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A NOTE ON THE “CONSTRUCTING” OF

NONSTATIONARY METHODS FOR SOLVING NONLINEAR

EQUATIONS WITH RAISED SPEED OF CONVERGENCE.*

Nikolay Kyurkchiev, Anton Iliev

Abstract. In this paper we give methodological survey of “contempo-
rary methods” for solving the nonlinear equation f(x) = 0. The reason for
this review is that many authors in present days rediscovered such classi-
cal methods. Here we develop one methodological schema for constructing
nonstationary methods with a preliminary chosen speed of convergence.

1. Introduction. During the last several years, numerous papers [1],
[3], [6]–[10], [12]–[28], [31]–[39], [41]–[44], [46]–[52], [54]–[79], [81], [86]–[88], [90]–
[91], [94]–[98] devoted to iterative methods for solving nonlinear equations have
appeared in various journals – Appl. Math. Comput., Nonlinear Analysis Forum,
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This collection of papers is intended to give a survey on many hybrid com-
bination methods, multi-point methods generated by composition, and properties
of these methods (the cost of arithmetic operations, computational efficiency and
order of convergence).

We will point out that the methodology of construction of these or similar
iteration methods (with recursive generation) and the technique for receiving
precise estimations of the order of convergence are well known and given in the
literature – [93], [89], [80], [2], [45], [92], [85], [84], [83] and [49].

This issue was studied extensively by Prof. M. Petkovic and his coauthors.
In one paper L. Petkovic and M. Petkovic [82] made a serious analysis of

the “scientific achievements” of one small part of the aforecited publications of
this subject.

Obviously the rediscovering of classical and newer methods of solving
nonlinear equations continues with a nondecreasing rate nowadays.

We will follow the idea of constructing iteration methods “with raised
speed of convergence”.

Newton’s method for the calculation of a simple root ξ of nonlinear equa-
tion f(x) = 0 is probably the most widely used iterative method defined by

xn+1 = xn − f(xn)

f ′(xn)
,

n = 0, 1, 2, . . . .

An interesting approach in constructing iteration methods is based on
quadrature rules.

Several third-order methods based on quadratures are given in the liter-
ature.

A third-order variant of Newton’s method appeared in Weerakon and
Fernando [95] where rectangular trapezoidal approximations to the integral in
Newton’s theorem

(1) f(x) = f(xn) +

x
∫

xn

f ′(t)dt

were considered to rederive Newton’s method and to obtain the cubical method

(2) xn+1 = xn − 2f(xn)

f ′(xn) + f ′(yn)
, yn = xn − f(xn)

f ′(xn)
,
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n = 0, 1, 2, . . . .

The iteration function (IF)

ϕ = x − 2f(x)

f ′(x) + f ′(x − u(x))
, u(x) =

f(x)

f ′(x)

is Traub’s method presented in [93].

Frontini and Sormany [33] considered the midpoint rule for the integral
(1) to obtain the third-order method

(3) xn+1 = xn − f(xn)

f ′

(

1

2
(xn + yn)

)

n = 0, 1, 2, . . .

It should be mentioned that the method (3) has be derived by Homeier
[46] independently

(4) xn+1 = xn − f(xn)

f ′

(

xn − 1

2
u(xn)

)

n = 0, 1, 2, . . . .

The method (4) follows from Traub [93].

The third-order iteration method

(5) xn+1 = xn − f(xn)

2

(

1

f ′(xn)
+

1

f ′(yn)

)

n = 0, 1, 2, . . .

was proposed by Osban [81] and Homeier [47].

The IF

ϕ = x − f(x)

2

(

1

f ′(x)
+

1

f ′(x − u(x))

)

is Traub’s method presented in [93].

We observe that the method (3) can be obtained using the midpoint value
f ′(1

2(xn +yn)) instead of the arithmetic mean of f ′(xn) and f ′(yn) in the method
(2) (see, Kou, Li and Wang [62]).
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Evidently, a modified method based on Simpson’s rule will be

xn+1 = xn − bf(xn)

f ′(xn) + (b − 2)f ′

(

1

2
(xn + yn)

)

+ f ′(yn)

n = 0, 1, 2, . . . ,

where b is a free parameter.
Recently, Neta [75] (see, also Chun and Neta [26]) used the method of

undetermined coefficients to obtain a new efficient modifications.
Kou and Li [57] considered the following modification of Jarratt’s method

(6)

xn+1 = zn − f(zn)

3

2
Jf (xn)f ′(vn) +

(

1 − 3

2
Jf (xn)

)

f ′(xn)

,

vn = xn − 2

3

f(xn)

f ′(xn)
,

zn = xn − Jf (xn)
f(xn)

f ′(xn)
,

Jf (xn) =
3f ′(vn) + f ′(xn)

6f ′(vn) − 2f ′(xn)
,

n = 0, 1, 2, . . . .

