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STOCHASTIC ARITHMETIC, THEORY AND

EXPERIMENTS∗

René Alt, Jean-Luc Lamotte, Svetoslav Markov

Abstract. Stochastic arithmetic has been developed as a model for exact
computing with imprecise data. Stochastic arithmetic provides confidence
intervals for the numerical results and can be implemented in any existing
numerical software by redefining types of the variables and overloading the
operators on them. Here some properties of stochastic arithmetic are fur-
ther investigated and applied to the computation of inner products and the
solution to linear systems. Several numerical experiments are performed
showing the efficiency of the proposed approach.

1. Introduction. Stochastic arithmetic has been developed as a model

for computing with imprecise data when the data belong to some known Gaussian

distribution N(µ, σ). It is an old idea [9] and has been first formalized by J.

Vignes and J. M. Chesneaux as a theoretical approach of the Cestac method [5],

[10], [11]. In the scope of stochastic arithmetic, imprecise data are interpreted as
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stochastic numbers and the computation on them is called stochastic arithmetic.

Thus, stochastic arithmetic models operations on Gaussian distributions and pro-

vides confidence intervals for the results of numerical computation in the same

way that interval arithmetic provides bounds for these results. It must be also

remarked that the operations of stochastic arithmetic resemble the operations for

intervals whenever the intervals are presented in the midpoint-radius form. Some

algebraic properties of stochastic numbers have been further investigated. In

particular we give a formal definition of narrow stochastic numbers. It is shown

that the standard deviation on the result of an n-dimensional inner product of

two vectors with imprecise data is proportional to
√

n. An experimental software

has been developed which implements stochastic arithmetic. This software allows

to run very easily standard code written in Fortran or in C++ with stochastic

arithmetic. Numerical experiments for the computation of inner products and

the solution of linear systems with imprecise data are reported. In each case a

confidence interval for the solution (or for the components of the solution) is pro-

vided. The obtained results confirm the theory and show that a straightforward

use of stochastic arithmetic may easily lead to instructive features of a numerical

problem such as the detection of instabilities.

2. Stochastic numbers and stochastic arithmetic. As said be-

fore, stochastic arithmetic is a model for exact computation on imprecise data.

Let us consider imprecise data as a Gaussian distribution with known mean value

m and known standard deviation σ.

Definition 1. The set of stochastic numbers denoted S is the set of

Gaussian random variables.

Thus an element X ∈ S is a pair X = (m,σ), m being the mean value of X

and σ ≥ 0 its standard deviation. The main property of a Gaussian distribution

and hence of a stochastic number is: For X = (m,σ) there exists λη such that

(1) P (X ∈ [m − λησ,m + λησ]) = 1 − η,

where P denotes a probability, and [m − λησ,m + λησ] is the confidence interval

of m with a probability (1 − η). It is well known that for η = 0.05, that is

P = 1 − η = 0.95, we have λη = 1.96. Consequently the number of significant

decimal digits on m is the integer part of:

(2) Cη,X = log10

( |m|
λησ

)

,
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providing |m|/(λησ) ≥ 10, otherwise we assume Cη,X = 0.

This simple but important property is used in the Cestac method and

in the Cadna software to compute the number of significant digits of numerical

results. The ratio |m|/(λησ) will be called relative error or relative accuracy of

the stochastic number X. This characteristic is analogous to the relative error of

an approximate number.

The arithmetic operations on stochastic numbers are defined as the oper-

ations on independent Gaussian distributions. They are denoted s+, s−, s∗, s/

and are:

X1 s+ X2

def
=

(

m1 + m2,
√

σ2
1

+ σ2
2

)

,

X1 s− X2

def
=

(

m1 − m2,
√

σ1
2 + σ2

2

)

,

X1 s∗ X2

def
=

(

m1m2,
√

m2
2σ1

2 + m1
2σ2

2 + σ2

1
σ2

2

)

,

X1 s/ X2

def
=



m1/m2,

√

(

σ1

m2

)2

+

(

m1σ2

m2
2

)2

+

(

σ1σ2

m2
2

)2



 , m2 6= 0.

Algebraic properties. We next give some particular cases from the

stochastic arithmetic formulae; below X = (m,σ). We have Xs+X = (2m,
√

2σ)

and Xs∗X = (m2,
√

2m2σ2 + σ4) = (m2, σ
√

2m2 + σ2).

