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DEVELOPMENT AND IMPLEMENTATION OF NURBS

MODELS OF QUADRATIC CURVES AND SURFACES∗

Emiliyan G. Petkov

Abstract. This article goes into the development of NURBS models of
quadratic curves and surfaces. Curves and surfaces which could be represen-
ted by one general equation (one for the curves and one for the surfaces) are
addressed. The research examines the curves: ellipse, parabola and hyper-
bola, the surfaces: ellipsoid, paraboloid, hyperboloid, double hyperboloid,
hyperbolic paraboloid and cone, and the cylinders: elliptic, parabolic and
hyperbolic. Many real objects which have to be modeled in 3D applications
possess specific features. Because of this these geometric objects have been
chosen. Using the NURBS models presented here, specialized software mo-
dules (plug-ins) have been developed for a 3D graphic system. An analysis
of their implementation and the primitives they create has been performed.
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1. Introduction. The development of models appropriate for design in
3D graphic applications is a main topic of Computer-Aided Geometric Design
(CAGD), which is a basic field of Computer Graphics. CAGD is concerned with
finding mathematical methods and algorithms for representation of geometric
forms with curvilinear boundaries [3].

There are many models for representing curves and surfaces in CAGD
[2, 16] but for practical purposes they do not always suffice. This is because
consumers’ tasks and requirements continuously increase. This consumers’ appro-
ach constantly makes the development of new geometric models a topical goal. The
basic mathematical models of curves and surfaces that are used most in graphic
applications for design are Bezier, Spline, B-spline and NURBS (Non-Uniform
Rational B-Spline) [4, 6, 7, 15, 17, 18].

The main expectation towards 3D graphic applications is that they should
have geometric models and tools improving representation of real objects and
phenomena [1]. Because of this a group of objects having specific and important
features have been investigated. These are the curves and surfaces which could be
represented by one general equation (one for the curves and one for the surfaces).
The curves are: ellipse, parabola and hyperbola; the surfaces are: ellipsoid, pa-
raboloid, hyperboloid, double hyperboloid, hyperbolic paraboloid, cone; and the
cylinders: elliptic, parabolic and hyperbolic. The goal of this research is to offer
useful models, effective algorithms and techniques for their implementation as
graphic tools in 3D graphic systems.

This representation is not so developed with regard to the widespread
NURBS models of curves and surfaces in contemporary 3D graphic systems.

Fig. 1. Creation of a hyperbolic cylinder as a NURBS

surface when standard techniques are applied
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Furthermore, most of the quadratic surfaces do not exist as graphic tools in these
applications.

3D graphic systems have tools for creating ellipses and the following
quadratic surfaces: sphere, cone and circular cylinder. In some applications these
objects are represented parametrically, so they cannot be modified; in others (for
example: Autodesk Maya) there is a NURBS representation. In those applications
where NURBS representation does not exist, the surfaces must be converted into
NURBS (if the system has such a possibility). But this conversion is a very
expensive process with regard to the resources of the computer system.

There are some applications that offer techniques for building almost all
curves and surfaces mentioned above but the creation is very slow and complicated.
For example: if a patch of a hyperbolic cylinder is needed, then an arc of a
hyperbola is built by an intersection of a circular cone with a plane. By its
extruding, a surface is obtained. Then the surface is reorganized to Editable Patch
and then to NURBS surface (Fig. 1). In this way, the generators1 are created by
several techniques, the steps for building the desired surfaces are many and the
NURBS surfaces have many control vertices, which makes modeling difficult.

Thus the final goal of this research is for NURBS models of the quadratic
curves and surfaces to be developed and for these models to be appropriate for
development of software tools (plug-ins) that represent graphic primitives for the
existing 3D graphic systems.

The quadratic surfaces have been investigated with regard to their NURBS
representation and have been separated in three groups:

– Rotationally constructed: ellipsoid (E), paraboloid (P), hyperboloid (H),
double hyperboloid (DH) and cone (C);

– Cylinders: elliptic cylinder (EC), parabolic cylinder (PC), hyperbolic cylin-
der (HC);

– Hyperbolic paraboloid (HP).
Several requirements have emerged with regard to this representation:

• Curves and surfaces will be given by their parametric equations.
• The new models that are developed as a part of this research should allow

local modification.
• The new NURBS models should be appropriate for the development of

graphic tools.