The method (6) is of order six.
Another sixth-order improved Jarratt’s method is given by Chun [22].
Kou, Li and Wang [62] obtained the following method

(7) xn+1 = xn − f(xn)

2









1

f ′(xn)
+

1

f ′

(

1

2
(xn + yn)

)

− f ′(xn)









.

n = 0, 1, 2, . . . .

In [94], Ujevic obtained the following iteration

(8)

xn+1 = xn + 4(zn − xn)
f(xn)

3f(xn) − 2f(zn)
,

zn = xn − α
f(xn)

f ′(xn)
,
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n = 0, 1, 2, . . .

where 0 < α ≤ 1.
Following Traub’s terminology (see, also L. Petkovic and M. Petkovic

[82]), the combined methods of the type (8) are often called multi-point iteration
methods generated by composition.

In [73] Nedzhibov, Hassanov and Petkov consider the following family

(9)

xn+1 = xn − un

(

1 +
f(xn − un)

f(xn) − 2λf(xn − un)

)

,

un =
f(xn)

f ′(xn)
,

n = 0, 1, 2, . . . ,

where λ is an arbitrary real parameter.
In particular cases we get some well known formulas:
For λ = 0 we get the iteration

(10) xn+1 = xn − un − f(xn − un)

f ′(xn)

n = 0, 1, 2, . . .

studied by Traub.

For λ =
1

2
we get the Newton-secant method

(11) xn+1 = xn − f2(xn)

f ′(xn)(f(xn) − f(xn − un))

n = 0, 1, 2, . . . .

For λ = 1 we get

(12) xn+1 = xn − un

(

f(xn) − f(xn − un)

f(xn) − 2f(xn − un)

)

.

n = 0, 1, 2, . . . .

This formula is known as Ostrowski method.
In order to solve the nonlinear equation f(x) = 0 Gutierrez and Hernan-

dez [40] considered the iterative formula

xn+1 = xn − un

(

1 +
1

s(xn) − α

)

,
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n = 0, 1, 2, . . . ,

where α is a real parameter and

s(xn) =
2f ′2(xn)

f(xn)f ′′(xn)
.

The family converges cubically and includes, for example, Halley’s method
(α = 1) and Chebyshev-Euler’s method (α = 0).

If |α| is very large, then the presented method behaves as Newton’s
method.

Kou [56] obtained the following fifth-order modifications of Newton’s
method:

∣
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∣

∣

∣

∣

∣

∣

∣

zn+1 = xn − f(xn)

f ′

(

1

2
(xn + yn)

) ,

xn+1 = zn+1 −
f(zn+1)

f ′(xn)
·

f ′

(

1

2
(xn + yn)

)

3f ′

(

1

2
(xn + yn)

)

− 2f ′(xn)

,

n = 0, 1, 2, . . . ,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

zn+1 = xn − f(xn)

2
.









1

f ′(xn)
+

1

2f ′

(

1

2
(xn + yn)

)

− f ′(xn)









,

xn+1 = zn+1 −
f(zn+1)

f ′(xn)
.

f ′

(

1

2
(xn + yn)

)

3f ′

(

1

2
(xn + yn)

)

− 2f ′(xn)

,

n = 0, 1, 2, . . . ,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

zn+1 = xn − f(xn)

f ′

(

1

2
(xn + yn)

) ,

xn+1 = zn+1 − f(zn+1).

2f ′

(

1

2
(xn + yn)

)

− f ′(xn)

3f ′2

(

1

2
(xn + yn)

)

− f ′2(xn)

,
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n = 0, 1, 2, . . . ,
∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣

zn+1 = xn − f(xn)

2
.









1

f ′(xn)
+

1

2f ′

(

1

2
(xn + yn)

)

− f ′(xn)









,

xn+1 = zn+1 − f(zn+1).

