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A SOLVER FOR COMPLEX-VALUED PARAMETRIC

LINEAR SYSTEMS*

Evgenija Popova, Lyubomir Kolev, Walter Krämer

Abstract. This work reports on a new software for solving linear systems
involving affine-linear dependencies between complex-valued interval para-
meters. We discuss the implementation of a parametric residual iteration
for linear interval systems by advanced communication between the system
Mathematica and the library C-XSC supporting rigorous complex interval
arithmetic. An example of AC electrical circuit illustrates the use of the
presented software.

1. Introduction. Scientific and engineering problems described by
systems of linear algebraic equations involving uncertain model parameters in-
clude problems in engineering analysis or design [3, 5, 8], control engineering [2],
etc. Significant research in this field is directed towards the use of intervals to
represent the uncertain quantities in such systems.

For many years, worst-case tolerance analysis (WCTA) of linear lumped-
parameter electric circuits has been the subject of numerous investigations by
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interval methods (cf. [5, 6], [3] and the literature cited therein). Most problem
formulations for linear circuits with tolerance-affected electrical parameters lead
to systems of linear interval equations. Depending on the class of the electrical
circuits investigated, direct current (DC) or alternating current (AC) circuits,
the linear system of equations describing the circuit can be real or complex. In
both cases, the system’s coefficients can be either independent intervals or func-
tions of independent interval parameters. The early efforts for WCTA of linear
circuits were based on various problem formulations using methods for nonpara-
metric interval linear systems [5]. The recent investigations focus on methods
for linear systems where the elements of the matrix and the right-hand side are
mainly linear functions of interval parameters [3, 6]. However, all considerations
of complex-valued interval linear systems stemming from WCTA, known to us
so far, try to reformulate the original system of equations into an equivalent
real representation. This way, the new real interval linear system has twice as
many equations and more complicated parameter dependencies. Respectively,
the methods reported for these systems give only approximate solutions to the
corresponding tolerance problem.

In this work we report on new software for solving linear systems where
the coefficients of the matrix and the elements of the right hand side are affine-
linear functions of parameters varying within given complex intervals. A general-
purpose parametric fixed-point iteration is implemented by integrating the inter-
active symbolic-numeric environment of the system Mathematica [12] with the
C++ library for scientific computing C-XSC, which support rigorous complex
interval arithmetic [4]. In Section 2, the parametric residual iteration method for
linear interval systems is introduced. Section 3 discusses the software implemen-
tation and the communication between Mathematica and the interval software
library C-XSC. In Section 4, the new parametric solver is illustrated by an exam-
ple of AC electrical circuit. The example is quite general and illustrates a wide
class of AC circuit models that can be solved by the discussed parametric solver.
Finally, some conclusions are given.

2. The Computing Method. Let T ∈ {R, C} be the set of real
or complex numbers. By Tm, Tm×n denote the set of real/complex vectors with
m components and the set of corresponding m × n matrices, respectively. A
real compact interval is defined as [a] = [a, a] := {a ∈ R | a ≤ a ≤ a} and a
rectangular complex interval [z] is defined by a pair of two real intervals [x], [y] :
[z] = [x] + ı[y] = {z = x + ıy | x ∈ [x], y ∈ [y]}. By ITm, ITm×n we denote the
corresponding interval m-vectors and interval m × n matrices. We assume that
the reader is familiar with the conventional interval arithmetic [1].
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Consider a linear algebraic system

(1a) A(p) · x = b(p),

where the coefficients of the n× n matrix A(p) and the vector b(p) are functions
of m parameters varying within given intervals

aij(p) = aij(p1, . . . , pm), bi(p) = bi(p1, . . . , pm), i, j = 1, . . . , n,(1b)

p ∈ [p] = ([p1], . . . , [pm])⊤ ∈ ITm.(1c)

The set of solutions to (1a)–(1c), called the parametric solution set, is

Σ = Σ (A(p), b(p), [p]) := {x ∈ Tn | ∃p ∈ [p] ∈ ITm, A(p) · x = b(p)} .(2)

The set Σ is compact if A(p) is nonsingular for every p ∈ [p]. For a nonempty
bounded set S ⊆ Tn, define its interval hull by �S := [inf S, supS] = ∩{[s] ∈
ITn | S ⊆ [s]}. Since it is quite expensive to obtain Σ or � Σ, we seek an interval
vector [y] for which it is guaranteed that [y] ⊇ � Σ ⊇ Σ.