2. Nurbs curves and surfaces. To specify a B-spline function, a
special set of knots (knot-vector) is chosen. Every curve approximates points called

1Curves through which surfaces are build.
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control vertices which form a control polygon (Fig. 2). In [23] a definition of a B-
spline function of degree r is given but the most often used are the normalized
B-spline functions [15]:

(1)

Ni,r(t) =
t − ti

ti+r − ti
Ni,r−1(t) +

ti+r+1 − t

ti+r+1 − ti+1

Ni+1,r−1(t),

Ni,0(t) =

{
1 ti ≤ t ≤ ti+1

0 t /∈ [ti, ti+1]
.

Here is the parametric equation of a rational B-spline curve

(2) γ(t) =

n−1∑

i=0

PiwiNi,r(t)

n−1∑

j=0

wjNj,r(t)

,

where Pi are the control vertices with weights wi and tj are m + 1 knots. If the

knot-vector is T =

{

0, . . . , 0
r+1

, tr+1, . . . , tm−r−1, 1, . . . , 1
r+1

}

, then γ(t) passes trough

the first and the last control points.

2.1. General model of a NURBS curve. A NURBS curve of degree
r is a rational B-spline curve of degree r specified by Eq. (2) but defined upon a
non-uniform knot-vector (Fig. 2). Definitions, all characteristics and the geometric
properties of the NURBS curves can be seen in [15]. Introducing the piecewise

Fig. 2. A NURBS curve (wi = 1.0, i = 0, . . . , 6, i 6= 2; w2 = 9.0)
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rational basis functions

(3) Rr
i (t) =

Ni,r(t)wi

n−1∑

j=0

wjNj,r(t)

the curve can be written as

(4) γ(t) =

n−1∑

i=0

Rr
i (t)P i.

2.2. General model of a NURBS surface. A NURBS surface (Fig. 3)
of degree p in direction u and degree q in direction v is a bi-variate vector-valued
piecewise rational function [15] of the form

(5) S(u, v) =

n∑

i=0

m∑

j=0

Ni,p(u)Nj,q(v)wi,jPi,j

n∑

i=0

m∑

j=0

Ni,p(u)Nj,q(v)wi,j

, 0 ≤ u, v ≤ 1.

Fig. 3. A NURBS surface

The {Pi,j} form the bi-directional control net, the {wi,j} are the weights
and the {{Ni,p(u)} , {Nj,q(v)}} are the non-rational B-spline basis functions defi-

ned on the knot vectors U =






0, . . . , 0
︸ ︷︷ ︸

p+1

, up+1, . . . , ur−p−1, 1, . . . , 1
︸ ︷︷ ︸

p+1






and

V =






0, . . . , 0
︸ ︷︷ ︸

q+1

, vq+1, . . . , vs−q−1, 1, . . . , 1
︸ ︷︷ ︸

q+1






where p = n+p+1 and s = m+ q +1.



430 Emiliyan G. Petkov

Introducing the piecewise rational basis functions

(6) Rp,q
i,j (u, v) =

Ni,p(u)Nj,q(v)wi,j
n∑

k=0

m∑

l=0

Nk,p(u)Nl,q(v)wk,l

the surface can be written as

(7) S(u, v) =
n∑

i=0

m∑

j=0

Rp,q
i,j (u, v)Pi,j .

3. Development of nurbs models of the quadratic curves.
Defining an arc of a quadratic curve (ellipse (ε), parabola (π) or hyperbola (χ))
is done by the values of the parameters from its parametric equations. More
on the quadratic curves can be seen in [21, 24]. The curves are examined in an
orthogonal coordinate system K = {O,~e1, ~e2, ~e3} in R

3. This is because they have
to be implemented in a 3D graphic system as graphic primitives.

3.1. The NURBS representation. The NURBS representation of a
curve is made when the positions of the control vertices and their weights are
determined in the NURBS model. Thus a NURBS curve can be easily subdivided.
This provides a possibility for modification of different parts of it. When some
parts are changed the others preserve the form of the quadratic curve and their
specific features.

3.1.1. Representing an arc of an ellipse by a NURBS curve.A continuous
arc γε (Fig. 4) from ε is represented in [11] by a quadratic NURBS curve γN

ε .
It is done when a unit-circle arc c is represented by a NURBS curve first. γε is

Fig. 4. Representing an arc of an ellipse by a NURBS curve
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determined by a, b, αs and αe. γN
ε is of a type of the curve from Eq. (8). The

parametric equation contains the requirement α ∈ [0; 2π] but in this research α
is allowed to vary in the range [−mf ; +mf ], mf -max float.

