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PARAMETER IDENTIFICATION

OF A FED-BATCH CULTIVATION OF S. CEREVISIAE

USING GENETIC ALGORITHMS*

Maria Angelova, Stoyan Tzonkov, Tania Pencheva

Abstract. Fermentation processes as objects of modelling and high-quality
control are characterized with interdependence and time-varying of process
variables that lead to non-linear models with a very complex structure. This
is why the conventional optimization methods cannot lead to a satisfied
solution. As an alternative, genetic algorithms, like the stochastic global
optimization method, can be applied to overcome these limitations. The
application of genetic algorithms is a precondition for robustness and reach-
ing of a global minimum that makes them eligible and more workable for
parameter identification of fermentation models. Different types of genetic
algorithms, namely simple, modified and multi-population ones, have been
applied and compared for estimation of nonlinear dynamic model parameters
of fed-batch cultivation of S. cerevisiae.

1. Introduction. Genetic algorithms (GA) are directed random search
techniques, based on the mechanics of natural selection and natural genetics, ac-
cording to the Darwinian evolutionary theory [4]. GA finds the global optimal
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solution in complex multidimensional search spaces simultaneously evaluating
many points in the parameter space. They require only information concern-
ing the quality of the solution and do not require linearity in the parameters.
Properties like hard problems solving, noise tolerance, ease of interface and hy-
bridization make genetic algorithms suitable and more workable for the parameter
identification of fermentation models [1], [8], [9], [10].

Three main operators, namely reproduction, crossover and mutation,
guide the mechanisms of the simple genetic algorithms (SGA) [2], [3], [4], [5].
Through reproduction chromosomes representing better possible solutions are
chosen from the population. Selected individuals are crossed over to form new
offspring. Mutation is then applied with determinate probability. The mutation
prevents falling of all solutions in the population into a local optimum of the
solved problem. For the new individuals the objective function and fitness func-
tion values are again calculated. The new offspring is inserted into the population.
Then the generated population is used for a further run of the algorithm.

The modified genetic algorithm (MGA) [9] has a structure similar to the
simple genetic algorithm but the operator of reproduction is processed after both
crossover and mutation. Thus the loss of the best chromosome from the last
population never happens and the current generation will be superior to or at
least the same as the parents.

A single population genetic algorithm that can be improved by introduc-
ing many populations, called subpopulations, is known as multi-population ge-
netic algorithm (MpGA) [2], [3], [4]. These subpopulations evolve independently
from each other for a certain number of generations (isolation time), after that a
number of individuals are distributed between the subpopulation (migration).

The aim of this investigation is the abovementioned three types of genetic
algorithms, namely simple, modified and multi-population GA, to be applied and
compared for a fed-batch cultivation of S. cerevisiae.

2. Comparison of different types of genetic algorithms. There
are many operators, functions, parameters and settings in the genetic algorithms
that can be implemented differently in various problems [2], [3], [5]. The effect of
genetic algorithms’ parameters was investigated for the values shown in Table 1,
according to the following statements [6], [9]. A very big generation gap value does
not improve the performance of GA, especially regarding how fast the solution
will be found. Mutation is randomly applied with low probability, typically in the
range 0.01 to 0.1. Particularly important parameters of GA are the population
size and number of generations. If there is too low a number of chromosomes, GA
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has few possibilities to perform crossover and only a small part of search space is
explored. On the other hand, if there are too many chromosomes, GA slows down.
An analysis of the effect of genetic algorithms’ parameters has been done for each
parameter separately, investigating different values for the examined parameter
when the others are kept constant. For the next steps, the best obtained values
for the already examined parameters are used.

Table 1. Investigation of the range of genetic algorithm parameters.

GGAP 0.8 0.85 0.9 0.95
MUTR 0.05 0.06 0.07 0.08 0.09
NIND 20 40 60 80 100
MAXGEN 100 200 500 1000

In Table 1 GGAP means generation gap – how many new individuals are
created; MUTR – mutation rate; NIND – number of individuals per subpopula-
tions; MAXGEN – maximum number of generations.

The minimization error between experimental data and the model simula-
tion decreases inessentially by 0.01% when the values of MAXGEN increase. But
the total computation time increases. Therefore MAXGEN = 100 is accepted
as a good compromise between the model precision and computation time. For
the other genetic algorithm parameter the minimization error increases inessen-
tially by 0.01% when the values of GGAP, MUTR and NIND increase. The total
computation time increases too. Therefore GGAP = 0.8, MUTR = 0.05 and
NIND = 20 are accepted as a good compromise between the model precision and
calculation time. Table 2 and Table 3 present the values of genetic parameters
and operators used in this investigation.