Note that the latter formula is computed as if the two variables X were

independent, that is computing Xs∗Y and then replacing Y by X exactly as in the

case of intervals. It is well known that the correct formula for the computation of

the mean value and standard deviation of the square of a centred random variable

is: X2 = (m2 + σ2,
√

4m2σ2 + 2σ4) = (m2 + σ2, σ
√

4m2 + 2σ2).

A real number c ∈ R is identified as the degenerate stochastic number

(c, 0). So, in particular, for c ∈ R, we have cs∗(m,σ) = (c, 0)s∗(m,σ) = (cm, |c|σ).

Thus multiplication of a stochastic number X = (m,σ) by a scalar γ ∈ R is given

by: γ s∗ X = (γ, 0) s∗ (m,σ) = (γm, |γ|σ).

Note that Xs+X = (2m,
√

2σ) is different from 2s∗X = (2m, 2σ).

We have 1/X = (1, 0)s/(m,σ) = (1/m2)s∗X showing that inversion is

reduced to multiplication by scalar. Similarly, division of two stochastic numbers

is reduced to multiplication: X1s/X2 = X1s∗(1s/X2).
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Note also that 0s−X = (0, 0)s−(m,σ) = (−m,σ), which equals −1s∗X.

Many of the properties of stochastic arithmetic and stochastic numbers

have been studied from the point of view of abstract algebraic structures, espe-

cially with respect to the operations addition and multiplication by scalars [1],

[3], [7], [8], in particular we have:

• The set of stochastic numbers is a monoid with respect to addition.

This monoid can be extended to a group structure (admitting thus negative

values for σ).

• Multiplication by a scalar induces a structure of S-space which is close

to a vector space and computations in S-spaces are reduced to computations in

vector spaces.

As a consequence of the S-space structure it has been shown in [4] that the

confidence interval of the result of an inner product of two n-dimensional vectors,

one with exact data and the other with imprecise data, increases proportionally

to
√

n. Let us show now that this is also true for the inner product of two vectors

of stochastic numbers.

Let P be an inner product P =
i=n
∑

i=1

Xi s∗ Yi with Xi = (mi, σi) and Yi =

(ri, τi). From the definition of stochastic addition and multiplication, P = (p, θ)

with:

p =
i=n
∑

i=1

mi ri, θ =

√

√

√

√

i=n
∑

i=1

(m2

i τ
2

i + r2

i σ
2

i + σ2

i τ
2

i ).

In numerical computations stochastic numbers are used to model un-

certainties in input data. In this case commonly we work with “very” narrow

stochastic numbers, i.e. such that |σi/mi| ≪ 1, |τi/ri| ≪ 1. Then we have

(3) θ2 =
i=n
∑

i=1

m2

i r
2

i

(

σ2

i

m2

i

+
τ2

i

r2

i

+
σ2

i τ
2

i

m2

i r
2

i

)

≈
i=n
∑

i=1

m2

i r
2

i

(

σ2

i

m2

i

+
τ2

i

r2

i

)

.

Suppose now that all relative errors are identical: |σi/mi| = |τi/ri| = δ,

then θ ≈
√

2 δ

√

n
∑

i=1

m2

i τ
2

i and in the case when all terms miri can be replaced by

their mean value noted q then:

(4) θ ≈
√

2 δ q
√

n.

Equation (4) shows clearly that when the hypotheses on narrowness of

stochastic numbers prove valid, see formula (5) below, and the terms miri are
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of the same order of magnitude, which is often the case, the standard deviation

of the result of an inner product with constant relative uncertainty on the data

increases as
√

n. It must be noted that with the same hypotheses the result

increases proportionally to n. Then the relative error on the result decreases

when the dimension increases: θ/p ≈
√

2 δ/
√

n. This differs from the behavior of

the relative error of approximate numbers and may look strange but is confirmed

by the experiments, see Table 1.

In order to give a more formal definition of “narrow stochastic number”

and to give a criterion for narrowness we recall the notion of stochastic zero [10]:

Definition 2. A stochastic number X = (m,σ) ∈ S is called stochastic

zero, denoted X = 0 if |m|/(λησ) ≤ 1.

According to (2) a stochastic zero has no significant digits. The stochastic

equality of two stochastic numbers is defined by X1 s =X2 ⇔ X1 s− X2 = 0.

Intuitively a “narrow stochastic number” should possess k ≥ 1 significant

decimal digits, where depending on the nature of the computations k can be some

integer greater than or equal to one. This means that we should have

(5) |m|/(λησ) ≥ 10k.