The following theorem gives a self-verified method for bounding the so-
lution set of a parametric linear system. It is a general-purpose method since
it does not assume any particular structure among the parameter dependencies.
The method originates in the inclusion theory for nonparametric problems, which
is discussed in many works (cf. [11] and the literature cited therein).

Theorem 1. Consider a parametric linear system defined by (1a)–(1c).
Let R ∈ Tn×n, [y] ∈ ITn, x̃ ∈ Tn be given. Define [z] ∈ ITn, [C] ∈ ITn×n by

[z] := �{z(p) = R (b(p) − A(p)x̃) | p ∈ [p]},

[C] := �{C(p) = I − R · A(p) | p ∈ [p]},

where I denotes the identity matrix. Define [v] ∈ ITn by means of the following

Gauss-Seidel iteration

1 ≤ i ≤ n : [vi] := {[z] + [C] · ([v1], . . . , [vi−1], [yi], . . . , [yn])⊤}i.

If [v] $ [y], then R and every matrix A(p) with p ∈ [p] are regular, and for every

p ∈ [p] the unique solution x̂ = A−1(p)b(p) of (1a)–(1c) satisfies x̂ ∈ x̃ + [v].

The above theorem generalises [11, Theorem 4.8] by stipulating a sharp
enclosure of C(p) := I−R ·A(p) for p ∈ [p], instead of using the interval extension
C([p]). In case of affine-linear parameter dependencies

aij(p) := aij,0 +
m∑

µ=1

aij,µpµ, bi(p) := bi,0 +
m∑

ν=1

bi,µpµ,

aij,µ, bi,µ ∈ T, µ = 0, . . . ,m, i, j = 1, . . . , n
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the interval functions z(p), C(p) have explicit representation and

[z] := R(b(0) − A(0)x̃) +

m∑

µ=1

[pµ](R(b(µ) − A(µ)x̃))

[C] := I − R · A(0) −
m∑

µ=1

[pµ](R · A(µ)),

where A(µ) := (aij,µ) ∈ Tn×n, b(µ) := (bi,µ) ∈ Tn, µ = 0, . . . ,m.
When aiming to compute a self-verified enclosure of the solution to a

parametric linear system by the above inclusion method, a fixed-point iteration
scheme discussed in more detail in [10] proves to be very useful.

3. Software Tools. A variety of publicly-available software for the
solution of parametric interval linear systems for the Mathematica [7, 8] and C-
XSC [10] environments has been developed. The particular solvers differ with
respect to the type of the dependencies involved in the linear system to be solved
and the implemented solution method. To our knowledge, no software tools for
solving complex-valued parametric interval linear systems have been reported and
used so far.

The basic goals of self-validating methods are to deliver rigorous results by
computations in finite precision arithmetic, including the proof of existence (and
possibly uniqueness) of a solution. To achieve this goal the inclusion theorems
should be verifiable on computers, the latter can be done by a rigorously im-
plemented interval arithmetic. The interactive environment of Mathematica [12]
and its analytic computations allow flexible generation of the parametric systems
stemming from WCTA of el. circuits. However Mathematica supports numerical
intervals and the corresponding arithmetic on all numerical data types, except
for complex numbers. This makes the implementation of the complex-valued
parametric linear solver difficult. On the other hand, the C++ library for sci-
entific computing C-XSC supports predefined interval arithmetic with maximum
accuracy on floating-point real and complex numbers, as well as in the corre-
sponding vector/matrix spaces [4]. The provided exact dot products (based on a
long accumulator) over all numerical data types enable C-XSC users to compute
interval enclosures with very high accuracy. For the sake of efficiency it will be
better for the computation of matrix inversion in floating-point (the precondi-
tioner) to be done by an external optimized software. In our implementation of
the complex-valued parametric interval linear solver we have used an advanced
technology of communication protocols to develop a versatile software integrat-
ing Mathematica with C-XSC. Namely, the symbolic-numeric system formulation
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and all floating-point complex computations from the initialization step of the
algorithm are done in Mathematica. Then, via the MathLink communication pro-
tocol, all the numerical data are transferred to an external C/C-XSC program
module which implements in C-XSC the interval enclosures and the verification
step required by the numerical method. If the iteration step is successful, the ob-
tained solution enclosure is transferred back to Mathematica, otherwise an error
message is triggered back.