(8) γ(t) =

n−1∑

i=0

R2
i (t)P i.

The weights of the control vertices Pi and the values of the knots-vector
which determine this curve can be seen in [11]. Some examples of ellipse-arcs can
be seen in Figure 5.

Fig. 5. A full NURBS ellipse; an arc from −45◦ to 405◦ and the positions of the end
points were changed; an arc from 210◦ to 430◦

3.1.2. Representing an arc of a parabola by a NURBS curve. Let us deter-
mine the point Ps(xs, ys, 0) (start point) and ue determine the point Pe(xe, ye, 0)
(end point) from π (Fig. 6). Thus varying the parameter u from us to ue in the

Fig. 6. Representing an arc of parabola by a NURBS curve
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parametric equation of the curve an arc of π is obtained. Let this arc be δπ. In [10]
a proposition is given which proves that the graphics of δπ is identical with the
graphics of a NURBS curve β specified by Equation (4) for r = 2, a knot-vector
of the following type T = {0, 0, 0, 1, 1, 1} and control points: Ps = (u2

s, 2pus),
P1 = (ue((ue − us)

2(ue + us) − ue), p(ue − us)
2(ue + us)), Pe = (u2

e, 2pue) with
weights w0 = w1 = w2 = 2p.

Then β is reorganized to a NURBS curve γN
π (such a technique is given

in [10]). γN
π is defined upon a knot-vector of type T = {0, 0, 0, t1, t1, t1, . . . , tm−1,

tm−1, tm−1, 1, 1, 1} and control points Pj , j = 0, . . . , 2m. Thus γN
π contains m

parts that we can modify locally. NURBS parabolas are shown in Figure 7.

Fig. 7. A NURBS parabola (p = 40, u ∈ [−60; 60]); the positions of the end points were
changed; an arc for u ∈ [−30; 60]

3.1.3. Representing an arc of a hyperbola by a NURBS curve. An arbitrary
arc from χ (Fig. 8) is represented in [12] by a quadratic NURBS curve γN

χ . Let
this arc be χβ defined by αB and αL (start and end angles). In [12] the following
proposition is proved: If an arc χβ from χ is given by the point B obtained for the

Fig. 8. Representing an arc of hyperbola by a NURBS curve
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value of an angle αB and the point L obtained for the value of an angle αL, where

|αB | > |αL| and αB , αL ∈
(

3π

2
; 2π

)

∪
[

0;
π

2

)

or αB , αL ∈
(

π

2
;
3π

2

)

, then the

graphics of χβ and the graphics of the quadratic NURBS curve β defined upon a
knot-vector of type T = {0, 0, 0, 1, 1, 1} with control points:

γ:







Mw
0 = ( a, b. sin αB , cos αB)

M0w
0 = ((1 − t∗).a + sign(cos αB).t∗.a. cos αB , (1 − t∗).b.sinαB , w. cos αB)

M1w
0 = ( a, b. sin αL, cos αL)

,

where w = (1 − t∗) + t∗. (sign(pB) ((1/pB) + pB) − 1), pB = cos αB , t∗ =
p

1 + p
,

p =

√

|M0Q|
|QM2|

, are identical.

Fig. 9. A NURBS hyperbola (a = 50, b = 10, from 290◦ to 70◦); the positions of the end
points were changed; an arc from 315◦ to 70◦

Then β is reorganized to a NURBS curve γN
χ (such a technique is given

in [12]). γN
χ is defined upon a knot-vector of type T = {0, 0, 0, t1, t1, t1, . . . , tm−1,

tm−1, tm−1, 1, 1, 1} and control points Pj , j = 0, . . . , 2m. Thus γN
χ contains m

parts that can be modified locally. NURBS hyperbolas are shown in Figure 9.

4. Development of NURBS models of the quadratic surfaces.

Defining a patch of a quadratic surface is done by the values of the parameters
from its parametric equations.

4.1. Analytic representation of the surfaces

The quadratic surfaces discussed here are ruled and revolved. A classifica-
tion and their characteristics can be seen in [24, p. 172–182]. Here only two final
theorems are quoted:
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Theorem 4.1. The real revolved surfaces of second degree with rotational
axes Oz are: sphere (ellipsoid at a = b = c); ellipsoid at a = b; paraboloid at
a = b; hyperboloid at a = b; double hyperboloid at a = b; cone at a = b; elliptic
cylinder at a = b.

