
Serdica J. Computing 4 (2010), 243–262

SEMANTICALLY ENHANCED SOFTWARE

DOCUMENTATION PROCESSES

Werner Klieber, Michael Granitzer, Mansuet Gaisbauer,

Klaus Tochtermann

Abstract. High-quality software documentation is a substantial issue for
understanding software systems. Shorter time-to-market software cycles in-
crease the importance of automatism for keeping the documentation up to
date. In this paper, we describe the automatic support of the software doc-
umentation process using semantic technologies. We introduce a software
documentation ontology as an underlying knowledge base. The defined on-
tology is populated automatically by analysing source code, software doc-
umentation and code execution. Through selected results we demonstrate
that the use of such semantic systems can support software documentation
processes efficiently.

1. Introduction. Developing large software systems remains a complex,
error prone task. High quality documentation is essential for understanding the
intention of a software system. As outlined in [8], good documentation provides
multiple complementary views on the software system. The documentation has

ACM Computing Classification System (1998): D.2.7, K.6.3, H.2.1, H.2.8, F.2.2.
Key words: Documentation, Semantics, Software Engineering.



244 W. Klieber, M. Granitzer, M. Gaisbauer, K. Tochtermann

to reflect the developer’s view on how the system works and provides logical views
on the system for users as to how to consume the provided functionality.

However, the establishment of new software processes requires changes in
the corresponding documentation processes. Agile software development meth-
ods such as SCRUM [17] develop software in “sprint” periods taking typically
one to four weeks. Such a short, dynamic software development process requires
more agile and flexible software documentation to efficiently support short devel-
opment periods. Furthermore, software documentation has to be coherent and
semantically accurate [7]. Hence, automatic support in software documentation
increases accuracy and reduces workload on developers.

Another change observed in developing large software systems is the use
of service-oriented architectures: loosely coupled, decentralized components with
commonly agreed contracts and data exchange formats work together orches-
trated by a workflow engine. As experience with large service-oriented archi-
tectures has shown, complexity increases with the number of loosely coupled
components [15]. While ontologies allow semantically rich definitions of con-
tracts between services, thereby increasing the automatic support in workflow
orchestration, modelling such ontologies is labour-intensive. Detailed documen-
tation of components and a deep understanding of the correct service usage as
envisioned by the developers support the construction and maintenance of large,
decentralized ontology-driven service oriented architectures.

In our work we propose an ontology-based system for agile, collabora-
tive and accurate software documentation. We develop an ontology to gather
static information like software source code, module dependencies, collaborative
information like bug reports, as well as runtime information mined via analysing
code/service executions. We focus on automatic tools to populate the ontology
from different sources including runtime execution logs. The populated ontol-
ogy is further analysed via process-mining methods to detect meaningful, poten-
tially useful process patterns [16]. Through the clear defined semantic, the pop-
ulated ontology can be reused for efficient collaborative software documentation
using Semantic Wikis [4] or for automatic processing of software documentation.
Through making machine-readable data about software publicly available, new
means for service usage analysis and service orchestration could be developed.

The paper is structured as follows. Chapter 2 motivates the use of seman-
tic technologies for software engineering processes and introduces the conceptual
architecture of our system. Chapter 3 introduces the software ontology, the on-
tology modelling process we used, and discusses the design in detail. In Chapter
4 we describe the process and technical impacts of populating a semantic repos-



Semantically Enhanced Software Documentation Processes 245

itory. In Chapter 5 we describe some scenarios to outline the practicability of
ontologies for an automated documentation process.

2. Ontology-based Software Documentation. Software docu-
mentation is closely related to knowledge management. It requires collecting
knowledge from various, usually heterogeneous, semi-structured sources and rep-
resenting it in a formalized way. Software development involves a large set of dif-
ferent tools used by development teams: Version control systems manage source
code versions; Continuous integration systems test and deploy software modules
frequently; Repository managers maintain single software modules for download-
ing; Code quality management tools analyse source code against code metrics
to ensure reliable and robust software; Source code documentation tools provide
technical descriptions about the software created form the source code.

Collecting information from all of these heterogeneous systems in a ma-
chine-processable form is cumbersome and usually involves data mining tech-
niques for resolving conflicts. Providing all information in a technology-indepen-
dent and self-describing repository is mandatory for all-encompassing software
development processes.