2f ′

(

1

2
(xn + yn)

)

− f ′(xn)

3f ′2

(

1

2
(xn + yn)

)

− f ′2(xn)

,

n = 0, 1, 2, . . .

and new methods with order of convergence 6:

∣

∣

∣

∣
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∣

∣

∣

∣

∣

zn+1 = xn − 2f(xn)

f ′(yn) + f ′(xn)
,

xn+1 = zn+1 −
f(zn+1)

f ′(xn)
· f ′(yn) + f ′(xn)

3f ′(yn) − f ′(xn)
,

n = 0, 1, 2, . . . ,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

zn+1 = xn − f(xn)

2

(

1

f ′(xn)
+

1

f ′(yn)

)

,

xn+1 = zn+1 −
f(zn+1)

f ′(xn)
· f ′(yn) + f ′(xn)

3f ′(yn) − f ′(xn)
,

n = 0, 1, 2, . . . ,
∣
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∣

∣

∣

∣

zn+1 = xn − 2f(xn)

f ′(yn) + f ′(xn)
,

xn+1 = zn+1 − f(zn+1) ·
2f ′(yn)

f ′2(yn) + 2f ′(yn)f ′(xn) − f ′2(xn)
,

n = 0, 1, 2, . . . ,
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

zn+1 = xn − f(xn)

2

(

1

f ′(xn)
+

1

f ′(yn)

)

,

xn+1 = zn+1 − f(zn+1) ·
2f ′(yn)

f ′2(yn) + 2f ′(yn)f ′(xn) − f ′2(xn)
,
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n = 0, 1, 2, . . . , .

Rafig, Ahmad and Hussain [86] obtained some“new” sixth-order variants
of Newton’s method:
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∣
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∣

∣

zn = xn − 2f(xn)

f ′(xn) + f ′(yn)
,

xn+1 = zn − f(xn)

f ′(xn)
· f(zn)

f(xn) − (f ′(yn) − f ′(xn))(zn − xn)
,

n = 0, 1, 2, . . . ,
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∣
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∣

zn = xn − f(xn)

f ′

(

1

2
(xn + yn)

) ,

xn+1 = zn − f(xn)

f ′(xn)
· f(zn)

f(xn) − (f ′(yn) − f ′(xn))(zn − xn)
,

n = 0, 1, 2, . . . ,
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∣
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∣

zn = xn − f(xn)

2

(

1

f ′(xn)
+

1

f ′(yn)

)

,

xn+1 = zn − f(xn)

f ′(xn)
· f(zn)

f(xn) − (f ′(yn) − f ′(xn))(zn − xn)
,

n = 0, 1, 2, . . . ,
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∣

∣

∣

∣

zn = xn − f(xn)

2









1

f ′(xn)
+

1

f ′

(

1

2
(xn + yn)

)

− f ′(xn)









,

xn+1 = zn − f(xn)

f ′(xn)
· f(zn)

f(xn) − (f ′(yn) − f ′(xn)) (zn − xn)
,

n = 0, 1, 2, . . . .
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The third-order method

xn+1 = xn +
−f(xn) ±

√

f ′2(xn) − 2f(xn)f ′′(xn)

f ′′(xn)

n = 0, 1, 2, . . .

derived by Fang et al. [31] is a very old method described by Euler [29] and
Cauchy [11].

Popowski’s family of methods to obtain a simple root of the nonlinear
equation f(x) = 0 is given by

xn+1 = xn − (1 − e)
f ′

n

f ′′

n





(

1 − e

e − 1
un

f ′′

n

f ′

n

)

1
e
− 1



 ,

n = 0, 1, 2, . . .

where

f (i)
n = f (i)(xn), i = 0, 1, 2.

For e = −1, the method is due to Halley. For e = 2 the method is due to Cauchy.

For e =
1

2
, the method is due to Chebyshev.

Kou, Li and Wang [65] have modified Halley’s method as follows:

xn+1 = xn − un
θ2fn

(θ2 − θ + 1)fn − f(yn)
,

n = 0, 1, 2, . . . ,

where θ is a nonzero real number, and yn = xn − θun.

Kou and Li [58] developed an extension of Chebyshev’s method

xn+1 = xn − un

(

θ2 + θ − 1

θ2
+

f(yn)

θ2fn

)

,

n = 0, 1, 2, . . . .