All functions necessary for solving a complex-valued parametric interval
linear system are packaged in a template file according to the MathLink technol-
ogy. The template file together with the corresponding communication module
can then be processed and compiled to binary code which can be installed and
used in any Mathematica session. Since C-XSC uses special data types for rep-
resenting intervals, the main purpose of the developed communication module
is to initialize new variables having the corresponding specific data types with
the incoming Mathematica data, and after the actual C-XSC computations to
transform the computed results into variables of fundamental C data types that
will be passed back to Mathematica. More details about the MathLink technol-
ogy and how to use it for the interoperability between Mathematica and C-XSC
can be found in [9] and in the implementation source code which is available at
http://www.math.bas.bg/ epopova/papers/complexParLinSolveML.zip.

End-users who do not have Mathematica or do not want to establish a communi-
cation with external programs can run Mathematica and the available parametric
solvers remotely via a webComputing service framework.

Below, we briefly outline the functionality of the newly developed inte-
grated Mathematica/C-XSC software and illustrate its use from within a Mathe-

matica session.

4. Numerical Example. The circuit shown in Fig. 1 consists of five
nodes and eleven branches. The parameters of the system have the following
nominal values:

e1 = e2 = 100V, e5 = e7 = 10V,

Zj = Rj + ıXj ∈ C, Rj = 100Ω, Xj = ωLj −
1

ωCj

, j = 1, . . . , 11,

ω = 50, X1,2,5,7 = ωL1,2,5,7 = 20, X3 = ωL3 = 30,

X4 =−
1

ωC4
= −300, X10 = −

1

ωC10
= −400, X6,8,9,11 = 0.

The electric parameters: resistance Rj , inductance Lj, and capacitance Cj ,
j = 1, . . . , 11, of the branch elements are considered to be unknown but bounded
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Fig. 1. Example of an electrical circuit having complex parameters

to vary within given tolerance intervals. The source voltages e1 = e2, e5 = e7

can be considered also as unknown but bounded. The tolerance analysis problem
is to find bounds for all node voltages Vi, i = 1, . . . , 5. This circuit has been
considered in [5] for the special case of a resistive circuit where all parameters
involved are pure resistors (no inductances Lj and capacitances Cj).

The method of “loop analysis”, is used to set up the following system of
parametric equations
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Without loss of generality, we change the parameters in the system and
substitute pj = 1/Zj , j = 1, . . . , 11. This way the parametric system involves
affine-linear dependencies in the matrix. The dependencies in the right-hand side
vector are nonlinear. Since e1,2,5,7 are involved only in the right-hand side and
linearly, the parametric solution set will depend linearly on these parameters.
Thus, the worst-case values for these parameters are at particular end-points of
the corresponding tolerance intervals. This is why, when demonstrating below
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our new software, we solve the above parametric system with the nominal values
of the parameters e1,2,5,7.

Suppose that the above data are available in a Mathematica session, say
variables cAp and cBpe contain the system matrix and the right-hand side vector,
respectively, as defined above. The variables trPMid and trE are set up to lists
of transformation rules specifying the nominal values for the parameters p and
e, respectively. A Mathematica function, available in the Mathematica demon-
stration notebook1 accompanying this paper, is developed to generate complex
intervals with specified tolerances from given nominal complex values. Let this
function be used to generate a list trPInt10 of transformation rules assigning
10% complex tolerance intervals to the parameters p.

We suppose that complexParLinSolveML.tm/cpp have been compiled to
an external MathLink-compatible program complexParLinSolveML, which can be
installed in any Mathematica session. Below, the Mathematica Install function
launches the program and opens a link through which the external functions can
be called from within Mathematica.

In[9] := lnk = Install["complexParLinSolveML"]

Out[9] = LinkObject[./complexParLinSolveML, 2, 2]

The evaluation of Names["complexParLinSolveML‘*"] will give the functions
available in this context and ?complexParLinSolve creates an online message
specifying the syntax and the use of this function which we are interested in
using. Now, we are ready to compute an outer enclosure of the solution set of
the above complex-valued parametric system.