Theorem 4.2. The real ruled surfaces of second degree are: cone, elliptic
cylinder, parabolic cylinder, hyperbolic cylinder, hyperboloid and hyperbolic para-
boloid.

4.2. Analysis of the surfaces. The surfaces represented in conical
forms are considered in a right orthogonal coordinate system K = {O,−→e1 ,−→e2 ,−→e3}
(K = Oxyz).

4.2.1. Building on the rotation. The surfaces E, P , H, DH and C are
discussed here. Applying a method of metric classification convenient scalar-
parametric equations of surfaces are obtained. In [14,15] definitions, theorems,
methods of metric classifications and studies of these surfaces can be seen. The
graphics of the five surfaces are shown in Figure 10.

Fig. 10. E – ellipsoid; P – paraboloid; H – hyperboloid; DH – double hyperboloid; C -
cone; and generators: ε – ellipse, χ – hyperbola, π – parabola, l – straight line

The intersections of these surfaces with the planes

αt : z = t (‖ Oxy) , βp : y = p (‖ Oxz) , γq : x = q (‖ Oyz)

give information on how the surfaces could be built. By intersecting E, P , H,
DH and C (at a = b) with βp : y = 0 the generators are obtained. These curves
are parts of: ellipse (ε) at E(a = b), hyperbola (χ) at H(a = b) and DH(a = b),
parabola (π) at P (a = b) and straight line (l) at C(a = b) (Fig. 10). By intersecting
any of the surfaces with αt in these cases circles are obtained. Therefore, each of
these surfaces can be constructed by rotation of the generators around Oz.

4.2.2. Cylindrical surfaces. The quadratic surfaces are presented analyti-
cally by one general equation [22]. When a metrical classification is made (to
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put them into a standard position in an orthogonal coordinate system), the
convenient parametric equations are obtained [5, 22]. In [24] definitions, theorems
and methods for metrical classifications and investigations of the cylindrical sur-
faces (Fig. 11) can be seen.

Fig. 11. The cylinders EC, HC, PC and their generators ε – ellipse, χ – hyperbola, π –
parabola

The intersections of these surfaces with the planes

αt : z = t (‖ Oxy) , βp : y = p (‖ Oxz) , γq : x = q (‖ Oyz)

give information on how the surfaces could be built. By intersecting EC, HC and
PC with αt the generators which are ellipse (ε), hyperbola (χ) and parabola (π)
are obtained (Fig. 11 [24]), and with βp and γq straight lines which are parallel to
Oz are obtained. Therefore, by a ruled movement of the generators in a parallel
to Oz direction, every one of the cylinders could be built.

4.2.3. Hyperbolic paraboloid. The point O = HP ∩Oxy is called vertex of
the hyperbolic paraboloid. In [22] we can find a study of the sections of the HP
with the plains

αt : z = t (‖ Oxy) , βp : y = p (‖ Oxz) , γq : x = q (‖ Oyz)

and draw conclusions on how they part HP . It is very important to look at how
βp and γq part HP .

The sections HP ∩ βp : y = p are the parabolas

(9) πp : x2 = 2a2

(

z +
p2

2b2

)

which are located in βp on the direction of ‖ Oz+ and have vertices Fp

(

0, − p2

2b2

)

.
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The sections HP ∩ γq : x = q are the parabolas

(10) πq : y2 = −2b2

(

z − q2

2a2

)

that are located in γq on the direction of ‖ Oz− and have vertices Gq

(

0,
q2

2a2

)

.

Fig. 12. Hyperbolic paraboloid – HP

4.3. The NURBS representation. For the construction of NURBS
models of the surfaces the NURBS models of the curves are used. The curves are
used as generators. Every NURBS model of a surface is developed by means of
the parameters of its parametric equations.

4.3.1. Representing E, P , H, DH and C by bi-quadratic NURBS surfaces
The surfaces of E, P , H, DH and C can be constructed using their special

cases (E at a = b и a = b = c (sphere (S)); P at a = b; H at a = b; DH at a = b
and C at a = b) by revolving the appropriate generators [14]. After the generators
have been found they are represented as NURBS curves using the models given
in Section 3.

