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Abstract. The presented research is related to the operational calculus
approach and its representative applications. Operational methods are con-
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system Mathematica. The Heaviside algorithm for solving Cauchy’s prob-
lems for linear ordinary differential equations with constant coefficients is
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by I. Dimovski and S. Grozdev, is used for finding periodic solutions of
linear ordinary differential equations with constant coefficients both in the
non-resonance and in the resonance cases. The features of its program im-
plementation are described and examples are given. An operational method
for solving local and nonlocal boundary value problems for some equations
of the mathematical physics (the heat equation, the wave equation and the
equation of a free supported beam) is developed and the capabilities of the
corresponding program packages for solving those problems are described.
A comparison with other methods for solving the same types of problems is
included and the advantages of the operational methods are marked.

The paper presents the principal results of the author’s doctoral thesis
[29]. Since the most important common feature of the considered opera-
tional calculi is their immediate approach to finding solutions of initial and
boundary value problems, in [29] they are called direct operational methods.

1. Introduction. The main idea of operational calculus consists in
transformation of calculus problems to algebraic problems, treating the differen-
tiation operator as an algebraic object.

Some ideas of “symbolic” operational calculus come from the works of
Leibnitz, Euler, Cauchy and other mathematicians (see [30], [26], and also [31]).
Nevertheless, it is Oliver Heaviside (1850–1925) who is regarded as the father of
operational calculus. He was the first who successfully applied this method in his
research for solving initial value problems related to electromagnetic theory (see
[18]). But Heaviside did not established a sound mathematical theory and his
calculus was regarded by some scientists as inconsistent. The first justification
of his approach was done by means of the Laplace transformation. Much later
– in the middle of the last century – the Polish mathematician Jan Mikusiński
(1913–1987) made a return to the original operator viewpoint and developed
a direct algebraic approach to the Heaviside Operational calculus. He based his
calculus on the notion of convolution quotient, without referring it to the Laplace
transformation. His calculus is known as Mikusiński’s operational calculus. From
an historical point of view it is fair to call it the operational calculus of Heaviside–
Mikusiński.

Scientists in many countries have published works related to Mikusiński’s
operational calculus. Some of them are L. Berg, T. K. Boehme, I. H. Dimovski,
V. A. Ditkin, A. P. Prudnikov, K. Yosida, etc. Other names are mentioned in
some references, for example in [26]. Some recent results can be found in [34],
[35], [24] and others.
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In the presented work, mainly, results by I. H. Dimovski on the develop-
ment of operational calculi of Mikusiński’s type are used.

Operational calculus has been widely used for solving problems in math-
ematics, physics, mechanics, electrical engineering, etc. The algorithms and the
program tools described in this paper are intended to facilitate the use of the
operational calculus approach in applied research by means of a computer.

2. About the Operational Calculus of Heaviside-Mikusiński.
2.1. Main features. Mikusiński started from the classical Duhamel

convolution (see [22])

(2.1) (f ∗ g)(t) =

t
∫

0

f(t − τ)g(τ)dτ ,

considering the space C[0,∞) of the continuous functions on [0,∞) as a ring on R

or C. Further, he used the fact that due to the Titchmarsh theorem the operation
(2.1) has no divisors of zero. In the same way, as the ring Z of the integers is
extended to the field Q of the rational numbers, Mikusiński extended the ring
(C[0,∞), ∗) to the smallest field M containing the initial ring. We denote it by
M and name it Mikusiński’s field. The elements of M are convolution fractions

f

g
=

{f(t)}
{g(t)} ,

called “operators”.
In Mikusiński’s calculus each function f : [0,∞) → R is considered as an

algebraic object and the notation f = {f(x)} is used.
The basic operator in the Mikusiński approach is the integration operator

lf(t) =

t
∫

0

f(τ)dτ.

In fact, l is the convolution operator l = {1} ∗.
The algebraic analogue of the differentiation operator D =

d

dt
is the

convolution fraction

s =
1

l
,

which is not an operator in the proper sense of the word, but an algebraic object.
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The relation between the derivative f ′(t) and the product s {f(t)} is given
by the basic formula of Mikusiński’s operational calculus

(2.2)
{

f ′(t)
}

= s {f(t)} − f(0),

where f ∈ C1[0,∞), and f(0) is considered a “numerical operator”.
If the function f = {f(t)} has continuous derivatives up to n-th order for

0 ≤ t < ∞, a more general formula can be derived:

(2.3) f (n) = sn f −
n−1
∑

i=0

si f (n−1−i)(0), n = 1, 2, 3, . . .

In the next subsection we consider the use of this formula in the frames
of Mikusiński’s approach for solving initial value problems for linear ordinary
differential equations (LODE) with constant coefficients.

2.2. Solving initial value problems for LODE with constant co-
efficients using Mikusiński’s operational calculus approach. Let P (λ) =
a0λ

n +a1λ
n−1 + · · ·+an−1λ+an be a non-zero polynomial of n-th degree, where

the coefficients a0, a1, . . . , an are real or complex numbers.
Consider the following Cauchy problem (such problems are known as ini-

tial value problems as well):

(2.4) P

(

d

dt

)

y = f(t), y(0) = γ0, y′(0) = γ1, · · · , y(n−1)(0) = γn−1.

Using the main formulae (2.2)–(2.3) of the operational calculus of Mikusiński,
an “algebraization” of the problem could be made. Then problem (2.4) reduces
to the following single algebraic equation of the 1st degree:

(2.5) P (s)y = f + Q(s),

where

P (s) =
n
∑

j=1

aj sj, Q(s) =
n
∑

j=1





n
∑

k=j

an−k γk−j



sj−1 ,deg Q < deg P.

The formal solution of the above equation has the form

(2.6) y =
1

P (s)
f +

Q(s)

P (s)
.
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Further, we can decompose 1/P (s) and Q(s)/P (s) into elementary
fractions. These fractions can be interpreted as functions using formulae such as
([22]):

(2.7)

1

(s − α)n =

{

tn− 1

(n − 1)!
eα t

}

, n = 1, 2, . . .

1

s2 + β2
=

{

1

β
sin β t

}

, β > 0

s

s2 + β2
= {cos β t }

s − α

(s − α)2 + β2
=
{

eα t cos β t
}

, etc.