In [75], Neta derived the following method

xn+1 = xn−(1−e)
θ2f2

n

2f ′

n(f(yn) − (1 − θ)fn)





(

1 − 2e

e − 1

f(yn) − (1 − θ)fn

θ2fn

)

1
e
− 1



 ,
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n = 0, 1, 2, . . . .

For other results, see Kou and Li [59], [60], Kou, Li and Wang [66], [67],
Grau and Diaz-Barrero [37], [38], Grau and Noguera [39], Sharma and Guha [91],
Chun and Ham [25], Costabile, Guattieri and Luceri [28], Gutierrez and Hernan-
dez [41], Amat, Busquier and Gutierrez [3], Ezquerro, Gutierrez, Hernandez and
Salanova [30], Grau [36], Bathi Kasturiarachi [8], Noor and Ahmad [77].

We note that the methodology of construction of the family of iterative
methods without employing derivatives for solving nonlinear equations can be
found in the book [83]

xn+1 = αxn−1 + (1 − α)xn

− (xn − xn−1)
α|f(xn−1)|βγsgnf(xn−1) + (1 − α)|f(xn)|γδsgnf(xn)

|B|δsgnB
,

where

B = |f(xn)|βsgnf(xn) − |f(xn−1)|γsgnf(xn−1)

and α, β, γ and δ are real parameters.

In the paper by Xu Liangzang and Mi Xiangjiang [68] refined conditions
of convergence for the difference analogue of Halley’s method

(13) xn+1 = xn − f(xn)

f(xn, xn−1) + f(xn, xn−1, xn−2)(xn − xn−1)
,

n = 0, 1, 2, . . .

for solving nonlinear equation in R1 are given.

In [49] the following nonstationary iteration algorithm without derivatives
is obtained:

(14)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2n+1 = x2n − (x2n−1 − x2n)
f(x2n)

f(x2n−1) − f(x2n)
,

x2n+2 = x2n+1 −
f(x2n+1)

f(x2n+1, x2n) + f(x2n+1, x2n, x2n−1)(x2n+1 − x2n)
,

n = 0, 1, 2, . . .

with order of convergence λ = 3.
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Two algorithms are almost universally known. For the former,

(15)

yn+1 = yn − 2f(yn)

δ + [δ2 − 4f(yn)f(yn, yn−1, yn−2)]
1

2

,

δ = f(yn, yn−1) + (yn − yn−1)f(yn, yn−1, yn−2),

n = 0, 1, 2, . . . ,

while for the latter,

(16) zn+1 = zn − f(zn)

[

1

f(zn, zn−1)
+

1

f(zn, zn−2)
− 1

f(zn−1, zn−2)

]

,

n = 0, 1, 2, . . . .

The iteration (15) differs only in form from Muller’s iteration over which
it enjoys a number of advantages (see [93]).

The following iterative nonstationary schemes can be obtained using the
approach given in [49]:

(17)

∣
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∣

∣

∣

∣

∣

∣

y2n+1 = y2n−1 + (y2n − y2n−1)
f(y2n−1)

f(y2n−1) − f(y2n)
,

y2n+2 = y2n+1 −
2f(y2n+1)

δ + [δ2 − 4f(y2n+1)f(y2n+1, y2n, y2n−1)]
1

2

,

δ = f(y2n+1, y2n) + (y2n+1 − y2n)f(y2n+1, y2n, y2n−1),

n = 0, 1, 2, . . .

(18)
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

z2n+1 = z2n−1 + (z2n − z2n−1)
f(z2n−1)

f(z2n−1) − f(z2n)
,

z2n+2 = z2n+1 − f(z2n+1)

[

1

f(z2n+1, z2n)
+

1

f(z2n+1, z2n−1)
− 1

f(z2n, z2n−1)

]

,

n = 0, 1, 2, . . . .

The methodological survey and constructing of multi-point nonstationary
algorithms with memory which are generated by estimations for f ′′ using f(x2n),
f(x2n−1), f ′(x2n), and f ′(x2n−1) are given in [49].
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The order of convergence of the iteration

(19)
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∣

x2n+1 = x2n − f(x2n)

f ′(x2n)
− f2(x2n)

2f ′3(x2n)

(

f ′(x2n) − f ′(x2n−1)

x2n − x2n−1

)

,

x2n+2 = x2n+1 −
f(x2n+1)

f(x2n+1, x2n) + f(x2n+1, x2n, x2n−1)(x2n+1 − x2n)
,

n = 0, 1, 2, . . .

