — 3)-point.

(2) Ewvery line through R in do other than lg is a ((k —3)q — 1)-line.
(3) Ewery line through Q in &y other than lo1,lq is a ((k — 3)q + s)-line.

Proof. Since m(lp1) = (k — 3)qg — 1, lp1 contains ¢ — 1 (k — 3)-points,
say Pi,Ps,...,P;—1. It follows from Lemma 4.6(4) that each line (S, P;) is a
((k — 3)q + s)-line containing ¢ (k — 3)-points for 1 <i < ¢ — 1. Hence any line
I’ through R in &y other than lg,lo; contains ¢ — 1 (k — 3)-points. Then we have
m(l") = (k — 3)¢ — 1 by Lemma 4.6(4) again, and !’ meets lg in a (k — 4)-point.
Thus m(lg) = (k—4)q+ s and lg contains ¢ (k — 4)-points except the s-point S.
Hence

m(lg) = m(do) — ((k = 3)g—1)g= (s +1)g— 1.

If v(Ir) > s+ 2, we have m(lgr) > (s + 2)q — 1 by Lemma 3.4, a contradiction.
It follows from (s + 1)g — 1 > s that v(lg) = s + 1 and that [ contains ¢ — 1
(s 4+ 1)-points. Hence our assertions follow. O

5. Proof of Theorem 4.2. Throughout this section, we assume that
2k —6 > q > (3]{?—6)/2, k > 6, s = k —4 and that l, P, A, (50, l01,l02,...,l0q, (51,
s1 are as in the proof of Lemma 4.6. We also use the following notations:

m=k=3)g+k—4, nj=n-19—1for2<j<k-2
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pr=Fk=3)qg—1, pj=pj_1g—1for2<j<k-2.
Note that v, = (kK —2)¢ —1 and 7; = yj—1¢ — 1 for 2 < j <k —2 by Lemma 3.1.

Lemma 5.1. Assume 2k —6 > ¢ > (3k—6)/2, k> 6 and s =k — 4.

(1) The na-plane &y consists of one 0-point R, 01 collinear (k — 4)-points and
q® — 1 (k — 3)-points.

(2) The lines in oy are the ((k — 4)01)-line L(C Ck_4), 01 pi-lines through R
and ¢> — 1 ny-lines.

Proof. We first note that each of n;-lines [, log, . . ., lo; through a (k — 3)-
point P in the ny-plane dy contains exactly ¢ (k — 3)-points and one (k — 4)-point.
Let Qo,Q2,...,Qq be the (k — 4)-points in [,lp2,...,loq, respectively and let
Py, P, ..., Py be the (k — 3)-points in ly, other than P.

Suppose that lp; contains no t-point for ¢ < k — 5. Then the number of
(k — 4)-points in the pq-line lp; in & through P is (k — 3)0; — puy = k — 2. Since
k > 6, there are at least four (k — 4)-points in lp;. Since P; is a (k — 3)-point in
dp for 1 <1i < g —1, it follows from Lemma 4.6 and m(Qqo) = k — 4 that (Qo, P;)
must be an n;-line for 1 < i < ¢ — 1. That is, (Qo, P;) contains ¢ (k — 3)-points
and one (k — 4)-point Qo for 1 < ¢ < ¢ — 1. This implies that the ¢ points
Qo,Q2, . ..,Qq, must be on the line (Qo, Q,) and that there are ¢ (k — 3)-points
and at most one (k — 4)-point in lp;, a contradiction. Hence there is a t-point R
in l()l with ¢ S k—5.

Next, we show that every line in dy through R is a pq-line. Actually, such
a line other than (Qo, R) is a pi-line since it meets [ in a (k — 3)-point. Hence
we have

m((Qo, R)) = m(do) — pg +tg= (k-3 +1t)g — 1.
Since 7 (dp) = k—3, it follows from Lemma 3.1 that ¢t = 0. Hence the line (Qq, R)
is also a p1-line, and lp; contains exactly one (k — 4)-point, say Q1. The points of
lo1 other than R, Q) are (k—3)-points. Note that each of other lines in §y through
R also contains only one (k—4)-point. Put L = §oNCy_4 = {Qo, Q1,Q2,...,Qq}
Then L forms a line by Lemma 4.8. Hence our assertions follow. 0O

Since m(A) = m(8) + y2q¢ — m(L)q — ¢*> and 2 — ¢®> = (k — 3)¢®> — 6, >
(k — 4)62, it holds that m(A) > m(dy) + v2(¢ — 1) + (k — 4)02 — m(L)q. Hence
we get the following.