Table 2. Genetic parameters

Parameter Value

GGAP 0.8
XOVR 0.95
MUTR 0.05
PRECI 20
NIND 20
MAXGEN 100
MIGR 0.2
INSR 0.95
SUBPOP 5
MIGGEN 20

Table 3. Genetic operators

Operator Type

encoding binary
reinsertion fitness-based
crossover double point
mutation bit inversion
selection roulette wheel selection

fiitness function linear ranking
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In Table 2 XOVR means crossover rate; PRECI – precision of binary rep-
resentation; MIGR – migration rate; INSR – insertion rate; SUBPOP – number
of subpopulations; MIGGEN – number of generation after which migration takes
place between subpopulations.

3. Results and discussion. The comparison of the application of
the three types of GAs, namely SGA, MGA and MpGA, is carried out based on
a data set from a fed-batch cultivation of S. cerevisiae. The experimental data
are obtained in theInstitute of Technical Chemistry – University of Hannover,
Germany. The cultivation of the yeast S. cerevisiae is performed in a 2 l reactor,
using a Schatzmann medium [7]. The glucose in the feeding solution is 35 g/l.
The temperature was controlled at 30 ◦C, the pH at 5.5. The stirrer speed was set
to 1200 rpm. The aeration rate was kept at 300 l/h. The biomass and ethanol
were measured off-line and the substrate (glucose) and dissolved oxygen were
measured on-line.

The mathematical model of S. cerevisiae fed-batch cultivation is com-
monly described as follows, according to the mass balance:
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where X is the concentration of biomass, [g.l−1]; S – concentration of substrate
(glucose), [g.l−1]; E – concentration of ethanol, [g.l−1]; O2 – concentration of
oxygen, [%]; O∗

2 – dissolved oxygen saturation concentration, [%]; F – feeding
rate, [l.h−1]; V – volume of bioreactor, [l]; kO2

L
a – volumetric oxygen transfer

coefficient, [h−1]; Sin – glucose concentration in the feeding solution, [g.l−1]; µ,
qS, qE and qO2

are respectively specific rates of growth, substrate utilization,
ethanol production and dissolved oxygen consumption, [h−].

The considered here fed-batch cultivation of S. cerevisiae is characterized
by keeping the glucose concentration equal or below to its critical level (Scrit =
0.05 g.l−1), sufficient dissolved oxygen in the broth O2 ≥ O2crit(O2crit = 18 %),
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as well as presence of ethanol in the broth. This state corresponds to the so -
called mixed oxidative state according to the functional state modeling approach
[7], [11]. As presented in [11], the specific growth rate is generally found to be
a sum of two terms, one describing the contribution of sugar and the other the
contribution of ethanol to yeast growth. Both terms have the structure of Monod
model. Monod model is also used for the specific ethanol and sugar consumption
rates. The dissolved oxygen consumption rate is obtained as a sum of two terms,
which are proportional to the specific glucose rate and specific ethanol production
rates, respectively. More precisely, the specific rates in Eqs. 1–4 are presented as
follows:

µ = µ2S

S

S + kS

+ µ2E

E

E + kE

(6)

qS =
µ2S

YSX

S

S + kS

(7)

qE = −
µ2E

YEX

E

E + kE

(8)

qO2
= qEYOE + qSYOS,(9)

where µ2S , µ2E denote maximum growth rates of substrate and ethanol, [h−1];
kS , kE – saturation constants of substrate and ethanol, [g.l−1]; YSX , YEX , YOE,
YOS – yield coefficients, [g.g−1].

As an optimization criterion, least square deviation between the model
output and the experimental data obtained during cultivation was used:

(10) JY =
∑

(Y − Y ∗)2 → min,

where Y is the experimental data, Y ∗ is model predicted data, Y = [X, S, E,

O2].

The identification of the model parameters of a fed-batch cultivation of
S. cerevisiae with simple, modified and multi-population genetic algorithms were
done using Matlab 7.0, Genetic Algorithm Toolbox [2], [3], [5]. The results are
presented in Table 4.