is λ = 2 +
√

5.
Kou, Li and Wang [67] presented a family of variants of Ostrowski’s

method with order of convergence 7, given by:

(20)

yn = xn − f(xn)

f ′(xn)
,

H2(xn, yn) = (f(xn) − 2f(yn))−1 f(yn),

zn = yn − H2(xn, yn)(xn − yn),

Hα(yn, zn) = (f(yn) − αf(zn))−1 f(zn),

xn+1 = zn −
(

(1 + H2(xn, yn))2 + Hα(yn, zn)
) f(zn)

f ′(xn)
,

n = 0, 1, 2, . . . ,

where α ∈ R is a constant.
Bi, Ren and Wu [10] presented a new family of methods with order of

convergence 7 as follows:

(21)
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∣

∣

∣

∣

∣

yn = xn − f(xn)

f ′(xn)
,

zn+1 = yn − f(yn)

f ′(xn)
· f(xn) + βf(yn)

f(xn) + (β − 2)f(yn)
,

xn+1 = zn − f(zn)

f(zn, yn) + f(zn, xn, xn)(zn − yn)
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n = 0, 1, 2, . . . ,

where β is a constant.

Remark. The method (21) is based on King’s fourth-order method [53]:

(22)
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yn = xn − f(xn)

f ′(xn)
,

xn+1 = yn − f(yn)

f ′(xn)
· f(xn) + βf(yn)

f(xn) + (β − 2)f(yn)
,

n = 0, 1, 2, . . . .

Observe that in some cases the multi-point nonstationary algorithms are
two-sided algorithms.

D. Jiang and D. Han [50] proposed one construction of rational iterative
algorithms for solving nonlinear equations.

Chebyshev’s classical method for solving nonlinear equation is written as:

xi+1 = xi − ui

m
∑

j=0

u
j
iYj,

i = 0, 1, 2, . . . ; m = 0, 1, . . . ,

where

Yj =
(−1)j

(j + 1)!
(f ′

i)
j+1

g
(j+1)
i , ui =

fi

f ′

i

,

fi = f(xi), Y0 = 1; gi = g(yi)

and g is the inverse function of f .

In [4] Andreev and Kyurkchiev obtained the following two-sided analog
of Chebyshev’s method for a given integer positive number m:

T1(xi) = xi − ui

m
∑

j=0

u
j
iYj,

T2(xi) = xi − ui





m
∑

j=0

u
j
iYj + 2um+1

i Ym+1



 ,
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i = 0, 1, 2, . . . ; m = 0, 1, . . .

with order of convergence λ = m + 2, i.e,

(T1(xi) − ξ) (T2(xi) − ξ) ≤ 0,

|T1(xi) − ξ| = O
(

q(m+2)i
)

,

|T2(xi) − ξ| = O
(

q(m+2)i
)

,

0 < q < 1; i = 0, 1, 2, . . . .

Nowadays we witness the rediscovery of some two-sides and interval iter-
ation algorithms.

We will point out that the methodology of construction of these or similar
two-sided, interval and rational iterative methods with high order of convergence
for solving nonlinear equations is known (see [83], [5]).

2. Main results. Only one passing glance over the list at the beginning
of this article shows in what direction scientific investigations are made:

— “one-parameter family of third-order of convergence methods for solv-
ing nonlinear equations”;

— “two-parameter family of third-order of convergence methods for solv-
ing nonlinear equations”;

— “three-step iterative methods”;

— “multi-point methods”;

— “construction of rational iterative algorithms”;

— “predictor-corrector methods”;
— “leap-frogging methods”;

— “modifications by the method of undetermined coefficients”;

— “iterative methods without derivative”;

— “iterative methods free from second derivative”;

— “iterative methods with fourth-order of convergence”;
— “iterative methods with fifth-order of convergence”;

— “iterative methods with sixth-order of convergence”;

— “iterative methods with seventh-order of convergence”;

— “iterative methods with eight-order of convergence”.
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In this fact there is nothing unnatural if for every one of the offered
methods with convergence rate λ = 3, 4, 5, 6, 7, 8 the index of effectiveness and
complexity in Traub – Wojnyakowski – Wassilkowski sense was investigated.

Unfortunately in most of the cited papers profound investigations are not
presented in this direction and thus it has not become clear what advantages and
disadvantages of proposed algorithms are.

Here we give a methodological construction of nonstationary algorithms
with a raised speed of convergence.