Lemma 5.2. Every plane &' in A through L with m(8') < ~o satisfies
’)/0((5/) =k—3.
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From now on, we assume that ¢ = 2k — 6 in this section. Then, s; =
¢—s—2=k—4=sand k > 7 from our assumption ¢ > (3k —6)/2. Hence, 4, in
Lemma 4.6 is an n9-plane meeting &g in the pi-line lg;. By Lemma 5.1, 61 contains
a ((k —4)0;)-line (C Cy_4), say L. Put 6, = (L,L). Suppose v(dz) = k — 2.
Considering the lines in d;, through the (k — 4)-point L N L, we get

Yo <2k =D +7(g—1) —(k—4)g =72 —q <7,

a contradiction. Hence we have v (d1) = k—3 by Lemma 5.2. Next, we determine
m(dy). Suppose there is another plane §'(# 01) in A through L with v(d") =
k — 3. Then, by Lemma 5.1, ¢’ meets 61 in an n1-line, which contradicts to the
fact that there is only one plane in A containing no (k — 2)-point through a fixed
np-line by Lemma 4.6(1). Thus, all planes through L other than 7 and §y are
~vo-planes, and we have

m(dr) =m(A) —2(q — 1) —m(do) + m(L)g = pa.
It follows from

p2 = b — (k—3)q
= (g —1)+2(k—4)01 — (k—4)q

that every line in 7, through a (k — 3)-point is a pq-line and that every line in dy,
through the (k — 4)-point LN L other than L, L is a y;-line. Recall from Lemma
4.6 that for any (k—3)-point P on the 7;-line [, there is another n-plane through
P meeting the ny-plane dp in a p;-line. Hence, for any ui-line I} in &y through R,
one can find an 79-plane meeting dg in Ij. Since there is only one plane through L
(other than dp) containing no (k — 2)-point, each (k — 4)-point of L is on exactly
two ((k —4)601)-lines in 6. Thus there are exactly ¢ + 2 ((k — 4)6;)-lines in dy,,
say L, Lg, L1, ... ,Lq. Put £ = {L, Lo, Lq,... ,Lq}. Let LNL; = {Qz} and let ¢;
be any line in d7, through the (k — 4)-point @; other than L, L;, 0 < ¢ < q. Since
¢; is a pq-line, ¢; must contain ¢/2 (k — 4)-points and ¢/2 (k — 3)-points except
for @;. Since [¢; N Lj| =1 for 0 <i <gq,0<j <q with i # j, this implies that
no three lines of £ are concurrent. Thus £ forms a (¢ + 2)-arc of lines in 07, (see
[7] for arcs). Hence |0, N Cy_4| = |[LULy UL U---ULy| = (q;rQ) and any point
of 67, out of the ((k — 4)6)-lines is a (k — 3)-point. Just like &y or 1, the plane
(R, L;) is an na-plane for 1 <14 < ¢. Any line [* in §;, containing a (k — 3)-point is
a pp-line and I* contains exactly (¢ +2)/2 (k — 4)-points and ¢/2 (k — 3)-points,
since £ forms a (¢+2)-arc of lines. It follows from m(A) = vyoq+m(dr) — p1q that
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every plane through [* other than 07, is a yo-plane. Hence, (R,[*) is a ~o-plane.
Since every line containing R and a (k — 4)-point of [* is a pui-line, the other ¢/2
lines through R and a (k — 3)-point of [* are 7;-lines containing exactly ¢ — 1
(k — 2)-points. Therefore we get the following.

Lemma 5.3. Assume ¢ = 2k — 6, k > 7 and that a ~y3-solid A contains
an m-line. Then

(1) A has one 0-point R and one pz-plane dy,.

(2) or contains a (q+2)-arc of lines L. Fach line of L consists of (k—4)-points.
And any point of o, out of the lines in L is a (k — 3)-point.

(3) The plane (R, L) is an ne-plane for any L € L.

(4) The line (P, R) contains ¢ — 1 (k — 2)-points for any P € 65, N Ck_3, and
the line (Q, R) contains ¢ — 1 (k — 3)-points for any Q € or, N Ck_4.

(5) Any plane in A other than dr, and q + 2 ne-planes in (3) is a y2-plane.

Now, let II be a 4-flat with m(II) = =4 containing the 73-solid A. Let
A1, Ag, ..., A, be the solids in II other than A containing the no-plane d¢ with
m(A1) < m(Az) < --- < m(Ay) < m(A) = ~3. It can be proved similarly to
Lemma 4.4 that v9(A1) = k — 3 and vy(A,) = k — 2. Let [y be any line in 4
through the 0-point R. Then [y is a p;-line, and there is only one 7s-plane, say
01, in A through [y other than dy. Let 6;1,6;2, . .., ;g be the planes in A; through
lo other than 6y with m(d;1) < --- < m(d;q) for 1 <i < q. When y(4;) =k — 2,
we have

(51) m(éll) =12, m(éw) = Y2 for 2 S ] S q

by Lemma 5.3. Put Ay; = (d1,d45) for 1 < j < ¢. Then, from (5.1), we have
Yo(A1j) =k —2for 2 < j <gq. For 2 < j < ¢, Ay contains only one 7-plane,
say 5;-, through [y other than g so that Aj;NA; = (5;-. Hence the ¢ — 1 yo-planes
through ly in Ay; other than dg, 5} are the planes A; N Ay, ..., A;;NA,. Hence,
m(A;) =3 for 2 < j < ¢, and we get

m(Ar) =m() = > m(A;) —m(A) +m(Se)q = va — 3¢ + n2q = ns.
j=2
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Since A1; N Ay is an mo-plane through [y for 2 < j < ¢, we have

m(Ayr NAL) =m(Ar) —n2q +m(lo)g = 13 — n2q + p1q = po.