A standardized and flexible data environment for the gathered informa-
tion enables unambiguous usage for every tool involved in the documentation
process. Ontologies are a well investigated, accepted approach for formalizing
shared concepts making them understandable by both humans and computers.
Figure 1 shows a high-level architecture of our framework used for analysing
source code. We use a central semantic repository described by an ontology to
harmonize all needed information.

This central repository facilitates accessing the information in a tool-
independent way. Independently developed tools can be used to gather the needed
information from the various data sources and store them consistently in the
semantic repository.

Report-generating or analysing tools can consume this data and store
their results back in the repository if needed. Semantic repositories allow the
same activities like storing, querying and managing of structured data as other
data management systems. The major benefits of semantic repositories can be
summarized as follows [5]:

• Semantic repositories use generic and flexible data models like graphs. This
facilitates interpreting and adopting the stored information easily.

• Stored data is described according to semantic schemata. This allows auto-
matic reasoning about the data and harmonizing data from heterogeneous
data sources.



246 W. Klieber, M. Granitzer, M. Gaisbauer, K. Tochtermann

Fig. 1. Conceptual architecture using a central semantic repository

3. The software ontology. The expressiveness of the ontology used in
the central software repository directly influences the applicability of the system.
In this section we introduce the main goals and aspects of our software ontology.

Details about the modelling process can be found in [10]. To keep the
vocabularies and concepts of the ontology consistent, the ontology has been devel-
oped from scratch instead of reusing existing ontologies. Single parts are designed
by reusing design concepts from existing tools (e.g. project dependency tools).
To exploit synergies with already existing ontologies we follow the linked open
data principle by using an “equals-to” relation to map among equal concepts in
different ontology schemas. In a final step, an extra domain-specific ontology has
been derived from the core ontology filled with domain-specific instances applying
to our testing scenario. For instance, all employees working in our company have
been covered. These persons are used to focus on people of interest for reports.

The ontology can be grouped coarsely into three parts: project metadata,
static source code and dynamic usage traces. Figure 2 shows the main concepts
of the ontology. The concepts are motivated by recurring documentation needs
from developers. These needs are:

• Software project specific metadata is modelled to gain descriptive informa-
tion about a project itself and its dependency to other projects.



Semantically Enhanced Software Documentation Processes 247

• Static source code information is modelled to mine data on a source code
level into a semantic repository.

• Dynamic program execution events are modelled to mine data during pro-
gram execution.

Fig. 2. Overview figure of the software ontology showing the most relevant concepts
and properties1

3.1. Project metadata. The project concept allows expressing project
metadata in the ontology and groups all project-related aspects together. This
project-related part contains (i) dependencies among projects using parent-child
relationships, (ii) concepts on used software development and reporting tools like
revision control systems, bug tracking systems, automated build and release man-
agement systems, reporting tools, etc., (iii) dependencies to social structures like
persons or organizations, as well as (iv) dependencies to external resources like
images. Modifications in the repository can be archived in a change Log. Query-
ing this change log archive allows tools to validate that all required information
has already been added to the repository in preliminary stages.

3.2. Static source code. Analysing static source code is an important
information source for understanding the architecture and concepts behind a soft-
ware system. Selective classes, operations and source code comments can be used

1The ontology is available for download from our web site:
http://www.know-center.at/ontologies/2009/2/software-project.owl



248 W. Klieber, M. Granitzer, M. Gaisbauer, K. Tochtermann

to represent the current state of an API. The ontology models the source code
structure reflecting characteristics of object oriented programming languages. In
particular, ontology models the relationship of classes, methods, variables and
package structure of the source code. All of these source code elements can be
tagged with keywords. The concept of “tagging” resources can be used by devel-
opers to add extra, non-program information directly into the source code. The
ontology distinguishes between productive source code and test code. The pro-
ductive source code contains all source code dealing with the program execution
logic. The test code contains all tests written by developers. Beside using test
code as an indicator for test coverage of program functionality, selective tests
are good usage examples for application developers. Using the test code itself as
usage examples ensures that the source code examples are up to date and main-
tained. Inspecting test code allows more in-depth knowledge about a software
system.

3.3. Dynamic Program execution. The ontology provides concepts to
store software execution events in a semantic repository logged during program
execution. Analysing this information allows more in-depth knowledge on the
order in which the operations need to be executed to reach certain goals.