Thus we obtain the functions

(2.8) 1/P (s) = G(t), Q(s)/P (s) = R(t)

and the functional solution has the form

(2.9) y(t) = G(t) ∗ f(t) + R(t).

The last step is to compute the convolution product, denoted by ∗ in
(2.9).

We just described the main steps of the Heaviside algorithm for solv-
ing initial value problems for linear ordinary differential equations with constant
coefficients in an interval.

2.3. Initial value problems for systems of ordinary linear differ-
ential equations with constant coefficients. Consider a system of n linear
ordinary differential equations with constant coefficients:

(2.10)

P11

(

d

dt

)

y1 + P12

(

d

dt

)

y2 + . . . + P1n

(

d

dt

)

yn = f1(t)

P21

(

d

dt

)

y1 + P22

(

d

dt

)

y2 + . . . + P2n

(

d

dt

)

yn = f2(t)

. . .

Pn1

(

d

dt

)

y1 + Pn2

(

d

dt

)

y2 + . . . + Pnn

(

d

dt

)

yn = fn(t)
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with n unknown functions y1, y2, . . . yn, where Pij , i, j = 1, 2, . . . , n, are poly-
nomials with deg Pij = nij and fi(t) are continuous functions for t ≥ 0.

Let the following initial value conditions be given:

y
(i)
j (0) = gij , i = 0, 1, . . . , max(nij − 1), j = 1, 2, . . . , n

After the “algebraization” of the system (as in the case of one equation),
each of the equations assumes the form:

n
∑

j=1

(Pi,j(s)yi(t) + Qi,j(s)) = fi, i = 1, . . . , n,

where Pij(s) and Qij(s) are polynomial expressions of s.
In the special case of zero initial conditions (gij = 0 for all i, j), the

further considerations are more transparent. In this case we will have Qi,j = 0
for i, j = 1, 2, . . . , n.

Denoting by ∆ the coefficient’s matrix, we can write the following form
of the system:

(2.11) ∆(s) y = f,

where

y =





y1(t)
. . .

yn(t)



 f =





f1(t)
. . .

fn(t)





In the field M this is a system of n linear algebraic equations with n
unknowns and we can solve it in the usual way. Thus we can write

(2.12) y = ∆−1(s) f,

in the case of a non-singular matrix ∆(s) of the system (2.11).
The solution has the form:

(2.13) yk =
n
∑

j=1

Aj k(s)

det∆(s)
∗ fj, k = 1, 2, . . . , n,

where Ajk(s) are the adjoints of the elements Pj k of matrix ∆. The sign ∗ stands
for the Duhamel convolution.

Since we assumed that det∆(s) 6= 0, the rational expressions
Aj k(s)

det∆(s)
in

(2.13) can be decomposed into sums of elementary fractions and these fractions
can be interpreted as in the case of one equation.
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Let us denote Gj, k(t) =
Aj k(s)

det∆(s)
, obtained as the result of the interpre-

tation of the “multipliers” of fj, j = 1, 2, . . . , n in the convolution expressions
(2.13). Then the solution of the system will obtain the form:

yk(t) =
n
∑

j=1

Gj k(t) ∗ fj(t), k = 1, 2, . . . , n,

i.e.

yk(t) =
n
∑

j=1

∫ t

0
Gj k(t − τ)fj(τ) dτ, k = 1, 2, . . . , n.

We have a Duhamel-type representation of the solution and after compu-
tation of all integrals in it we will obtain the final solution of the system (2.10).

To conclude, we can note, that for solving an initial value problem for
a system of ordinary linear differential equations with constant coefficients, all
steps of the Heaviside algorithm can be performed in a similar way as in case
of solving the initial value problem for one equation. This holds not only in the
special case of zero initial conditions we considered above, but in the general case
as well.

Remarks. The Operational calculus of Mikusiński, presented in [22]
is built for continuous functions on the real half–line [0,∞). Later, in [23],
Mikusiński extended his calculus for continuous functions on a finite interval
[0, a] and the considered Heaviside algorithm holds as in the case of the infinite
interval [0, ∞). In addition, in the same paper it is shown that in the case of the
infinite interval this calculus can be replaced by the Laplace transformation, but
in the case of a finite interval the Laplace transformation is of no use. This means
that the operational calculus of Mikusiński can have wider application than the
Laplace transformation.

2.4. Implementation of the Heaviside algorithm.
2.4.1. General remarks. Our implementation of all steps of the Heav-

iside algorithm is described. Such a complete implementation of the algorithm
has not been published yet. The use of the system Macsyma at a step of the
algorithm is mentioned in [16].

Having in mind the kind of operations of the Heaviside algorithm and the
features of the computer algebra system Mathematica (see [32], [33]), we decided
to choose this system for the implementation of the algorithm. Thus an user of
the Heaviside algorithm will also be able to use all capabilities of this powerful
computing environment.
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2.4.2. Steps of the algorithm and their implementation. We will
repeat once again the successive steps of the Heaviside algorithm with consider-
ations of their implementation. The case of one equation will be considered in
more details.

Step 1. Algebraization of the problem. The developed program trans-
forms (2.4) into (2.5). The formula (2.3) and the initial values of (2.4) are applied
by means of Mathematica rules and functions.

Step 2. Formation of the polynomials P (s) and Q(s). They are selected
as coefficients to the entries of the unknown function of degree 1 and 0 in (2.5).

Having P (s) and Q(s), we have in fact the formal presentation (2.6) of
the solution.

Step 3. Factorization of the polynomial P (s). In light of section 2.2. we
need 1/P (s) and Q(s)/P (s) to be presented as sums of partial fractions. This
means that P (s) has to be factorized. Mathematica provides a function (named
Factor) which factors a polynomial over the integers. The syntax of this function
allows specifying an appropriate extension field, but in general we don’t know this
field. That’s why we combine the use of the Mathematica functions Solve and
NSolve (for solving the polynomial equation P (λ) = 0) and the function Factor
as well, thus obtaining a representation of P (s) as a product of factors, each of
which is a polynomial of first or second degree, raised to an integer positive
power. This process may not finish with success if some of the coefficients of
P (s) are parameters and at the same time deg P > 4. In this case the solving of
the problem (2.4) is aborted.