We will pose the following problem:

Let us construct an iteration procedure (with memory) with order of
convergence λ = 10 using:

a) a system of two initial approximations x−1 and x0;

b) information about f and f ′.

For solving this task it is appropriate to use the following basic fourth-
order IF

ϕ(x) = x − a1ω1(x) − a2ω2(x) − a3ω3(x),

where

ω1(x) =
f(x)

f ′(x)
, ω2(x) =

f(x)

f ′(x + βω1(x))
, ω3(x) =

f(x)

f ′(x + γω1(x) + δω2(x))

was proposed by Traub [93].

Let

a1 = a2 =
1

6
; a3 =

4

6
; β = −1; γ = δ = −1

4

then

ϕ(x) = x − f(x)

6f ′(x)
− f(x)

6f ′

(

x − f(x)

f ′(x)

) − 4f(x)

6f ′









x − f(x)

4f ′(x)
− f(x)

4f ′

(

x − f(x)

f ′(x)

)









.

It is also proper to use well-known multi-point algorithm (see, [93])

xn+1 = xn − f(xn)

f ′(xn)
− f2(xn) (2f ′(xn) + f ′(xn−1) − 3f(xn, xn−1))

f ′3(xn)(xn − xn−1)

n = 0, 1, 2, . . . .
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Consider the following iterative nonstationary algorithm for solving the
nonlinear equation f(x) = 0:
(23)

x2n+1 = x2n − f(x2n)

f ′(x2n)
− f2(x2n) (2f ′(x2n) + f ′(x2n−1) − 3f(x2n, x2n−1))

f ′3(x2n)(x2n − x2n−1)
,

x2n+2 = x2n+1 −
f(x2n+1)

6f ′(x2n+1)
− f(x2n+1)

6f ′

(

x2n+1 −
f(x2n+1)

f ′(x2n+1)

)

− 4f(x2n+1)

6f ′









x2n+1 −
f(x2n+1)

4f ′(x2n+1)
− f(x2n+1)

4f ′

(

x2n+1 −
f(x2n+1)

f ′(x2n+1)

)









,

n = 0, 1, 2, . . . .

Here f(x, y) denote the finite difference. Let

ǫi = xi − ξ, i = −1, 0, 1, . . . ; Ak(ξ) =
f (k)(ξ)

k!f ′(ξ)
.

It is well known that for the error ǫi [93] is valid

(24)

ǫ2n+1 ∼ A4(ξ)ǫ
2
2nǫ2

2n−1,

ǫ2n+2 ∼ 1
3A3

2(ξ)ǫ
4
2n+1,

where ∼ denotes the asymptotical equation when n → ∞.

Let
K = max

{

|A4(ξ)|, |13A3
2(ξ)|

}

,

d2n−1 = K
1

3 |ǫ2n−1|,

d2n = K
1

3 |ǫ2n|
and let d > 0, and x−1 and x0 be chosen so that the following inequalities

d−1 = K
1

3 |x−1 − ξ| ≤ d < 1,

d0 = K
1

3 |x0 − ξ| ≤ d < 1
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hold true.
From (24), we have

(25)
d2n+1 = K

1

3 |ǫ2n+1| ≤ K
1

3 Kǫ2
2nǫ2

2n−1 = K
2

3 ǫ2
2nK

2

3 ǫ2
2n−1 = d2

2nd2
2n−1,

d2n+2 = K
1

3 |ǫ2n+2| ≤ K
1

3 Kǫ4
2n+1 = d4

2n+1.

Our results concerning the order of convergence generated by (23) are
summarized in the following theorem.

Theorem. Assume that the initial approximations x0, x−1 are chosen
so that d−1 ≤ d < 1 and d0 ≤ d < 1. Then for the error of the sequences {x2n}∞n=0

and {x2n−1}∞n=0 determined by (23), we have

(26)
d2n−1 ≤ d4.10n−1

,

d2n ≤ d16.10n−1

, n = 1, 2, . . .

and the order of convergence of the iteration (20) is λ = 10.