• Analysing the operation execution time is a useful indicator for perfor-
mance.

• Analysing operation errors is a useful stability indicator.

• Analysing operation usage count: that an operation is called more fre-
quently might be an indicator about its importance.

• Analysing the amount of times an operation is called within tests is a simple
indicator for test coverage.

Approaches in the business process mining research can be used for ana-
lysing these events for meaningful patterns and workflows. The concepts modelled
in the ontology are based on the data format used by the business process mining
tool ProM2. Occurring events are modelled as a sequence list. Each sequence list
is assigned to a unique usage case. Three types of events can be distinguished in
the context of tracing software operation calls:

• Begin: this event occurs when initiating an operation call.

• End: this event indicates finishing an operation call.

2The ProM Framework: http://prom.win.tue.nl/tools/prom/



Semantically Enhanced Software Documentation Processes 249

• Error: this event indicates operation calls causing exceptions.

Each invocation event contains a timestamp of its occurrence, the memory
consumption, the originator of the event and a process instance name.

4. Populating the software ontology. Populating the software
ontology from various data sources into one common format involves two main
aspects. The first aspect is – given the software ontology – mainly an engineer-
ing task accessing required data from various source repositories and converting
the data into a new format. For instance, reading source code files from a ver-
sion control system and converting them into a set of RDF concepts of classes,
methods, parameters and comments. A second aspect is extracting additional
information from data not explicitly available. For instance, identifying the au-
thor of a source code class and assigning the author non-ambiguously to persons
in the target ontology. Analysing runtime execution information to gain software
usage information may involve statistical analysing algorithms.

4.1. Mining static software information. An important task when
mining static source code is disambiguating single information artefacts. Var-
ious tools exist to help parsing the structured content within source code files
proper. In the Java programming language for example structured documenta-
tion is managed via the Javadoc tool. However, gathering additional information
such as the author of a file and the date is a non-trivial task.

Most integrated development environments use templates to automati-
cally create structured documentation (including author’s name, date, etc.) upon
creating new classes. However each tool has its own conventions for naming and
storing this information. For example, development environments usually use the
login name as author identification. When developers keep the default settings,
their name needs to be mapped to real persons’ names before being useful.

The date format mostly depends on the local settings of the system, e.g.,
day-month-year in German-speaking countries and month-day-year in the USA.
Furthermore it is likely that some source code contains no such information or
that the information is incorrect, as when the developer has copied and pasted
the information from another location and forgotten to update the information.

Similarly, author and date information can be obtained from source code
versioning systems. Using the person and date information when the file has been
first added into the version control system could serve as a source of evidence for
the author and date information.

However, this information may be incorrect. The person who originally
checked in a file in the version control system may not be author but a system



250 W. Klieber, M. Granitzer, M. Gaisbauer, K. Tochtermann

designer setting up the project or the administrator moving projects between
version control systems. Hence, harmonizing the different evidence sources is
necessary.

When parsing our source code repository we used a manually created
lookup table to map the author information given in source code headers to
the persons in our semantic repository. In our evaluation only a few mappings
could not be resolved automatically. Two developers with the same first name
have used their first name in some header files. Since they worked on different
projects and based on version control information these ambiguities have been
resolved by directly replacing their name in the source code header.

We used statistical methods to analyse the gathered information to re-
solve dependencies among correlating information. Co-occurrence matrices were
calculated to discover associations between terms. We used unsupervised machine
learning algorithms to cluster source code artefacts using the k-means algorithm.

In the technical realization, first the RDF repository was queried for
source code classes containing author and comment information resulting in 2686
classes. We used package names, class names and method names as additional
information. This information increased the quality of the results significantly
since developers organize and name their code according to the task each piece
has to perform. An author-term co-occurrence matrix was built using the authors
of a class as one dimension and the terms as the other. Next the classes were
clustered and the top terms of each cluster were used to search for most matching
authors in the co-occurrence matrix. Finally, a stop word file was filled manually
to improve the results. Technical terms such as “enum” or “iterator” and some
html-tag relicts like “<code>null</code>” were filtered out.

4.2. Mining dynamic runtime execution information. Collecting
runtime execution sequences provides meaningful information about the usage of
a system. To collect the needed execution data three intervention levels with the
observed system can be distinguished.

• Source code level: At distinct points in the source code logging instructions
can be added to gather the needed information.