Step 4. Partial fraction decomposition of
1

P (s)
and

Q(s)

P (s)
. It is easy

to perform this step if the factorization process on the previous step is finished
successfully.

The Mathematica function Apart represents a rational expression as a
sum of terms with minimal denominators. After application of this function to

1

P (s)
and

Q(s)

P (s)
(where P (s) is in factored form), we obtain the partial frac-

tion decomposition of
1

P (s)
and

Q(s)

P (s)
. The use of function Apart only, without

performing Step 3, wouldn’t return such representations in some cases.

Step 5. Interpretation of the result of step 4. Each fraction in the

expressions
1

P (s)
and

Q(s)

P (s)
has to be interpreted as a function using formulae,

such as (2.7). We use the main part of the Mikusinski’s table (excluding the
special functions). The formulae are presented using Mathematica rules and ap-
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propriate pattern matching. For the cases, when the denominator is a second
degree polynomial, it is transformed before the application of the corresponding
formulae. If such a polynomial is raised to a (positive) power, convolution powers
are computed.

Special attention is paid to this step in order to achieve efficient uniform
interpretation of each fraction.

Step 6. Final form of the solution: y = G(t) ∗ f(t) + R(t).

In accordance with the introduced notation (2.8), G(t) is the result of the

interpretation of
1

P (s)
, and R(t) is the result of interpretation of

Q(s)

P (s)
. These

expressions are already obtained and we have the final representation of the
solution but one more computation has to be performed in it: the operation ∗
standing for the Duhamel convolution.

Step 7. Computation of the convolution product in the obtained form of
the solution. It is defined by a definite integral and the Mathematica function
Integrate is used for its computation. If the form of the result is not “nice” (due
to the right-hand side of the equation(s)), numerical integration can be used.

Step 8. Final result: either the solution or a message that the problem
can not be solved. We mentioned above (in the description of Step 3) when the
problem will not be solved in case of one equation. In case of solving the initial
value problem for a system of equations, a similar situation may occur. In addi-
tion, the problem will not be solved if det∆(s) = 0 (see (2.11) in subsection 2.3).

2.4.3. An illustrative example. We illustrate the considered steps of
finding the solution of an initial value problem by an example. The program
implementation of the Heaviside algorithm is used.

We have to solve the following initial value problem:

y(5)(t) − 2 y′′(t) − y′(t) + 2 y(t) =
et

2

{y(0) = 1, y′(0) = 0, y′′(0) = 0, y(3)(0) = 0, y(4)(0) = 0}

The result of the algebraization of the left-hand side of the given equation:

1 − s4 + 2 y − s y + s5 y − 2
(

−s + s2 y
)

Formation of the polynomials P and Q:

P = 2 − s − 2 s2 + s5

Q = 1 + 2 s − s4

Factorization of P :
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(−1 + s)2 (1 + s)
(

2 + s + s2
)

Decomposition of
1

P
:

1

8 (−1 + s)2
− 5

32 (−1 + s)
+

1

8 (1 + s)
+

6 + s

32 (2 + s + s2)

Decomposition of
Q

P
:

1

4 (−1 + s)2
− 9

16 (−1 + s)
− 1

4 (1 + s)
+

−2 − 3 s

16 (2 + s + s2)

Interpretation of
1

P
:

G =
1

8 et
− 5 et

32
+

et t

8

+
1

32









12 sin(

√
7 t

2
)

√
7 e

t
2

−
−7 cos(

√
7 t

2
) +

√
7 sin(

√
7 t

2
)

7 e
t
2









Interpretation of
Q

P
:

R =
−1

4 et
− 9 et

16
+

et t

4

+
1

16













−
4 sin(

√
7 t

2
)

√
7 e

t
2

+

3

(

−7 cos(

√
7 t

2
) +

√
7 sin(

√
7 t

2
)

)

7 e
t
2













Computation of the convolution product G(t) ∗ f :

1

1792

(

7 et (7 + 4 t (−5 + 2 t))−

e−
t
2

(

49 cos

(√
7 t

2

)

+ 13
√

7 sin

(√
7 t

2

))

+ 112 sinh(t)

)

Final solution:

y(t) =
1

1792

(

−504e−t − 903 et + 308 et t + 56 et t2
)

−

− 1

1792

(

385 e−
t
2 cos

(√
7 t

2

)

− 29
√

7 e
t
2 sin

(√
7 t

2

))
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Remarks. In the Heaviside algorithm the initial value conditions are
supposed to be given in the point 0. It is easy to develop an extension of the
algorithm allowing the initial value conditions to be given in point t0 6= 0.

2.4.4. Program package for the Heaviside algorithm. The program
implementation of the Heaviside algorithm we just described is developed as a
Mathematica program package. Its main function DSolveOC defines a successive
performance of all steps of the Heaviside algorithm. The call of this function is
similar to the call of the Mathematica function DSolve. The initial value problem
to be solved is given at the input and its solution (or a message that the solution
can not be obtained) is returned at the output.

Some additional operations are defined (for visualization of the solution
and some others) by means of options.

The following examples illustrate the use of the main function of the
package:

Example 1. Initial value problem for one LODE with constant coeffi-
cients

DSolveOC@8y’’’’’@tD + 2 y’’’@tD + y’@tD � Α t + Β Sin@tD + Γ Cos@tD,
y@0D � a0, y’@0D � a1, y’’@0D � a

y@tD ®
1

8
I4 I-4 + t2M Α + 8 Β + I16 Α + I-8 + t2M Β - 3 t ΓM Cos@tD + H3 Γ - t H-4 Α + 5 Β + t ΓLL Sin@tDM + a0 +

Sin@tD a1 + 2 a2 -
1

2
Ht Cos@tD - Sin@tDL Ha1 + a3

Example 2. Initial value problem for a system of LODE with constant
coefficients; an option for visualization of the solution is used
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2.4.5. Conclusion about the Heaviside algorithm, its implemen-
tation and experimental use. Comparing the Heaviside algorithm and its
implementation with classical algorithms and those implemented in Mathemat-
ica, the following notes can be made:

� the Heaviside algorithm gives a closed–form solution of an initial value
problem for a linear ordinary differential equation with constant coefficients or a
system of such equations in a direct way, without trying to find a special and the
general solution;

� an uniform approach is used both for homogenous and for non-homo-
genous equations;

� no special requirements are posed either to the right-hand side function
(as in the use of Laplace transformation) or on the interval where it is defined;

� during the experimental use of the package many examples were run
using the Heaviside algorithm, the Mathematica function DSolve and a program
providing the use of Laplace transformation and inverse Laplace transformation;
in many cases we obtained the same result, sometimes advantages of our package
were discovered; for some examples Mathematica provides a numerical solution
only, but we can obtain a closed–form solution; in the case when the right-hand
side is not Laplace transformable, we can solve the problem, etc.;

� in the case of solving an initial–value problem for a system of linear
ordinary differential equations, the problem will not be solved if the matrix of
the coefficients to the unknown functions is singular; (i.e. det∆(s) = 0 in (2.11));
using Mathematica, it is easy to compute the rank of this matrix and to express
in an appropriate way the solution of the algebraic system and afterwards to
interpret it, thus obtaining a “partial” solution of the initial–value problem;

� it was convenient to implement and test the algorithm in the Mathemat-
ica environment; its use in this powerful computing environment gives additional
possibilities to the users.

3. Extension of the Heaviside algorithm to a class of bound-
ary value problems for LODE with constant coefficients.

3.1. Periodic solutions of LODE with constant coefficients. An
auxiliary boundary value problem. An extension of the Heaviside–Mikusiński
operational calculus is developed by I. Dimovski and S. Grozdev (see [2, 11]) and
in the framework of this operational calculus an extension of the Heaviside algo-
rithm is proposed. It is intended for solving nonlocal initial value problems for
LODE with constant coefficients. This approach is used for obtaining periodic
solutions of such equations.
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Let’s consider again a non-zero polynomial with constant coefficients of
degree n:

P (λ) = a0λ
n + a1λ

n−1 + · · · + an−1λ + an

and the following ordinary linear differential equation with constant coefficients:

(3.14) P

(

d

dt

)

y = f(t), −∞ < t < ∞

We are looking for a periodic solution y(t) with period T of this equation,
i.e. a solution satisfying the identity:

(3.15) y(t + T ) = y(t), −∞ < t < ∞

An obvious necessary condition for the existence of a periodic solution of
(3.14) with period T is for the function f(t) to be periodic with period T, i.e. for
each t ∈ R:

(3.16) f(t + T ) = f(t)

The following theorem could be proven: A solution of (3.14) with peri-
odic right-hand side f(t) with period T is T-periodic if and only if the following
“boundary” conditions are satisfied:

(3.17) y(T ) − y(0) = 0, y′(T ) − y′(0) = 0, . . . y(n−1)(T ) − y(n−1)(0) = 0

This theorem allows the problem of obtaining periodic solutions of (3.14)
to be reduced to the problem of finding a solution of this equation in the interval
(−∞, ∞), satisfying the “boundary” conditions (3.17).

Further we reduce this problem to the following intermediate (auxiliary)
boundary-value problem:

P

(

d

dt

)

y = f(t), −∞ < t < ∞
T
∫

0

y (τ) dτ = α0, y(k)(T ) − y(k)(0) = αk+1, k = 0, 1, . . . n − 2.

3.2. Convolution of Dimovski. An operational method for solv-
ing the auxiliary problem. The Heaviside algorithm is developed for solving
initial value problems for LODE with constant coefficients and it can not be used
directly for finding periodic solutions of such equations.
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Kaplan (see [20]) uses finite Fourier transform for obtaining periodic so-
lutions (in a rather complicated way in the resonance case), Rosenvasser ([25])
also uses finite Fourier transform, Lurie in [21] uses Laplace transform. We use
an alternative direct approach, similar to those of Mikusiński, but using another
convolution, based on the operational calculus of Dimovski (see [2]) and related
to the nonlocal boundary value problem in C(R) :

y′ = f(x),

∫ T

0
y(τ)dτ = 0,

where T is a constant.
The solution

Lf(t) =

∫ t

0
f(τ)dτ − 1

T

∫ T

0

(
∫ τ

0
f(σ)dσ

)

dτ

is an analogue of the integration operator lf(t) =

∫ t

0
f(τ)dτ of Mikusiński’s

operational calculus.
The operational calculus of Dimovski for the operator L is an analogue of

the operational calculus of Mikusiński, but the following convolution of Dimovski
[2] is used:

(f
t∗ g)(t) = Φτ{

∫ t

τ

f(t + τ − σ)g(σ)dσ},

with an arbitrary linear functional Φ in C(R). In our case the functional

Φ{f} =
1

T

∫ T

0
f(τ)dτ is used. The convolution

(f
t∗ g)(t) =

1

T

∫ T

0

(
∫ t

τ

f(t + τ − σ)g(σ)dσ

)

dτ

has the property Lf(t) = {1} t∗ f.
Dimovski and Grozdev proposed (see [12]) a simpler convolution (without

using of repeated integrals):

(3.18)

(f ∗ g)(t) =
f(t)

T

∫ T

0
g(τ) dτ +

g(t)

T

∫ T

0
f(τ) dτ

− 1

T

∫ t

0
f(t − τ) g(τ) dτ − 1

T

∫ T

t

f(t + T − τ) g(τ) dτ ,
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for which {1} t∗ f = f .

The constant function {1} plays the role of a unity in the convolution
algebra ( C(R), ∗ ). The operator L has the following representation:

L{1} = t − T

2
, i.e. Lf =

{

t − T

2

}

t∗ f.

Further, convolution fractions of the form f/g are considered (with
f, g ∈ C[0, T ], g beeing a nondivisor of 0 of the operation (3.18)). The ring
of the continuous functions on (−∞, ∞) is extended to the smallest ring M,

containing the convolution fractions
f

g
with denominators which are nondivisors

of 0. The most important convolution fraction

S =
1

L

is considered as an algebraic analogue of d/dt.

The basic formula of the Operational Calculus of Dimovski is:

(3.19)
{

f ′(t)
}

= S {f(t)} − 1

T

T
∫

0

f(τ)dτ .