This formula (5) provides an easy criterion for the narrowness of a stochastic

number. As a correct computation on numbers requires at least one significant

digit on each operand, k is often chosen k = 1.

Normally the number of significant digits in the results diminishes in the

course of computations. We demonstrate this with the computation of Xs∗X. Ac-

cording to (2) the number of significant digits in X = (m,σ) is the integer part of

the decimal logarithm of LX = |m|/(λησ). For Y = Xs∗X = (m2, σ
√

2m2 + σ2)

we have LY = LX/
√

2 + (σ/m)2 < LX .

In practice, when computing with narrow stochastic numbers, we can use

the following approximate formulae for multiplication and division:

X1 s∗ X2 ≈
(

m1m2,
√

m2
2σ1

2 + m1
2σ2

2

)

,

X1 s/ X2 ≈



m1/m2,

√

(

σ1

m2

)2

+

(

m1σ2

m2
2

)2



 , m2 6= 0.

Let us consider now a practical approach to numerical computations with

stochastic numbers, called discrete stochastic numbers.
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3. Discrete stochastic numbers and related software. As seen

above a stochastic number is a Gaussian function with known mean-value m

and standard deviation σ. Such a function can be approximated by N random

Gaussian samples x1, x2, . . . , xN with mean value x and empirical standard devi-

ation s. In our scope, (x1, x2, . . . , xN ) is called “discrete stochastic number”. The

Cestac method and the Cadna software which have been developed to estimate

the number of significant digits on the result of a numerical computation are

based on this approach. Thus, each operation with discrete stochastic operands

can be done by generating N Gaussian samples with known mean value and

standard deviation for each operand and computing the empirical mean value

and standard deviation of the N2 samples representing the result.

In the Cestac method N = 3 and the result of each operation is also

computed with 3 samples, as the method is only concerned with the number of

significant digits on m. The method also chooses at random with equal probability

the rounding up or down of all the numbers involved in the computation and thus

takes into account both data errors and round-off errors.

Hence there are two possibilities when developing a software using sto-

chastic numbers and stochastic arithmetic: either use the theoretical definitions

and formulae of Section 2 or the discrete stochastic numbers and the approxima-

tions of the mean value and standard deviation that they provide. It is clear that

the first is much faster but in our tests both approaches have been experimented

and it has been observed that they give very close results.

The experimental software for computing with stochastic numbers has

been written in Fortran 90 and in C++. In both languages a new type double st

has been defined.

All arithmetic operations +, −, ∗, / and comparison operators ≤, <, =,

≥, > have been overloaded by operators s+, s−, s∗, s/, s ≤, s <, s =, s ≥, s >. The

assignment operator and input/output have been redefined. Some (but not yet

all) of the standard mathematical functions have been redefined. The software

offers two ways for computing with stochastic numbers:

• The above mentioned double precision software emulating the compu-

tation with (exact) stochastic numbers.

• A Monte Carlo-type synchronous computation with discrete stochastic

numbers generating N random samples in the range of each data and computing

the mean-value and standard deviation of all intermediate result and of the final

result.
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4. Numerical experiments. Three numerical experiments are de-

scribed below.

• Experiment 1: Computation of sums of n uncertain positive numbers

in a known range for different values of n. In this experiment the stochastic

numbers are approximated by discrete stochastic numbers of N = 30 samples

generated in the range of uncertainty with a Gaussian distribution. The mean

value and standard deviation on the result are computed from the samples. The

relative uncertainty on the data is = 0.001 and the numbers are generated in

[0, 100]. The result, the relative error, the number of significant digits and the

ratio “standard deviation/
√

n” are reported in Table 1. It can be seen that the

standard deviation on the sum increases as
√

n. This conforms to theory [2].

Table 1. Sum of n imprecise numbers, relative uncertainty 0.001

n Result relat. error ndig. Std. dev/
√

n

10 0.56501328D + 03 0.186E − 04 4.73 0.455E − 01

100 0.49115716D + 04 0.184E − 04 4.74 0.500E − 01

1000 0.51429866D + 05 0.687E − 05 5.16 0.472E − 01

10000 0.49883813D + 06 0.147E − 05 5.83 0.541E − 01

100000 0.49863373D + 07 0.437E − 06 6.36 0.532E − 01

• Experiment 2: Computation on inner products. The same inner prod-

ucts have been computed with the stochastic arithmetic software, and with dis-

crete stochastic numbers. The data have been generated in [−100, 100] with

relative Gaussian uncertainties 0.01. The results and the standard deviation on

it computed by the three different ways above (special software with stochastic

operations, theoretical formula 3 and discrete stochastic numbers) are reported

in Table 2. Here again it can be seen that the ratio standard deviation/
√

n is

almost constant.