• Compile time level: At distinct points in the compiled code a logging in-
struction is injected.

• Execution level: Program execution is interrupted at distinct source code
points to gather the needed information. Here the same mechanisms as
used by debuggers are applicable.



Semantically Enhanced Software Documentation Processes 251

Collecting information at a source code level prohibits mining for third
party modules with non-accessible source code. Therefore we did not investigate
this approach. Collecting the information at execution level was our first choice
because we can use the same mechanisms as debuggers do. Therefore the needed
functionality should be well integrated in programming platforms. In our case
we were interested in collection information from Java programs.

The Java development platform provides a Java Platform Debugger Ar-
chitecture (JPDA). This framework provides a high level debugging API named
JDI. This API was used to fetch “before method” and “after method” invoca-
tion events using TCP3 transport mode to connect. However, in this setting the
execution of the traced program slowed down significantly. For instance, logging
60 events increases the execution time from 4 seconds to 10 minutes. Several
reasons for this slowdown can be detected. Using the debugging interface dis-
ables the Java just-in-time compiler. The high level API fetches all messages
and filters them out later. The framework also provides a low level native inter-
face. However, implementing this API is time-consuming. Therefore we collected
the invocation events at compile time. We used the aspect-oriented programming
tool AspectJ [1] to weave required logging aspects into compiled Java classes. For
performance reasons the data is written in an internal binary format to the file
system. In an extra step the binary data is converted to its RDF representation
and imported into the semantic repository.

We focus on collecting sequences covering two aspects:

• High level Workflow Analysis: Collect execution events from high-level in-
terfaces frequently used by application developers. Analysing sequences
from high-level interfaces – like for example web service calls – provides
useful information on how to use an interface or a set of services efficiently
and how to identify best practice workflows.

• Module State Transition Analysis: Collect execution events from the mod-
ules involved when executing operations from high level interfaces. Ana-
lysing low-level sequences provides useful information on how the system
operates internally and which state transitions take place.

Details on the mining methods, application and usage scenarios are pro-
vided in the next sections.

3The JPDA architecture ships with two data transport implementations: a shared memory
transport (for Windows only) and TCP/IP network transport implementation. For details see
http://Java.sun.com/Javase/6/docs/technotes/guides/jpda/conninv.html



252 W. Klieber, M. Granitzer, M. Gaisbauer, K. Tochtermann

5. Application Scenarios & Evaluation of static software in-

formation. A common argument for using semantic technologies is its flexible
and adaptive behaviour. The information stored in a data management reposi-
tory is influenced mainly by the needs of the tools using it. For human users it is
essential to provide multiple views on a complex software system for deeper un-
derstanding. So a semantic repository in our context needs to be flexible enough
to store all software engineering data. Through such a flexible semantic repos-
itory data from all sources can be queried to automatically generate documen-
tation artefacts to be included in various documentation processes. Supported
through mining techniques as outlinedabove, patterns can be revealed which are
not directly visible to humans. In this section we describe different application
scenarios which have been implemented.

5.1. Sample Data. The applicability of the ontology has been tested by
analysing the source code of our knowledge discovery framework “KnowMiner”
[11].

This project was used because of its size and our knowledge on the persons
and processes involved in its creation. Furthermore, the results can easily be
interpreted according to its correctness. The KnowMiner framework is a service-
oriented architecture enabling different teams – all experts in their research areas
– to work on isolated components. Whereas special effort has been undertaken
in providing a simple-to-use API to application developers, an open issue for new
developers is how to assemble their workflows.

The KnowMiner framework uses the Maven project management tool
from the Apache software foundation to define all of its dependent modules and
third party libraries. These Maven project files are parsed, converted to RDF
data in the ontology schema and imported to the triple store. The conversion is
done using an adapted version of the Java2rdf tool.4 The KnowMiner Framework
contains about 400.000 lines of code, separated in 74 modules and 32 test modules
and 65 third party libraries. For our experiment we used the TDB Jena triple
store.5 Jena TDB is a file-based storage backend for the Jena semantic web
backend. After populating the sample data the database contains about 4.5
million triples. The next sections introduce some usages scenarios for finding and
presenting relevant information.

5.2. Application Scenario Overview Charts. A first example illus-
trating the usage of the ontology is generating simple overview charts. When
developers start working with the KnowMiner framework, they start with simple

4Java RDF documentation tool: http://simile.mit.edu/wiki/Java RDFizer.
5TDB – A SPARQL database for Jena: http://jena.sourceforge.net/TDB/.