Here
1

T

T
∫

0

f(τ)dτ is considered as a constant function.

For f (n) the following formula can be derived from (3.19):

(3.20) f (n) = Snf − Sn

T

∫ T

0
f(τ)dτ −

n−1
∑

k=1

Sk

T

(

f (n−1−k)(T ) − f (n−1−k)(0)
)

For the case T = 1, the integral operator L is called by Dimovski and
Grozdev Bernoullian integration operator due to the following relation with
the polynomials of Bernoulli (see [2, 13]):

Ln{1} =
T n

n!
Bn

(

t

T

)

, n = 0, 1, 2, . . . ,

where Bn (t) is the polynomial of Bernoulli of degree n.
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Further we can follow the scheme of Mikusiński, using the convolution
(3.18) (see [28]) and taking into account the following differences:

1) The operation (3.18) has a unit element.
2) This operation has divisors of 0.

We mentioned above that the unity of the convolution algebra (C(R), ∗)
is the constant function {1}.

The eigenfunctions of L are divisors of 0 of (3.18) (see [2], sections 1.3.3
and 2.5). These functions can be found (see [2], section 2.5 and [12]) – they have

the form ϕn(t) = Ce
2πint

T , n ∈ Z \ {0}.
For the application of the new operational calculus it is important we to

have formulae for convolution fractions of the type
1

(S − λ)k
, k ∈ N. They exist

iff S − λ is a nondivisor of 0 and this is not true iff λ =
2πin

T
and n ∈ Z \ {0}

(see [2]).

Thus for each λ 6= 2πin

T
, n ∈ Z \{0} the following formulae hold:

(3.21)
1

S − λ
= − 1

λ
+

T et λ

eλ T − 1

(3.22)
S

S − λ
=

T λ et λ

eλ T − 1

Corollary. If λ 6= 2πin

T
, n ∈ Z \ {0}, more general formulae hold (for

each integer k ≥ 1):

(3.23)
1

(S − λ)k
=

1

(k − 1)!

∂k−1

∂λk−1

(

− 1

λ
+

T et λ

eλ T − 1

)

(3.24)
S

(S − λ)k
=

1

(k − 1)!

∂k−1

∂λk−1

(

T λ et λ

eλ T − 1

)

The formulae (3.21)–(3.24) are intended to be used for interpretation of
rational expressions in the extended Heaviside algorithm. For the purposes of the
program implementation of this algorithm additional formulae were derived–for
the case when the denominator is an integer power of a second degree polynomial.
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3.3. Non-resonance case. Let’s apply the Operational Calculus of
Dimovski, considered above, for solving the auxiliary problem

(3.25)

P

(

d

dt

)

y = f(t), −∞ < t < ∞
T
∫

0

y (τ) dτ = α0, y(k)(T ) − y(k)(0) = αk+1, k = 0, 1, . . . n − 2, .

formulated in section 3.1.

Using the formulae (3.19)–(3.20), we can make again an “algebraization”
of problem (3.25), thus reducing it to one algebraic equation of 1st degree:

(3.26) P (S)y = f + S Q(S),

where P (S) and Q(S) are polynomials of S and the degree of Q(S) is less than
the degree of P (S).

The formal solution of the above equation has the form

(3.27) y =
1

P (s)
f + S

Q(s)

P (s)
.

The above representation contains division by P (S) and this is possible

if P (S) is not a divisor of 0 in M, i.e. iff P

(

2πim

T

)

6= 0 for each m ∈ Z \ {0}.
This is the so–called non-resonance case.

Now we can state the main steps of the extended Heaviside algo-
rithm for solving the intermediate problem in the non-resonance case. They are
as follows:

1) Finding the roots λ1, λ2, . . . , λn of the equation P (λ) = 0.

2) Finding out that none of the roots have the form
2πim

T
with

m ∈ Z \ {0}.
3) Finding the polynomial Q(S).

4) Expanding
1

P (S)
and

Q(S)

P (S)
into a sum of partial fractions.

5) Interpretation of the fractions w =
1

P (S)
v = S

Q(S)

P (S)
as functions.

6) Representation of the solution in the form u = w ∗ f + v.
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In comparison with the classical Heaviside algorithm we have here an
additional step-this is step 2); on step 5) we have to use other interpretation
formulae (such as (3.21)–(3.24)); for computation of the operation ∗ on step (6)
we have to use the “new” convolution (3.18).

3.4. Resonance case. If the above condition λ 6= 2πin

T
, n ∈ Z \{0}

fails for one or more roots of P , we have the so-called resonance case and the
corresponding roots are called resonance roots.

Let’s denote with n1, n2, . . . , np all integer numbers, for which

P

(

2πink

T

)

= 0, k = 1, 2, . . . , p , and let Cn1, n2, ..., np be the subalgebra of

(C(R), ∗), such that the convolution (3.18) plays the role of multiplication in it.

It was mentioned above that the eigenfunctions of the operator L have

the form ϕn(t) = e
2πint

T , n ∈ Z \ {0}. It is shown in [13], that if f ∈ C[0, T ],
then

f ∗ {e 2πint
T } = χn(f) e

2πint
T , n = ±1, ±2, . . . ,

where

(3.28) χn(f) =
1

T

∫ 1

0
(e

2πint
T − 1)f(t)dt, n = ±1, ±2, . . . ,

is a complete system of multiplicative functionals. We call them Fourier coeffi-

cients of f with respect to
{

e
2πint

T

}

, n ∈ Z \{0}.
Due to a theorem proven in [13], at least one of the Fourier coefficients of

the function f has to be equal to zero in order for this function to be a divisor
of 0 in the algebra (C(R), ∗). One can prove that this condition is necessary as
well.

Let’s denote by L̃ the restriction of the operator L to Cn1, n2, ..., np . Then

instead of Lf = r ∗ f , for r(t) = t − T

2
in [0, T ], the following presentation in

Cn1, n2, ..., np will hold: L̃f = r̃ ∗ f, where

r̃(t) = r(t) −
p
∑

k =1

χnk
(r)e

2πinkt

T = t − T

2
−

p
∑

k =1

T

2πinkt
e

2πinkt

T .