Let γ (v) =
m∑

j=0

Rj,2 (v) Pj be a NURBS curve of second degree defined

under the knot vector V . The curve will be revolved around an axis. γ (v) is set
to lie in the Oxz plain. The curve has n + 1 control vertices Pj (xj, yj , zj) with
weights wj and a knot vector V = {0, 0, 0, v1, v1, v2, v2, . . . , vk, vk, 1, 1, 1}. Now
γ (v) is revolved around the Oz axis. As a result a surface is obtained. Let this
surface be S (u, v). Then S (u, v) must have the following features:

1) for fixed ū, S (ū, v) is the curve γ (v) revolved around the Oz axis;

2) for fixed v̄, S (u, v̄) is an arc of a circle which lies in the plane that is
perpendicular to the Oz axis and its center lies on the axis.
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The knot vector U is chosen from the sort U = {0, 0, 0, u1 , u1, u2, u2, . . .,
uh, uh, . . . , 1, 1, 1} and the weights are chosen as wi = {1,

√
2
/
2, 1,

√
2
/
2, . . .,

1,
√

2
/
2, 1}, for i = 0, . . . , n. The weights are wi =

√
2
/
2, i = 1, 3, . . . , n − 1

because
√

2
/
2 is the value of the weight of the middle control vertex in the

representation of an arc of a circle. Then the surface has the form:

(11) S (u, v) =

n∑

i=0

m∑

j=0

Ri,2;j,2 (u, v) Pi,j.

The knot vectors are U and V . The control vertices and the weights are
determined as follows: for i = 0, Pi,j = P0,j = Pj . All control vertices Pi,j for a
fixed j lie in the plane z = zj . The weights are determined by the product of wj

with circular weights wi, i.e. for a fixed j, w0,j = wj, w1,j =
√

2
/
2wj , w2,j = wj ,

w3,j =
√

2
/
2wj , w4,j = wj , . . . , wn−1,j =

√
2
/
2wj , wn,j = wj.

Example: Construction of NURBS parabolic surface (NP-sur-
face).

NP-surface problem. Construct a parabolic surface P by a bi-quadratic
NURBS surface for given values of the parameters a, b > 0, u and v: u ∈
[us;ue] , us, ue ∈ J ⊆ R+, v ∈ [vs; ve] , vs, ve ∈ J ⊆ R.

A generator of this surface is placed in the Oxz plane. It represents an
arc of a parabola. This curve is represented by a NURBS curve of second degree
using a method given in Section 3.

When a rotational construction of a bi-quadratic NURBS surface is made
on the method given here a patch of a paraboloid is obtained at a = b. It is
determined by the parameters us, ue, vs, ve. Let the paraboloid at b = a be Pb=a.
Pb=a is represented by a bi-quadratic NURBS surface from the type of Eq. 11.

Then the paraboloid P is obtained by scaling Pb=a with a matrix of

transformation T =





1 0 0
0 b/a 0
0 0 1



: P = T.Pb=a. The control vertices of the

NURBS surface are obtained by Qi,j = T.Pi,j. Its equation is given by:

(12) PQ (u, v) =
n∑

i=0

m∑

j=0

Ri,2;j,2 (u, v) Qi,j.

Figure 13 shows two NURBS paraboloid-surfaces (NP-surfaces). They are
visualized with their control meshes which consist of the control vertices Qi,j.

The detailed construction of the other surfaces can be seen in [8, 14].
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a) b)

Fig. 13. a) NP-surface at a = 5, b = 3, us = 0, ue = 10 vs = 0◦, ve = 90◦;
b) NP-surface at a = 5, b = 3, us = 0, ue = 10 vs = 0◦, ve = 360◦

4.3.2. Representing EC, PC and HC by bi-quadratic NURBS surfaces. As
was mentioned above, every surface of a cylinder is a ruled surface. Therefore a
construction of a ruled bi-quadratic NURBS surface is given here as well.

Each one of the generators is presented as a NURBS curve that lies in the
plane Oxy and has n+1 control vertices Pi (xi, yi, zi), weights wi and a knot-vector
U = {0, 0, 0, u1, u1, u2, u2, . . . , uk, uk, 1, 1, 1}.