Thus it holds that m(d11) = p2 and m(d1;) = n9 for 2 < j <gq.

Let Qo be the (k — 4)-point on ly. Take a (k — 4)-point Q1(# Qo) in
dp and put I3 = (@1, R). Then, like as for [y, the planes in Ay through [, are
n2-planes except for one plane (which is a po-plane). These ¢ no-planes meet 011
in a p1-line through R. Hence the remaining line, say l, through R in §1; satisfies

m(l) =m(611) — puq = po — p1g = —1,

a contradiction. This completes the proof of Theorem 4.2.

6. Proof of Theorem 4.3. In this section, we assume that ¢ = 2k —7,
k > 9 so that the condition 2¢ > 3k — 6 holds, and let [, P, A, &, lo1, 01, s, s1 be
as in the proof of Lemma 4.6. We also use the notations 7, = (k — 3)g + k — 4,
ne=mq—1, ug = (k—3)g — 1 and puy = p1g — 1 as in the previous section and

ny=(k—3)q+k—5, nh=niqg—1.

Since 0 <s<k—4and 0<s; <k—4with s+ sy =¢—2=2k—9 by Lemma
4.6(5), we may assume that s = k —4,s; = k — 5. Hence we have

m(do) =12, m(d1) =nh, m(doN 1) =m(lo1) =

by Lemma 4.6. Since s = k — 4, the ny-plane §y consists of one O-point R, 64
collinear (k — 4)-points and ¢? — 1 (k — 3)-points by Lemma 5.1. Note that an
n}-line contains either one (k — 5)-point or two (k — 4)-points.

Lemma 6.1. 6, contains no (k — 5)-point.

Proof. Recall from the proof of Lemma 5.1 that the pi-line lp; contains
the 0-point R, a (k — 3)-point P and the (k — 4)-point Q1. Suppose 81 contains
a (k—b5)-point S. Then, by Lemma 4.8, lg, = (Q1,S5) is a ((k —4)q + k — 5)-line
containing ¢ (k —4)-points and every line through R in 61 other than lp = (R, S)
isa ((k—3)g—1)-line. If there exists a plane through L in A whose multiplicity is
less than 2 except for dg and §;, = (L, lg, ), it meets 51 in an n}-line, contradicting
to Lemma 4.6(1). Hence we have

m(0r) = m(A) —v2(q — 1) —m(do) +m(L)q = p2
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and v9(dr) = k — 3 by Lemma 5.2. It can be proved similarly that every plane
through lg, other than 61,01 is a Yo-plane.

Take a (k—4)-point Q'(# Q1) on lg, and put P’ = (R,Q")N (S, P). Since
P'is a (k—3)-point on the n-line (S, P), one can find another ny-plane §(, through
P’ meeting 0 in the ((k — 3)q — 1)-line (R, P’). Let L’ be the ((k — 4)8;)-line in
8- It turns out similarly to ¢z, that the plane 6, = (L',lg,) is a po-plane with
Y0(0r/) = k — 3. Since 07/ contains lg,, we have §;, = 1, and L’ is on dr. It
follows from the multiplicity of §;, and Lemma 4.6(1) that every line I’ in 67, with
v (l') = k — 3 is a p3-line. Considering the lines in ¢y through L N L', we have

m(dr) =m(L)+m(L") +um(g—1) —m(LNL)g—1,

giving the existence of a (1 — 1)-line in 7. This is a contradiction, for pu; —1 >
(k—4)0;. O

It follows from Lemma 6.1 that every line through P in 61 other than I
contains exactly two (k — 4)-points and that the points of d; out of ly; are the 2¢
(k—4)-points and q* —2q (k—3)-points. Let my,ma, ..., my be the lines through
R in 6; other than ly; with m(mq) < m(mg) < --- < m(my). If vo(m1) =k -3,
we have

q
/ < 2 /
my =m(01) = m(lor) + > _m(m;) > by = (k — 3)g” + (k — 4)g — 1 > n),
i=1

a contradiction. Hence ~yg(m1) = k — 4 and m; contains ¢ (k — 4)-points. If m,
contains no (k —4)-point, then we have m(mgy) = (k — 3)g, which is contradictory
to Lemma 4.6(4). Hence each of my, ..., m, contains a (k — 4)-point. Since the
number of (k—4)-points in &; out of loyUmy is equal to (k—3)(¢*4¢)—nh—(q+1) =
q, ma contains two (k —4)-points. Hence m(mz) = 1 — 1, a contradiction again.
This completes the proof of Theorem 4.3.
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