We denote by Mn1, n2,...,np the ring of the convolution fractions of
Cn1,n2,...,np , whose denominators are nondivisors of 0 of the convolution (3.18).

Denote the algebraic inverse element of L̃ by S̃, i.e. S̃ =
1

L̃
.
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Two important theorems proven in [13], [12], and [2], are denoted here by
T1 and T2, respectively:

Theorem T1. The elements S̃ − 2πink

T
, k = 1, 2, . . . , p of the ring

Mn1, n2,...,np are reversible and

(3.29)
1

(S̃ − 2πink

T
)m

=







(−1)m−1

(

2πink

T

)m +
e

2πinkt

T

m!
Bm

(

t

T

)







∗

for m = 1, 2, . . . , where Bm is the polynomial of Bernoulli of degree m (the sign
∗ means a convolution operator).

Theorem T2. If P

(

2πink

T

)

= 0 for k = 1, 2, . . . , p and P

(

2πin

T

)

6= 0

for all other integer numbers n 6= 0, an necessary and sufficient condition for
solvability of (3.25) is:

(3.30)
1

T

∫ 1

0
f(t)

(

e
2πinkt

T − 1
)

dt = 0, k = 1, 2, . . . , p,

i.e. for the Fourier coefficients of f(t) with numbers n1, n2, . . . , np to be equal
to 0.

We can formulate now the algorithm for solving (3.25) in the resonance
case:

1) As in the non-resonance case, we can make an algebraization of the
problem, i.e. we can reduce it to a single equation but in Cn1, n2, ..., np :

(3.31) P (S̃) ỹ = f + Q(S̃).

2) We consider the homogenous BVP:

P

(

d

dt

)

y = 0,

∫ T

0
y(τ)dτ = 0, y(j)(T ) − y(j)(0) = 0, j = 0, 1, . . . n − 2.

It is equivalent to the equation P (S̃) y = 0 and its solutions have the
form:

y =
{

C1e
2πik1t

T + · · · + Cme
2πikmt

T

}

,

where C1, C2 . . . , Cm are constants.
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The solution of (3.25) has the form:

(3.32) y = ỹ +
{

C1e
2πik1t

T + · · · + Cme
2πikmt

T

}

,

where ỹ is the solution of (3.31).

3.5. Reducing the problem for obtaining periodic solutions of
LODE with constant coefficients to the auxiliary problem.

3.5.1. The case P (0) 6= 0. We are looking for a periodic solution of the
equation

P

(

d

dt

)

y = f(t), −∞ < t < ∞

i.e. for a solution satisfying the condition y(t + T ) = y(t).

This problem is equivalent to the BVP:

(3.33) P

(

d

dt

)

y = f(t), y(k)(T ) − y(k)(0) = 0, k = 0, 1, 2, . . . , n − 1.

The problem (3.33) differs from (3.25) by the lack of the boundary condi-

tion

∫ T

0
y(τ) dτ = α0 and the presence of the additional condition

y(n−1)(T ) − y(n−1)(0) = 0.

If P (0) 6= 0, then from (3.33) we can obtain α0 :

α0 =
1

P (0)

∫ T

0
f(τ) dτ,

i.e. in case P (0) 6= 0, the problem for obtaining periodic solution of the equation

P

(

d

dt

)

y = f(t) with period T is equivalent to the auxiliary problem:

(3.34)
P

(

d

dt

)

y = f(t),

∫ T

0
y(τ) =

1

P (0)

∫ T

0
f(τ) dτ

y(T ) − y(0) = 0, y ′ (T ) − y ′ (0) = 0, . . . , y(n−2)(T ) − y(n−2)(0) = 0

3.5.2. The case P (0) = 0. Let P (0) = 0, i.e. an = 0.

We consider the more general case when an−k+1 = · · · = an = 0 for
k ≥ 1.
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Then P (λ) = a0λ
n + a1λ

n−1 + · · · + an−kλ
k, and the equation has the

form

(3.35) a0y
(n) + a1y

(n−1) + · · · + an−ky
(k) = f(t)

For the existence of periodic solution with period T , it is not sufficient for
f to be only periodic with period T . It is necessary the for following condition
to be satisfied as well:

(3.36)

∫ T

0
f(τ)dτ = 0.

Let the above condition be satisfied. We denote with α0 the unknown

number

∫ T

0
y(τ)dτ , where y(t) is supposed to be a periodic function with pe-

riod T .

Consider the auxiliary problem:

a0 y(n) + a1 y(n−1) + · · · + an−k y(k) = f(t)

y(n−2)(T ) − y(n−2)(0) = 0, . . . , y(T ) − y(0) = 0,

∫ T

0
f(τ)dτ = α0

After its algebraization we have

P (S)y = f +
α0

T
P (S)

If P (S) is not a divisor of 0, then the following representation of y holds:

y =
1

P (S)
f +

α0

T
.

Here
1

P (S)
= {G(t)} is a solution of the problem

P

(

d

dt

)

G = 1,

∫ T

0
G(τ) dτ = 0,

G(T ) − G(0) = 0 . . . G(n−2)(T ) − G(n−2)(0) = 0.

Then

y = {G(t)} ∗ {f(t)} +
α0

T
=



402 Margarita Spiridonova

(3.37) = − 1

T

∫ T

0
f(t − τ)G(τ) dτ +

α0

T
,

since we supposed that f(t) is periodic with period T and

∫ T

0
f(τ) dτ = 0.

The function G(t) has the form (see [2]):

G(t) =
1

SkQ(S)
=

T k

k!
Bk(

t

T
) ∗ G1(t),

where Bk stands for the k-th polynomial of Bernoulli and G1(t) =
1

Q(S)
is the

solution of the following auxiliary problem:

a0 G
(n−k)
1 + a1 G1

(n−k−1) + · · · + an−k G1 = 1,

∫ T

0
G1(τ) = 0,

G1(T ) − G1(0) = 0, . . . , G1
(n−k−2)(T ) − G1

(n−k−2)(0) = 0

Actually, the condition (3.36) is not only necessary but sufficient as well
for the existence of a periodic solution. But this solution is not unique. It is

defined by (3.37) up to the arbitrary additive constant
α0

T
. Thus we have a

Duhamel-type representation of the solution of our problem.