As can be seen from the results presented in the Table 4, the best value
of the optimization criterion is obtained using MpGA, with about 50% less er-
ror than the one obtained with SGA and MGA. At the same time, the best
value of the total computation time is obtained using MGA, which reaches the
global minimum in time comparable to SGA, but more that two times faster than
MpGA.
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Table 4. Results from the model parameters identification

Parameter SGA MGA MpGA

J 0.0223 0.0225 0.0147
CPU time, s 74.7656 67.5313 146.2969
µ2S , h−1 0.9616 0.9211 0.9001
µ2E , h−1 0.0971 0.0872 0.1192
kS , g.l−1 0.1154 0.1176 0.1200
kE , g.l−1 0.7963 0.7620 0.7607
YSX , g.g−1 0.4279 0.4279 0.4088
YEX , g.g−1 1.2898 1.2898 6.0204
ko2

la
, h−1 38.5895 127.2898 90.5778

YOS , g.g−1 313.8285 989.8014 716.0857
YOE , g.g−1 234.7797 62.6547 178.6444

Since the results from the application of three types of GA are too similar,
only the results obtained with the most precise MpGA are presented here. The
following figures demonstrate simulation results for experimental and model data
for biomass (Fig. 1), ethanol (Fig. 2), substrate (Fig. 3) and dissolved oxygen
(Fig. 4).

Fig. 1. Experimental and model data for
biomass

Fig. 2. Experimental and model data for
ethanol

The results from MpGA application for parameter identification of S.

cerevisiae fed-batch cultivation presented in the figures show the effectiveness of
this type of GA.
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Fig. 3. Experimental and model data for
substrate

Fig. 4. Experimental and model data for
dissolved oxygen

4. Analysis and conclusion. A comparison of three different types
of genetic algorithms, namely simple, modified and multi-population GA, is pre-
sented here for a fed-batch cultivation of S. cerevisiae. The best value of the
optimization criterion is obtained using MpGA, with about 50% less error than
obtained with SGA and MGA. At the same time, the best value of the total
computation time is obtained using MGA, which reaches the global minimum
in time comparable to SGA, but more than two times faster than MpGA. This
is why it is up to the user to decide which type of GA to use as a compromise
between the time consumption and the model.

REFERE NC ES

[1] Carrillo-Ureta G. E., P. D. Roberts, V. M. Becerra. Genetic algo-
rithms for optimal control of beer fermentation. In: Proceeding of the 2001
IEEE International Symposium on Intelligent Control, Mexico City, Mexico,
2001, 391–396.

[2] Chipperfield A. J., P. Fleming, H. Pohlheim, C. M. Fonseka. Ge-
netic algorithm toolbox for use with MATLAB. Users’s Guide. Version 1.2,
Dept. of Automatic Control and System Engineering, University of Sheffield,
U. K., 1994.



18 Maria Angelova, Stoyan Tzonkov, Tania Pencheva

[3] Chipperfield A. J., P. Fleming. The Matlab Genetic Algorithm Toolbox,
1995.

[4] Goldberg D. Genetic algorithms in search, optimization and machine
learning. Addison-Weslcy Publishing Company, Massachusetts, 1989.

[5] Genetic Algorithm Toolbox. Users’s Guide, MatWorks Inc, 1999.

[6] Obittko M. Genetic algorithm.
http://cs.felk.cvut.cz/∼xobitko/ga/main.html, 2005.

[7] Pencheva T., O. Roeva, I. Hristozov. Functional state approach to
fermentation processes modeling. (Eds St. Tzonkov, B. Hitzmann.), Prof.
Marin Drinov Academic Publishing House, Sofia, 2006.

[8] Ranganath M., S. Renganathan, C. Gokulnath. Identification of
bioprocesses using genetic algorithm. Bioprocess Engineering, 21 (1999),
123–127.

[9] Roeva O. A modified genetic algorithm for a parameter identification of
fermentation processes. Biotechnology and Biotechnological Equipment, 20

(2006), No 1, 202–209.

[10] Roeva O. Genetic algorithm for a parameter estimation of a fermentation
process model: A comparison. Bioautomation, 3 (2005), 19–28.

[11] Zhang X.-C., A. Visala, A. Halme, P. Linco. Functional state mod-
elling approach for bioprosesses: Local models for aerobic yeast growth pros-
esses. J. Proc. Contr., 4 (1994), No 3, 127–134.

Centre of Biomedical Engineering

Bulgarian Academy of Sciences

105, Acad. G. Bonchev Str.

1113 Sofia, Bulgaria

e-mail: maria@clbme.bas.bg

e-mail: tzonkov@clbme.bas.bg

e-mail: tania.pencheva@clbme.bas.bg

Received November 3, 2009

Final Accepted February 4, 2010