Semantically Enhanced Software Documentation Processes 253

Fig. 3. Figure 3a illustrates a sample diagram showing the average execution time of an
operation in seconds. Figure 3b illustrates presenting RDF query results in a Wiki

environment.

workflows, make them running and then add some more complex functionality.
When adding further functionality a common question is the effect of the whole
workflow on the execution time. Figure 3a shows an overview diagram of the
average execution time of each method obtained through mining invocation logs.
This diagram helps developers to estimate performance issues. Mostly they start
with a simple information retrieval task: import some data and store it in an
index to make the data searchable. Next some extraction tasks are included, for
instance generating vectors so the data becomes comparable, as when estimating
the similarity between documents. According to the diagram in Figure 3a this
extraction task takes much more time than the other tasks. Sometimes applica-
tion developers are insecure about the long execution time when using the extract
operation the first time. A look at the diagram helps them to understand that
this is a technical issue.

Such overview diagrams are furthermore useful for finding out which op-
erations are good candidates for optimizing.

5.3. Application Scenario Web front-end. Wikis are frequently used
to provide information on web pages that are easily producible and maintainable.
Presenting some software project information gathered from various sources al-
lows one single point of access for developers to get the needed information.
Semantic wikis provide a useful extension to normal wikis by enriching content
and wiki pages with semantic concepts. This provides a flexible way to provide
overview pages collecting information according to specific aspects. Especially in
the context of software documentation multiple views on different aspects of a
complex software system are essential.



254 W. Klieber, M. Granitzer, M. Gaisbauer, K. Tochtermann

Using automatic generated content to show in a wiki simplifies the report
generation and reusing the information. Changes will show up automatically in
the wiki pages when the software project evolves.

Figure 3b shows a screenshot of the API from our knowledge discovery
framework. It lists all operations of the main interface and the source code doc-
umentation provided by the developers within the source code. For the technical
realization the semantic media wiki framework is used. An RDF plugin has been
developed to send SPARQL queries embedded in a wiki page to the RDF backend.

Source code documentation tends to be very technical and hard to un-
derstand without knowing the local context in the source code. Showing the
documentation in a web front-end where users can give feedback to developers
about the understandability and accuracy of their documentation can help to
improve the quality of the source code documentation.

5.4. Extraction of Application Scenario Developer Expertise. In
an organizational context it is essential to detect the topics covered by a software
system and how they agree with the business topics. Knowing which persons
engage with these topics is meaningful information for making decisions.

For our experiment we used our sample data to find out what are the
most relevant topics covered by the source code and which developers address
these topics. The outcome our statistical analysing mining approach is visualized
in a simple list showing the top ten terms of each cluster and the top two persons
assigned to it. The stop word list was filled manually with 19 entries to improve
the results. The result is shown in Figure 4.

The results contain some useful insights into the software system:

• The clusters are well separated according to the main topics that our de-
partment deals with.

• Usually the two persons assigned to each topic cluster work together on
these topics. This is useful information when one person is no longer avail-
able and a topic needs to be reassigned.

• Two people on the list no longer work at the company and one person
moved to a management position. So this overview gives useful hints to
reassign unmaintained source code.

• People appearing more frequently have overview knowledge about the sys-
tem. They are good candidates to ask overview questions. Sparsely ap-
pearing persons are the experts on single topics and can be asked detail
questions.



Semantically Enhanced Software Documentation Processes 255

Our experiment shows that detecting topic and assigning them to persons
generates meaningful results. However, the topic labels are unsatisfactory when
describing the identified topics. Here the same problem as mentioned in [4] occurs.
It is hard to create a meaningful label from a topic automatically. In many cases
the terms are abbreviations or acronyms of business topics. Manual labelling has
to be done to represent domain topics adequately.

6. Application Scenarios & Evaluation of runtime software

information. For our experiments we used the invocation logs generated by
executing some unit tests from our knowledge discovery framework. The inten-
tion is to get useful workflows assembled from developers who know best how to
consume the functionality. The first results showed that the complete invocation
events from all unit tests contain too much noise to detect meaningful workflows.
One reason is that many tests produce no usable workflows with regard of mean-
ingful API usage. For example some tests call an operation several times with
the same input data to ensure the same results are delivered each time. Such a
usage represents an atypical workflow since users can expect that an operation
will work correctly. Furthermore it is difficult to detect the start and end points
of a workflow correctly.