3.6. General algorithm for obtaining a periodic solution.

1. Algebraization of the given problem and finding roots λ1, λ2, . . . , λn of the
equation P (λ) = 0

2. a) Finding out roots of the form
2πim

T
(m ∈ Z \ {0}).

b) Verifying whether the roots selected in 2 a) satisfy the conditions (3.30).
If for some of the selected roots these conditions are not satisfied, periodic
solutions do not exist.

3. Forming the polynomial Q(S).

4. Partial fraction decomposition of
1

P (S)
and

Q(S)

P (S)
and separation of the

resonance and non-resonance parts.

5. Interpretation of the fractions w =
1

P (S)
and v =

Q(S)

P (S)
as functions. As

was mentioned above, different groups of formulae are used for interpreta-
tion of the fractions from the resonance and the non-resonance parts.
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6. Presentation of the solution in the form:

(3.38)
unr = w1 ∗ f + v1, ur = w2 ∗ f + v2

u = unr + ur,

where w1 and w2 are functions, obtained at step 5) after interpretation re-
spectively of the non-resonance and resonance parts of the partial fraction
decomposition of w; v1 and v2 are functions obtained at step 5) after in-
terpretation respectively of the non-resonance and resonance parts of the
partial fraction decomposition of v.

The general solution u is the sum of both parts of the solution–the non-
resonance part unr and the resonance part ur. It is possible, of course, for
each of these parts to be equal to zero (the case is determined at steps 1
and 2).

3.7. Program implementation of the algorithm.
3.7.1. General remarks. The program implementation of the general

algorithm follows the successive steps formulated above. For obtaining both
parts of the solution, the non-resonance and the resonance one, the extended
algorithm of Heaviside, described in section 3.3 is used. Its implementation is in
fact a modified implementation of the classical algorithm of Heaviside, considered
in section 2. The main differences are as follows:

(i) For algebraization of the problem the formula (3.19) is used now.
(ii) Other interpretation formulae are used here. The main formulae men-

tioned above are (3.21)–(3.24) and (3.29). For practical applications more for-
mulae based on them are derived (see [29]).

(iii) The operation denoted by ∗ in (3.38) is the convolution (3.18). For
the application of some of the above formulae convolution powers are computed
as in case of the use of Duhamel convolution.

(iv) The verification of conditions (3.30) here is a part of the algorithm.
The implementation of the general algorithm considered above includes

finding periodic solutions of systems of linear ordinary differential equations with
constant coefficients in a similar way as the implementation of the original Heav-
iside algorithm includes solving initial value problems for systems of linear ordi-
nary differential equations with constant coefficients.
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Main part of the interpretation formulae used by our program
implementation:

For the non-resonance case:
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For the resonance case:
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3.7.2. Program package. The developed program package for Mathe-
matica provides a definition of all described operations of the general algorithm
for obtaining periodic solutions of LODE with constant coefficients.

The main function of the package is called DSolveOCP and its use is
similar to the use of the function DSolveOC considered above. An additional
argument is the period T . Due to the above considerations, the boundary condi-
tions have the form y(k)(T )−y(k)(0) = αk+1, k = 0, 1, . . . n−2; α0 is computed
by the program. The use of an option for visualization of the solution, together
with the right-hand side function is provided.

Some illustrative examples follow–for the non-resonance and the reso-
nance cases and for the “mixed” case when the solution is a sum of two parts–
resonance and non-resonance ones.

Example for the non-resonance case:

<< DSolveOCPpack‘

Example1 : 8yHtL a2
+ y¢¢HtL � sinHtL, ΑH1L � 0<; T = 2 Π

DSolveOCP@8y’’@tD + a^2 y@tD � Sin@tD, Α@1D � 0<, y@tD, t, 2 ΠD

y@tD ®

1
�����������������������������������������

2 a3 H-1 + a2L2 Π

 H2 a2 Cos@tD Sin@a ΠD HH-1 + a2L Π Cos@a ΠD - 2 a Sin@a ΠDL +

Ha H1 - 3 a2 + 2 a4L Π + a H-1 + a2L Π Cos@2 a ΠD + H1 - 3 a2L Sin@2 a ΠDL Sin@tDL

Example for the resonance case (with option for visualization of the solu-
tion):
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Example for a “mixed” case:

Example3 : 84 yHtL + 4 y¢HtL + y¢¢HtL + yH3LHtL � cosH5 tL, ΑH1L � 0, ΑH2L � 0<; T = 2 Π;

de = y’’’@tD + y’’@tD + 4 y’@tD + 4 y@tD � Cos@5 tD;

DSolveOCP@8de, Α@1D � 0, Α@2D � 0<, y@tD, t, 2 ΠD

y@tD ®
1
����������

546
H-Cos@5 tD - 5 Sin@5 tDL

3.8. Advantages of the presented approach for obtaining periodic
solutions of LODE with constant coefficients. In the classical methods for
finding periodic solutions, at first the general solution is found and after that the
periodicity conditions are used for determining the unknown constants in it. In
our method the periodicity conditions are taken into account at the level of the
algebraization of the problem.

In [11] S. Grozdev compares the method under consideration with the
use of Laplace transformation for finding periodic solutions. The main differ-
ence is the necessity of the existence of a Laplace transform of the right-hand
side of equation. Grozdev discovered advantages of the considered approach in
comparison even with the use of the Heaviside–Mikusiński calculus.

We find that the presented approach is more efficient than those in the
above mentioned books of Kaplan [20], Rosenvasser [25] and Lurie [21].

The function DSolve of Mathematica leaves as undetermined the con-
stants appearing in the solution in the resonance case.

4. The Operational calculus approach for solving boundary

value problems for some partial differential equations.

4.1. General remarks. If we are interested in the application of the
Heaviside-Mikusiński operational calculus to partial differential equations, this
calculus should be extended to multivariate functions. Such an extension using
the two-dimensional Laplace transformation is proposed in the book [9] by Ditkin
and Prudnikov. The principles of the application of multivariate operational
calculus for solving Cauchy problems for linear PDE with constant coefficients
are developed in Gutterman [17].