In[13] := res = complexParLinSolve[cAp, cBpe /. trE, trPInt10]

Out[13] = {Complex[{48.7778, 64.0264}, {-6.97476, -0.892966}],

Complex[{40.164, 54.8626}, {-8.03546, -1.4352}],

Complex[{12.4068, 21.7213}, {-0.939578, 6.92676}],

Complex[{5.09736, 14.6988}, {-1.42627, 3.03358}],

Complex[{16.1099, 28.0902}, {-2.98966, 0.90285}]}

Note that the two arguments of the function Complex are lists containing the
end-points of the real and the imaginary part intervals, respectively. The out-
put is designed this way in order to give the C-XSC computed result communi-
cated straightforward in the internal representation. If necessary, the Mathemat-
ica function Interval can be applied to have the interval end-points outwardly
rounded and for subsequent interval computations in Mathematica.

1The Mathematica demonstration notebook is involved in the archive
http://www.math.bas.bg/ epopova/papers/complexParLinSolveML.zip
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In[14] := Map[Interval, res, {2}] // InputForm

Out[14] =

{Complex[Interval[{48.77781998049774, 64.0264187993989}],

Interval[{-6.974763234039071, -0.8929661048388836}]],

Complex[Interval[{40.16395400847202, 54.86256471848972}],

Interval[{-8.03546458638071, -1.4351990318016539}]],

Complex[Interval[{12.406832479931252, 21.721328446565188}],

Interval[{-0.9395775103974154, 6.926762112296828}]],

Complex[Interval[{5.097357562946341, 14.69883953920892}],

Interval[{-1.4262688553317318, 3.0335782454122757}]],

Complex[Interval[{16.10989659532433, 28.09024869869297}],

Interval[{-2.989656508482889, 0.9028498588837516}]]}

The function InpuForm is used to display all digits in the mantissas.

The present complex parametric solver works for A(µ) ∈ Rn×n, b(µ) ∈ Rn

but it can be easily generalized for A(µ) ∈ Tn×n, b(µ) ∈ Tn, µ = 0, . . . ,m. The
results obtained above were compared to the solution of the equivalent real-valued
parametric system involving 2n unknowns and rational parameter dependencies.
Both the complex-valued parametric solver for affine-linear dependencies and the
real-valued parametric solver for rational dependencies, implementing the same
iteration method, produced enclosures of similar accuracy for this problem. The
transparent communication of numerical data between Mathematica and C-XSC
allows rigorous comparisons of interval results and easy debugging of new C-XSC
code.

The communication module is designed in such a way that all error
messages generated during the execution of the external C-XSC code are trig-
gered back to Mathematica. Due to lack of space these are illustrated in the
demonstration notebook. Once installed in a Mathematica session, the package
complexParLinSolveML, resp. the function complexParLinSolve, can be used
interactively with different values for the parameters and for different parametric
systems. An advanced application of this software to WCTA of the above circuit
will be presented in subsequent work.

5. Conclusion. In this work we have used the advanced technol-
ogy of communication protocols for developing of new software, integrated be-
tween Mathematica and C-XSC, that solves complex-valued parametric linear
systems. While complex-valued linear systems are usually solved by transform-
ing the original systems into equivalent real systems of double size and involving
more complicated parameter dependencies, the new complex parametric solver
allows straightforward bounding of the solution to the original system.
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The new self-verified parametric solver for complex-valued linear systems
can be the basic ingredient in a general framework for the computer-assisted proof
of global and local monotonicity properties of the parametric solution [8]. For the
WCTA the latter means proving and identifying which vertices of the parameter
set are involved in the worst case parameter set, although the circuit response
is not monotonic with respect to all the uncertain circuit parameters. Based on
these properties (the worst case parameter set), a guaranteed and highly accurate
enclosure of the exact interval hull of the solution set (the worst cases of circuit
response) can be computed.

The implementation demonstrates MathLink communication of complex
intervals between Mathematica and C-XSC, as well as the embedding of higher-
level C-XSC functions of complex interval arguments into Mathematica. It can be
a sample for other future embeddings of the C-XSC complex interval arithmetic
and other C-XSC functions into Mathematica. This approach of software interop-
erability is especially suitable when interval methods become part of large simu-
lation systems or electronic-design automation tools. In this case the application
benefits from both the symbolic and interactive environment (e.g. Mathematica)
and the speed and accuracy of the external compiled language (C-XSC) software.

The presented methodology and new software are applicable in the con-
text of problems from any other domain that require solution of complex-valued
parametric linear systems.
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