Fig. 4. Result of a topic detection showing clustered source code keywords assigned to
the most matching authors



256 W. Klieber, M. Granitzer, M. Gaisbauer, K. Tochtermann

Detecting these boundaries within one large sequence automatically is
error prone. For instance, typically at the end of a workflow some resources
are cleared and at the beginning of a workflow some data is loaded. Therefore
it is likely that algorithms will detect the end of a workflow and the beginning
of the next workflow falsely as a meaningful frequently used pattern. Using
time information is not applicable in situations where workflows are triggered by
automatic processes since there is no time shift between the end of one workflow
and the start of the next workflow. Considering each test itself as one single
workflow is error-phone. For performance reasons some developers reuse results
among their tests. Using each single test in isolation will result in partly invalid
workflows.

Tests are written either to test some functionality or to act as exemplary
usage code. Only tests intended to demonstrate the usage are interesting for
analysing workflows. Including all kind of tests worsens the results. For our
experiments we used a human-assisted approach to select useful tests. Tests of
interest were marked in the source code to be filterable by SPARQL queries.

6.1. Application Scenario Workflow Analysis. For our first exper-
iments we used the ProM process mining tool. The ProM framework provides
a large set of state-of-the-art process mining algorithms that can be used by an
intuitive graphical user interface. It is designed to help managers to figure out
how a process executed by employees harmonizes with predefined process models.
In the context of software engineering we use this tool to analyse the process exe-
cution based on program execution events. The program execution events in the
semantic repository are converted to the XML format (MXML) used by ProM
tool.

Several iterations of filtering input data and trying multiple algorithms
needs to be done to achieve useful results. Figure 5 shows a state diagram of our
knowledge discovery framework generated with the alpha++ algorithm of the
ProM framework [14]. The input data contains 130 events from 15 operations
invoked of our main API recorded from 46 test executions.

The generated diagram provides an overview of our pre-processing work-
flow, illustrating the main pattern of its usage. For instance, first a configuration
must be added to specify domain-specific settings so the framework can work.
Next the “import data” operation can be used as data source to load some op-
erational data into the system. After performing some algorithmic tasks at the
end of a workflow the system needs to be cleaned up by freeing no longer needed
resources.

ProM is a sophisticated tool to analyse business processes. It comes with



Semantically Enhanced Software Documentation Processes 257

Fig. 5. A sample state diagram created using the alpha++ algorithm from the ProM
Framework

a large set of algorithms and analysing facilities. However, for more in-depth
examination of software engineering behaviour specialized tools are needed.

6.2. Application Scenario Transition diagrams. Using transition
diagrams is a robust approach to get an overview of valid sequence alternatives.
An adjacent matrix is calculated by registering all direct succeeding events in the
sequence log.

The transitions can be interpreted as useful assembling options. The
transitions do not necessarily contain all valid connection possibilities between
components when not covered by the input data. Figure 6 show a result image
visualizing the invocation chronology of our information extraction pipeline.

The image is rendered using a force directed placement algorithms to
group the components automatically. More frequently invoked components are
drawn as visual larger nodes. Presentable labels have been calculated by applying
filters to get rid of technical details, i.e., “at.knowcenter.ie.opennlp.PartOfSpeech
Annotator.annotate()” is converted to “part of speech annotator”. The calculated
sequence is closed because for a given document the pipeline is executed multiple
times for single document fragments. Rendered images are stored on a web server
and linked as an external resource into the semantic repository.

Transition analysis is a useful approach to getting an overview of allowed
states between single components. For more detailed information like a cer-
tain path to follow for solving a given problem, a more sophisticated analysis
is needed. The discussed approach will deliver no meaningful results when the
recorded sequences belong to different architectural layers. This means when
single components are wrapped by parent components and the execution among
these components changes depending on internal branch conditions. In a next



258 W. Klieber, M. Granitzer, M. Gaisbauer, K. Tochtermann

Fig. 6. A transition diagram showing the invocation sequence of a named entity
extraction pipeline

step we will enhance our approach to support hierarchical execution traces, i.e., by
using execution time. When the start and end time of an operation lies between
the start and end time of another operation, the second operation invokes the
first one during its execution. This enables building up a parent-child hierarchy.