A patch of a cylinder is specified by the parameters of the parametric
equations for this surface and two parameters more are needed to set up the
beginning and the end of the surface along z. Let these parameters be ts and

te (ts, te ∈ R). Let γ (u) =
n∑

i=0

R2
i (u) Pi be the generator (NURBS curve in Oxy

obtained by one of the methods mentioned above) of the surface on the knot vector
U and with weights wi (Fig. 14a). Let ~Q = (0, 0, 1) if ts < te, and ~Q = (0, 0,−1)
if ts > te, and d = |ts − te|. Then Pi.z = ts, i = 0, . . . , n, setting the curve in the
start position (Fig. 14b). Let S (u, v) be the required surface obtained by sweeping
γ(u) to a distance d along ~Q. Denoting the parameter for the sweep direction by
v, 0 ≤ v ≤ 1, clearly S(u, v) must satisfy two conditions:

1) for fixed ū, S (ū, v) is a straight line from γ (ū) to γ (ū) + d~Q;

b) for fixed v̄, S (u, v̄) = γ (u) + v̄d ~Q =
n∑

i=0

R2
i

(

Pi + v̄d ~Q
)

. The desired repre-

sentation is S (u, v) =
n∑

i=0

2∑

j=o

R2,2
i,j (u, v) Pi,j.

The knot vectors are U and V , where V = {v0 = 0, 0, 0, v1, v1, . . . , vh−1,
vh−1, vh = 1, 1, 1}, h is the number of the segments, vl are chosen as follows:
f = 1/h, v0 = 0 and vl+1 = vl + f , for l = 0, . . . , h − 1, and U is the knot vector
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Fig. 14. A generator as a NURBS curve

of γ (u). The control vertices are Pi,0 = Pi and Pi,j, j = 1, . . . ,m, determined as
follows: xi,j = xi,0, yi,j = yi,0, zi,j = zi,0 + j.q, where q = d/2h. The weights are
wi,j = wi.

Fig. 15. A cylinder as a NURBS surface.

A bi-quadratic NURBS surface is constructed to represent the patch of a
cylinder. The final result can be seen in Figure 15 where a local modification of
the NURBS surface has been made as well.

In Figure 16 NURBS Parabolic Cylinders (NPC-surfaces) can be seen.

a) b)

Fig. 16. a) NPC-surface at p = 5, us = −10, ue = 30, ts = −30, te = 30;
b) NPC-surface at p = 5, us = −30, ue = 30, ts = −30, te = 30

In [13] a detailed construction of the cylindrical surfaces can be seen.
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4.3.3. Representing HP by a bi-quadratic NURBS surface. NHP-surface
Problem: Construct a surface of HP by a bi-quadratic NURBS surface for given
values of the parameters a, b > 0.

A hyperbolic paraboloid is a surface symmetrical with respect to the planes
Oxz and Oyz. In [24] it can be seen that at y = p (HP ∩ βp : y = p) all points
of HP form the parabolas πp. Then the values of x can be placed in the range
x ∈ [xs, xe]. At x = q (HP ∩ γq : x = q) all points of HP form the parabolas πq.
Then the values of y can be placed in the range y ∈ [ys, ye].

A hyperbolic paraboloid is delimited by the planes HP ∩ γxs : x = xs,
HP ∩γxe : x = xe, HP ∩βys : y = ys, HP ∩βye : y = ye. The two conditions xs =
−xe and ys = −ye determine completely the HP surface and ensue symmetry
with respect to the Oxz and Oyz planes. HP is created for x ∈ [xs, xe] and
y ∈ [ys, ye]. Thus the surface HPd which is derived from HP is built of parabolic
curves in the directions of x and y. It follows from this that HPd can be built as
a bi-quadratic NURBS surface which is given with the following equation:

(13) HPd(u, v) =

2∑

i=0

2∑

j=0

Ri,2,j,2 (u, v)Pi,j

HPd is defined under the knot-vectors U = {0, 0, 0, 1, 1, 1} and V =
{0, 0, 0, 1, 1, 1}, substituting direction x for direction u, and direction y for direc-
tion v in the NURBS basis.

The control vertices P0,0, P0,2, P2,0, P2,2 for the given values of xs, xe,
ys and ye are obtained. The control vertices P0,1, P1,0, P1,2, P2,1 are intersection
points of the parabolas πp=ys

, πp=ye
, πq=xs

and πq=xe
. HP goes through the point

O(0, 0, 0) and it is symmetrical with respect to this point. It follows from this
that HPd goes through the point O at u = v = 1/2. Then the control vertex
P1,1 (x1,1, y1,1, z1,1) is determined by S (1/2, 1/2) = (0, 0, 0) where x1,1, y1,1, z1,1

are only unknown quantities.