P r o o f. The proof is by induction with respect to the iteration number
n. For n = 0, from (25), we find

d1 ≤ d2.d2 = d4,

d2 ≤ d16

and (26) is fulfilled.
Let (26) be fulfilled for n ≤ m. For n = m + 1, from (25) and (26), we

have

d2(m+1)−1 = d2m+1 ≤ d2
2md2

2m−1 ≤ d2.16.10m−1+2.4.10m−1

= d40.10m−1

= d4.10m

,

d2(m+1) = d2m+2 ≤ d4
2m+1 < d16.10m

which completes the induction.
On the other hand,

d2n−1 = K
1

3 |ǫ2n−1|,

d2n = K
1

3 |ǫ2n|
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and equation (26) can be written as

|ǫ2n−1| ≤ K−
1

3 d4.10n−1

,

|ǫ2n| ≤ K−
1

3 d16.10n−1

, n = 1, 2, . . . ,

and the order of convergence of iteration (23) is equal to 10.

Thus, the theorem is proved. �

3. Numerical examples. We used the test functions

f(x) = 10xe−x2 − 1
f1(x) = x3 + 4x2 − 15
f2(x) = sin x − 1

2x

as Bi, Ren and Wu [10] with initial approximation x0 = 1.8 (for f(x)); x0 = 2.
(for f1(x)) and x0 = 2. (for f2(x)) for comparison of various algorithms.

The following Table 1 is given in [10]:

Table 1

Newton’s method method (22) method (20) method (21)
f(x)

|xn − x∗| 4.42e-58 4.20e-237 4.84e-282 1.73e-337
|f(xn)| 1.22e-57 1.16e-236 1.34e-281 4.77e-337
f1(x)

|xn − x∗| 3.91e-55 4.87e-230 5.03e-276 4.18e-320
|f1(xn)| 8.23e-54 1.03e-228 1.06e-274 8.79e-320
f2(x)

|xn − x∗| 1.89e-80 6.25e-313 0.00e+00 0.00e+00
|f2(xn)| 1.54e-80 5.12e-313 3.00e-350 3.00e-350

Here x∗ is the exact root computed with 350 significant digits.

It may be remarked that for the comparison of various iterative methods,
the following principle should be applied [82]:

“Method A is superior to method B if A attains the same accuracy of
approximations as B but has less computational cost (expressed, say, by the
total CPU (central processor unit) time, or by the total number of function
evaluations).
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It is assumed that “pathological” examples (meaning the choice of “awk-
ward” functions or very inconvenient initial approximations) should be neglected.”

Using initial approximations x−1 = 1.5 and x0 = 1.6 (for the test function
f(x)) and the computational scheme (23), we receive the results shown in Table 2.

Table 2

n |x2n+2 − x2n+1| |f(x2n+2)|
0 0.0396 2.49e-7
1 3.27e-14 9.22e-55
2 4.41e-109 3.04e-434
3 4.80e-868 4.29e-3470

Using formula (23), we receive the root x∗

x∗ = 1.679630610428449940674920338837970397829008946378045524066483282

89497355427088761068810276830643502683679719165399983047220534523

96700757895643172911738713037666235788899591848426460257248419353

21561866784894372916713351798007472354475884295762479761489869577

01606999353050339025980077584126054444507048659462786597626187972

76104631691080255918147021224221142011456693559307546018430592201

23788922039887808526415271812414684245346400940297492834277578732

36969836193754437561134906857639417651729050332319925983174578145

55116823041740168839795781919418092440266447702216122498252029724

05533821478773277420684538180705516309305903317463947383916968348

58596822416779155823419229227428705255511037757952383989425365246

31030091974318263892244234515363234055318238743632572201702618794

50817211235617623858800370011531895554280591734055011872437151579

1150263789281982994066

with 866 significant digits after 4 iterations (see, Table 2).
For the test function f1(x) at the initial approximations x−1 = 1.4 and

x0 = 1.6, using the computational scheme (23), we receive the results shown in
Table 3.
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Table 3

n |x2n+2 − x2n+1| |f1(x2n+2)|
3 5.52e-839 4.95e-3354

For the test function f2(x) at the initial approximations x−1 = 1.8 and
x0 = 2., using computational scheme (23), we receive the results shown in Table 4.

Table 4

n |x2n+2 − x2n+1| |f2(x2n+2)|
3 1.43e-1026 5.e-4000

Obviously, the iteration (23) with order of convergence λ = 10 has good
computational effectiveness.

Is the method (23) really superior than the Ujevic’s method (8)?
Calculating the computational efficiency by Ostrowski’s formula, we ob-

tain
E(23) = 10

1

7 ≈ 1.389 > E(8) = 2
1

3 ≈ 1.26.
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