7. Related Work. Recently in the software engineering area much in-
vestigation has been undertaken to mine and analyse software-related information
to expose internal processes.

Software engineering deals with structured data like source code or run-
time trace calls. It involves informal data like documentation, bug entries or mail
communication. The data can be represented in graphs—i.e., for graph calls,
sequences, or for execution traces of informal text [19]. For instance [2] annotate
bug reports enabling developers to find interesting information artefacts more eas-
ily: patches, stack traces, source code and enumerations describing causalities.
In [3] the email communication of the open source project Apache is analysed to
span up a social network among all participants.

According to Conway’s law there is a relationship between the techni-
cal structure and the organizational structure within an organization. Research
projects have already shown that such a relationship can be computed [18]. The
correlation between developers based on bug entries is compared with the main-



Semantically Enhanced Software Documentation Processes 259

tainers of software components. Maskeri et al. [13] propose a human-assisted
approach to extract topics from source code. The Latent Dirichlet Allocation
model is used to group keywords in the source code to topics and label them
manually.

Several investigations have shown the usefulness of ontologies to support
software engineering processes. Cortellessa [6] introduces a software performance
ontology to harmonize performance indicators used by different approaches. Am-
brosio [1] developed an ontology-based documentation tool to archive documen-
tation artefacts in a cohesive and historical comprehensible way.

When presenting various information types to humans, an intuitive and
consistent medium is essential. Wikis came up recently as another effective col-
laboration and knowledge management tool due to their simple usage.

The survey of [12] states that companies use wikis frequently. One of the
most common activities wikis are used is for software documentation processes.

The survey reports three types of benefits of wikis: enhanced reputation
for users, making work easier and helping organizations improve their processes.
However, wikis formalize knowledge on a rather low degree. This open struc-
ture creates the main problem of wikis: making navigation and search difficult
[4]. This motivates enriching wikis with semantic technologies to overcome these
limitations.

8. Conclusion. In this paper we presented a software ontology to
model concepts occurring in the software documentation process. Using a uni-
fied, ontology-based data format for all tools involved in the automatic documen-
tation process helps avoiding impreciseness in workflows and enables machine-
understandable specification of data and operations. In our usage examples we
demonstrated the feasibility of using an RDF triple store, ontologies and SPARQL
queries to support an automatic documentation generation process. Using generic
data formats like RDF triples provides a flexible data characteristic adjustment
on software evolvements processes. Further, those standardized formats allow
in-depth analysis of code relationships and their presentation in collaboration-
enhancing tools like wikis.

However, SPARQL still misses some necessary features, which complicates
its usage. For instance aggregator functions to generate sums on query results
commonly needed for report generation are missing.

In a next step we plan to make our software framework open-source, and
provide its documentation semantically enriched in the linked open data cloud.

Acknowledgements. The Know-Center is funded within the Austrian



260 W. Klieber, M. Granitzer, M. Gaisbauer, K. Tochtermann

COMET Programme – Competence Centres for Excellent Technologies – under
the auspices of the Austrian Federal Ministry of Transport, Innovation and Tech-
nology, the Austrian Federal Ministry of Economy, Family and Youth and by
the State of Styria. COMET is managed by the Austrian Research Promotion
Agency FFG.

REFERE NC ES

[1] Ambrosio A., D. de Santos, F. de Lucena, J. da Silva. Software
engineering documentation: an ontology-based approach. In: WebMedia and
LA-Web, 2004, Proceedings, 38–40.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

1348143

[2] Bettenburg N., R. Premraj, T. Zimmermann, S. Kim. Extracting
structural information from bug reports. In: Proceedings of the 2008 in-
ternational workshop on Mining software repositories – MSR’08, 27–30.
http://portal.acm.org/citation.cfm?doid=1370750.1370757

[3] Bird C., A. Gourley, P. Devanbu, M. Gertz, A. Swaminathan. Min-
ing email social networks. In: Proceedings of the 2006 international workshop
on Mining software repositories – MSR’06, 137–143.
http://portal.acm.org/citation.cfm?doid=1137983.1138016

[4] Buffa M., F. Gandon. SweetWiki: semantic web enabled technologies in
Wiki. In: Proceedings of the 2006 international symposium on Wikis, ACM,
69–78. http://portal.acm.org/citation.cfm?id=1149453.1149469.