Here are the results for the control vertices Pij (xij , yij, zij), i, j = 0, 1, 2
which determine the NURBS surface:

P00 (xs, ys, dx − dy) , P01 (xs, 0, dx + dy) , P02 (xs, ye, dx − dy)

P10 (0, ys, −dx − dy) , P11

(

0, 0, −
∑

/

(
N1,2

(
1
2

))2

)

, P12 (0, ye, −dx − dy),

P20 (xe, ys, dx − dy) , P21 (xe, 0, dx + dy) , P22 (xe, ye, dx − dy),

where dx =
x2

s

2a2
, dy =

y2
s

2b2
and
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∑
= N0,2. (N0,2.z00 + N1,2.z01 + N2,2.z02) + N1,2. (N0,2.z10 + N2,2.z12)+

N2,2. (N0,2.z20 + N1,2.z21 + N2,2.z22) .

The shape of HP is determined by the parameters a and b from its
parametric equation. Thus it is constructed here by giving it a size: width (W )

in the direction of x and length (L) in the direction of y. Then xs = −W

2
,

xe =
W

2
, ys =

L

2
and ye = −L

2
. Thus a NURBS hyperbolic paraboloid surface

(NHP-surface) is constructed by giving the parameters a, b, W and L.
Figure 17 shows two NHP-surfaces which are obtained for different values

of the parameters.

a) b)

Fig. 17. a) NHP-surface at a = 2, b = 2, W = 50, L = 30;
b) NHP-surface at a = 2.8, b = 2.1, W = 47, L = 28

A subdivision is made in order to enable local modification of NHP. In [8]
an approach for subdivision of bi-quadratic NURBS surfaces is proposed.

5. Implementation of the developed nurbs models of the
quadratic curves and surfaces in a 3D graphic system. The efficiency,
reliability and functionality of the developed models and algorithms can be demon-
strated and evaluated in practice only if they are implemented in a 3D graphic
system for design. This is done through the development of software modules
(plug-ins) for a particular application. An analysis of their implementation and
the primitives they create has been made as well.

The tools for developing new features for the 3D graphic systems have been
investigated. Requirements have been set up with regard to the 3D graphic system
in which the new NURBS models might be implemented. A comparative analysis
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of 3D graphic systems for design has been utilized. Following that, Autodesk 3ds
Max [20] has been highlighted as a 3D graphic system for the implementation
of the NURBS models. This graphic application has a software development
kit (SDK) and script language (MaxScript) [19] for developing new specialized
software modules (SSM) which can represent new graphic primitives in the system.

5.1. Development of the SSM. For the implementation of the new
NURBS models in the SSM a number of routines have been developed [8]. There
are functions which evaluate the main control vertices, knot vectors and all other
control vertices of the given curve or surface. There are routines that create the
curve or the surface in the scene as well.

The specialized software modules contain a mechanism for collecting data
from the mouse. This is used for the interactive creation of the new NURBS
primitives [8].

3ds Max provides seven main views (projections) of the coordinate space.
This requires the creation of NURBS curves and surfaces to be made in any one
of them. This is done by determining in which view the user is modeling at that
time. After that the SSM create the curves and surfaces in the selected view. The
local coordinate system of the primitive (in which it must be created) is set by
the rule: the axis x points to the right, y to the top and z to the front (straight
to the observer).

The values of the parameters that define the arcs and the surfaces of the
geometric objects are delimited by boundary values given by their parametric
equations. In the implementation of the NURBS models and in the actual con-
struction of the NURBS primitives additional boundary values are set [8] for which
the SSM work correctly and objects are built accurately. Mainly that derives from
the specific features of the graphic system with regard to setting numbers and
dimensions in it.

5.2. Comparative analysis and demonstration of the work of
SSM. A comparative analysis has been made [8]. It includes a comparison between
the best possible techniques for constructing the NURBS curves and surfaces that
the system has and the work of the SSM and the primitives they create. The
following features have been scrutinized:

• Number of steps for the construction;

• Time for the construction;

• Possibilities for local modification of the NURBS primitives;

• Number of the control vertices;
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• Visualization quality of the NURBS surfaces.

Example 1. Creation of a NURBS parabolic curve.

The approach of finding a conic section of the given form should be
followed in order to obtain an arc of parabola [10]. In this case the curve will
be a spline curve. It must then be converted to a NURBS curve. The result (Fig.
18a) is obtained in 3 steps during the construction, in about 75 seconds. It is a
NURBS curve with 37 control vertices.