• Experiment 3: Gaussian elimination with stochastic arithmetic and

with the Cestac method. The system to be solved and the obtained solutions

are in Table 3. The computed standard deviations provided by the theoretical

stochastic operations lead to the number of significant digits provided by the

Cestac method.
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Table 2. Computation of inner products, relative uncertainty 0.01

n Result Computed Standard deviation

St. Ar. Theor. form. Discr. St. Ar. θ
√

n

10 −7.67D + 03 1.22E + 02 1.22E + 02 1.65E + 02 38.6

100 +2.52D + 04 4.69E + 02 4.69E + 02 5.69E + 02 46.9

1000 −4.87D + 04 1.52E + 03 1.52E + 03 1.87E + 03 48.1

10000 +1.27D + 05 4.64E + 03 4.65E + 03 6.71E + 03 46.5

100000 −4.80D + 05 1.47E + 04 1.48E + 04 5.08E + 04 46.8

Table 3. Experiment 3, linear system and solutions








5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

















x1

x2

x3

x4









=









23
32
33
31









Stochastic Arithm. Cestac method

value Std. dev. Value with exact dig.

1.0000000000001883 2.01E − 04 0.9999E + 000

0.9999999999998863 1.39E − 04 0.1000E + 001

0.9999999999999518 2.21E − 04 0.1000E + 001

1.0000000000000289 1.30E − 05 0.99999E + 000

5. Conclusion. Stochastic arithmetic has interesting algebraic struc-

tures and leads to results with confidence intervals. It can be easily and effectively

applied to numerical problems with imprecise data, such as the numerical solution

of differential systems with imprecise coefficients and imprecise initial conditions,

study of steady states of systems, see for example [6], optimization problems,

computation of the roots of polynomials, also with imprecise coefficients, compu-

tation of integrals of not well known functions etc. In all cases where the data

come from experiments or are not exact but are known with some probability,

then stochastic arithmetic appears to be useful as any result is obtained as the

mean value of a Gaussian distribution with its standard deviation. Anyhow, it

must be noted that in this sense stochastic arithmetic does not provide exact

bounds compared to interval arithmetic. But confidence intervals are most of
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the time much smaller that exact intervals which may contain very improba-

ble values which increase their size. Another interesting feature of stochastic

arithmetic compared to interval arithmetic is that no wrapping effect has ever

been observed in any experiment. As seen above for a practical development

of stochastic arithmetic, two different approaches are possible: A software with

stochastic operations overloading standard operations, in this case round-off er-

rors are ignored, or Discrete stochastic numbers as done in the Cestac method

and Cadna software. In this last case round-off errors are taken into account.

Experiments in the linear case show that in many problems both approaches give

similar results provided that the problems are stable and that uncertainties on

data are much greater than the errors due to rounding. On the other hand, it is

clear that the theoretical formulae of Section 2 appear to be very easy to imple-

ment, provide results with their confidence intervals and lead to a much smaller

computing time.
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10 René Alt, Jean-Luc Lamotte, Svetoslav Markov

[5] Chesneaux J. M., J. Vignes. Les fondements de l’arithmétique stochas-

tique. C. R Acad. Sci. Sér. I, Math., Paris, 315 (1992), 1435–1440.

[6] Dimitrova N., P. Zlateva. Study of the Steady-States of Methane Fer-

mentation under Uncertain Data. Lecture Notes on Biomathematics and

Bioinformatics’95, (Ed. M. Candev), DATECS Publ., Sofia, 1995, 90–99.

[7] Markov S., R. Alt, J.-L. Lamotte. Stochastic arithmetic: s-spaces and

some applications. Numer. Algorithms, 37 (2004), No 1–4, 275–284.

[8] Markov S., R. Alt . Stochastic arithmetic: addition and multiplication

by scalars, Appl. Numer. Math., 50 (2004), 475–488.

[9] Vignes J., V. Ung. Methods and apparatus for providing a result of a

numerical calculation with the number of exact significant figures. US patent

No 4, 386, 413, May 31, 1984.

[10] Vignes J. A stochastic arithmetic for reliable scientific computation, Math.

Comput. Simulation, 35 (1993), 233–261.

[11] Vignes J. Discrete stochastic arithmetic for validating results of numerical

software. Numer. Algorithms, 37 (2004), 377–390.

René Alt
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