[5] Casanave C. Designing a Semantic Repository.
www.w3.org/2007/06/eGov-dc/papers/SemanticRepository.pdf, Febru-
ary 2010.

[6] Cortellessa V. How far are we from the definition of a common software
performance ontology? In: Proceedings of the 5th international workshop on
Software and performance – WOSP’05, 195–204.
http://portal.acm.org/citation.cfm?doid=1071021.1071044

[7] Hartmann J, S. Huang, S. Tilley. Documenting software systems with
views II: an integrated approach based on XML. In: Proceedings of the 19th



Semantically Enhanced Software Documentation Processes 261

annual international conference on Computer documentation, ACM, 2001,
237–246. http://portal.acm.org/citation.cfm?id=501571

[8] Huang S., S. Tilley. Towards a documentation maturity model. In: Pro-
ceedings of the 21st annual international conference on Documentation –
SIGDOC’03, 93–99.
http://portal.acm.org/citation.cfm?doid=944868.944888

[9] Kiczales G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.

Griswold. An overview of AspectJ. In: Proceedings of ECOOP, Lecture
Notes in Computer Science, Vol. 2072, Springer, 2001, 327–353.

[10] Klieber W, M. Granitzer. Using Ontologies For Software Docu-
mentation. In: Proceedings of Malaysian Joint Conference on Artificial
Intelligence, 2009. http://know-center.at/download extern/papers/

MJCAI2009 software ontology.pdf

[11] Klieber W., V. Sabol, M. Muhr, R. Kern, M. Granitzer. Knowl-
edge discovery using the knowminer framework. In: Proceedings of IADIS
International Conference Information Systems, 2009, 307–314.
http://know-center.at/download extern/papers/IADIS Knowminer.pdf

[12] Majchrzak A., C. Wagner, D. Yates. Corporate wiki users: results of
a survey. In: Proceedings of the 2006 international symposium on Wikis,
ACM, 2006, 99–104.
http://portal.acm.org/citation.cfm?id=1149453.1149472

[13] Maskeri G., S. Sarkar, K. Heafield. Mining business topics in source
code using latent dirichlet allocation. In: Proceedings of the 1st conference
on India software engineering conference, ACM; 2008, 113–120.
http://portal.acm.org/citation.cfm?id=1342234

[14] De Medeiros A. K., B. F. van. Dongen et al. Process mining: extend-
ing the a-algorithm to mine short loops. Beta Working Paper, Eindhoven
University of Technology, The Netherlands, 2004.

[15] Mogul J. Emergent (mis)behavior vs. complex software systems. ACM

SIGOPS Operating Systems Review, 40 (2006), No 4, 293–304.
http://portal.acm.org/citation.cfm?doid=1218063.1217964

[16] Rozinat A., R. Mans, M. Song, W. Vanderaalst. Discovering simu-
lation models. Information Systems, 34 (2008), No 3, 305–327.
http://linkinghub.elsevier.com/retrieve/pii/S0306437908000690



262 W. Klieber, M. Granitzer, M. Gaisbauer, K. Tochtermann

[17] Schwaber K. Agile Project Management with Scrum. ISBN
9780735619937, Microsoft Press, 2004.

[18] Strohmaier M., M. Wermelinger, Y. Yu. Using Network Proper-
ties to Study Congruence of Software Dependencies and Maintenance Ac-
tivities in Eclipse. 2nd International Workshop on Socio-Technical Con-
gruence STC’09, 2009. http://kmi.tugraz.at/staff/markus/documents/
2009 STC09-Socio-technical-congruence.pdf

[19] T. Xie, S. Thummalapenta, D. Lo, C. Liu. Data Mining for Software
Engineering. Computer, 42 (2009), No 8, 55–62.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=

5197425

Werner Klieber

Know-Center

Inffeldgasse 21a

8010 Graz, Austria

e-mail: wklieber@know-center.at

Mansuet Gaisbauer

Hyperwave AG

Arche Noah 9

8020 Graz, Austria

e-mail: mgais@hyperwave.com

Michael Granitzer, Klaus Tochtermann

Know-Center

Knowledge Management Institute

Graz University of Technology

Inffeldgasse 21a

8010 Graz, Austria

e-mail: mgrani@know-center.at

e-mail: ktochter@know-center.at

Received March 1, 2010

Final Accepted April 29, 2010