Figure 18b shows a NURBS parabolic curve created by the SSM NURBS
Parabolic Arc in: steps—1, time—5 seconds (15 times faster than the method
mentioned above) and subdivided into 2 segments, 5 control vertices. Furthermore,
the SSM can create curves for different values of us and u (Fig. 19a). The curves
can also be easily modified locally (Fig. 19b).

a) b)

Fig. 18. a) Parabola obtained by cut and converted into NURBS;
b) NURBS parabola plug-ins built with NURBS Parabolic Arc of values: p = 6,

us = −18, ue = 18, segments = 2

Example 2. Creation of a NURBS hyperbolic surface.

The construction of a hyperbolic surface as a NURBS surface can be made
after a spline curve of hyperbola is obtained in Autodesk 3ds Max. The operations
are parallel to those above for obtaining a parabola. The result is obtained in 6
steps during the construction, in about 240 seconds. The NURBS surface is a bi-
cubic with 4864 control vertices. Figure 20a shows the NURBS hyperbolic surface,
which is not sufficiently smooth. Because of the huge number of control vertices
the modeling of this surface will be very difficult.

Figure 20b shows a bi-cubic NURBS surface created by the SSM NURBS
Hyperboloid in: steps – 1, time – 5 seconds (48 times faster than the method
mentioned above). If the surface is created as a bi-quadratic without subdivision,
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a) b)

Fig. 19. NURBS plug-in parabola with a NURBS Parabolic Arc of values:
a) p = 30, us = −50, ue = 30, segments = 3;

b) p = 100, us = −50, ue = 50, segments = 6 and is locally modified

the control vertices will be 27 (around 180 times fewer). Figure 20b shows that
the surface is smooth enough and the visualization is excellent.

a) b)

Fig. 20. a) The bi-cubic NURBS hyperbolic surface with 4864 control vertices;
b) NURBS hyperboloid that has been created by the NURBS Hyperboloid plug-in for
the following values of the parameters: a = 40, b = 30, c = 20, αs = 300◦, αe = 60◦,

βs = 0◦, βe = 360◦, segments(U, V ) = 4

Figure 21 shows two images of a) a bi-quadratic and b) a bi-cubic NURBS
hyperboloids which are locally modified.

Example 3. Creation of a NURBS hyperbolic paraboloid.

A tool or an approach for construction of the surface of a hyperbolic
paraboloid has not been found.

Figure 22 shows two images of a) a bi-quadratic and b) a bi-cubic NURBS
hyperbolic paraboloid created by the NURBS Hyperbolic Paraboloid plug-in.
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a) b)

Fig. 21. NURBS hyperboloids that have been created by the NURBS Hyperboloid
plug-in for the following values of the parameters: a) a = 40, b = 40, c = 40, αs = 300◦,
αe = 60◦ βs = 0◦, βe = 75◦, segments(U, V ) = 4; b) a = 40, b = 30, c = 20, αs = 295◦,

αe = 65◦ βs = 0◦, βe = 360◦, segments(U, V ) = 8

a) b)

Fig. 22. NURBS hyperbolic paraboloids that have been created by the NURBS
Hyperbolic Paraboloid plug-in for the following values of the parameters: a) a = 3,

b = 2, W = 50, L = 30; segments(U, V ) = 1;b) a = 2, b = 2, W = 50, L = 30;
segments(U, V ) = 4

6. Conclusion. The presented models, algorithms and specialized soft-
ware modules (plug-ins) in this article allow the creation of quadratic curves and
surfaces as NURBS curves and surfaces with the following benefits:

• Number of steps in the creation process: 1 (where other approaches require
a minimum of 3 for curves and 5 or 6 for surface);

• Creation in real time—in about 5 seconds (which is from 9 to 48 times faster
than other approaches);
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• Excellent opportunity for local modification;

• Minimum number of control vertices: 3 for curves and 9 for surface, while
the other approaches achieve from 31 to 73 for curves and from 256 to 4864
(and more) for surface;

• High level of visualization after rendering (for surfaces).

Using these NURBS models of the quadratic curves and surfaces twelve
plug-ins for Autodesk 3ds Max 3D graphic system for design have been developed
[8]. They have been approved and adopted by “HighEnd3D” – Internet site for
high technologies and 3D applications. They are also available for download as
follows:

NURBS Conical Arcs 1.4 – http://www.highend3d.com/f/4368.html,

NURBS Quadratic Surfaces 1.2 – http://www.highend3d.com/f/4369.html.
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