We consider here another approach: a way of common use of a combina-
tion of two classical methods – the Fourier method [15] and the Duhamel principle
[10] – in the frames of a two-dimensional operational calculus suggested by Di-
movski [2]. It gives solutions of boundary value problems for some equations of
mathematical physics in a closed form.
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As is shown below, an extension of the Duhamel principle to the space
variables enables one to obtain a closed-form solution of various boundary value
problems for some partial differential equations. To this end, as in the classical
Duhamel principle, one special solution of the same problem, but for a very simple
and special choice of the initial value function, should be obtained using, say, the
Fourier method. Then the solution for an arbitrary initial value function can
be obtained in the form of a non-classical convolution, using a two-dimensional
operational calculus.

Duhamel formulated his principle in 1830 (see [10]). Due to this principle
the solution of the boundary value problem

∂u

∂t
=

∂2u

∂x2
, u(0, t) = 0, u(1, t) = ϕ(t), u(x, 0) = 0

can be obtained for arbitrary ϕ(t), if a solution U(x, t) of the same problem but
for a special choice of ϕ(t), namely for ϕ(t) ≡ 1, is available. Then the general
solution has the form:

(4.1) u(x, t) =
∂

∂t

∫ t

0
U(x, t − τ)ϕ(τ)dτ

for 0 ≤ x ≤ 1, 0 ≤ t.

The special solution can be obtained using the Fourier method–it has the
form:

(4.2) U(x, t) = x +
2

π

∞
∑

n=1

(−1)n

n
e−n2π2t sinnπx.

Here we are interested in the extension of the Duhamel principle for
boundary value problems with non-homogenous initial conditions when the bound-
ary value conditions are homogenous.

4.2. A two-variate operational calculus. Extension of the Duha -
mel principle. The Duhamel principle can be extended for the space variables
for a large class of boundary value problems for linear partial differential equations
in finite space domains, in which the Fourier method can be applied. To this end
we use an approach, suggested by Dimovski, for extension of the operational
calculus of Heaviside–Mikusiński for functions of two variables. This approach
can be applied both to local and to non-local boundary value problems (see [5],
[6], [7]).
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4.2.1. Convolutions for boundary value problems. We consider
boundary value problems for three classical equations of mathematical physics in
finite domains:

• the heat equation ut = uxx + f(x, t)

• the wave equation utt = uxx + f(x, t)

• the equation of vibrations of a supported beam utt = −uxxxx + f(x, t).

For solving such problems we need some extensions of the Mikusiński ap-
proach using new convolutions. Elements of such operational calculi are presented
in [2].

We consider below two types of convolutions, intended for operational
calculi for functions of one variable. We will combine them in a convolution for
functions of two variables, in order to build operational calculi for functions of
two variables.

A. Convolutions for the differentiation operator. The basic BVP
for the differentiation operator d/dt in the space C [0,∞) of the continuous func-
tions f(t), 0 ≤ t < ∞ is determined by an arbitrary linear functional χ on
C [0,∞). It looks as follows:

(4.3) y′ = f(t), χ(y) = 0

In order for the solution y to exist it is necessary to assume χ{1} 6= 0. For
simplicity’s sake, we take χ{1} = 1. Then the solution y = lf(t) could be named
a generalized integration operator. Evidently

(4.4) l f(t) =

∫ t

0
f(τ) dτ − χτ {

∫ t

0
f(τ) dτ}

In [2] it is shown that the operation

(4.5) (f ∗ g)(t) = χτ{
∫ t

τ

f(t − σ + τ) g(σ) dσ}

is a bilinear, commutative and associative operation such that

lf = {1} ∗ f.

In [3] there is developed a one-variate operational calculus based on (4.5)
(considered in section 3 of this paper).
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B. Convolutions for the square of the differentiation operator.
Let us consider the space C [0, a] of the continuous functions on [0, a] .

The simplest nonlocal BVP for d2/dx2 in C [0, a] is given by

y′′ = f(x), y(0) = 0, Φ{y} = 0

where Φ is a linear functional on C1 [0, a] . In order for it to have a solution, it is
necessary to assume Φ{x} 6= 0. For simplicity’s sake we assume that Φ{x} = 1.

Its solution y = Lf(x) has the explicit form

(4.6) Lf(x) =

∫ x

0
(x − ξ) f(ξ) dξ − xΦξ{

∫ ξ

0
(ξ − η) f(η) dη }

In [2] it is proved that the operation

(4.7) (f ∗ g)(x) = −1

2
Φξ

{∫ ξ

0
h(x, η) dη

}

where

h(x, η) =

∫ η

x

f(η + x − ζ) g(ζ) dζ −
∫ η

−x

f(|η − x − ζ|) g(|ζ|) sgn(η − x − ζ) ζ dζ

is a bilinear, commutative and associative operation such that

Lf(x) = {x} ∗ f

4.3. Two-variate convolutions. Operational calculi for l and L

in C = C ([0, a] × [0, ∞)). The idea of a multivariate operational calculus is
the following.

Let u = {u(x, t)} and v = {v(x, t)} be arbitrary functions from the space
C = C ([0,∞) × [0, a]).

We introduce a bilinear, commutative and associative operation u∗v in C
such that the operators l and L are multipliers of the convolution algebra (C, ∗)
of the form

lu = {1} t∗u and Lu = {x} x∗u.

Theorem 1. The operation

(4.8) {u(x, t)} ∗ {v(x, t)} = −1

2
Φ̃ξχτ{h(x, t; ξ, τ)}
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with

h(x, t; ξ, τ) =

∫ x

ξ

∫ t

τ

u(x + ξ − η, t + τ − σ) v(η, σ) dσdη−

−
∫ x

−ξ

∫ t

τ

u(|x − ξ − η|, t + τ − σ) v(|η|, σ) sgn [(x − ξ − η)η] dσ dη

and with the functional Φ̃ξ = Φ ◦
∫ ξ

0 is a convolution of the operators L and l
in C(∆) (where ∆ = (0, a] × [0,∞)), for which L l u = {x} ∗ u. The operators

lu = {1}
(t)
∗ u(x, t) and Lu = {x}

(x)
∗ u(x, t) are multipliers of this operation.

This theorem gives us an operation (u ∗ v)(x, t) in C(∆), which is a con-
volution of each of the two operators l and L.

Construction of an Operational Calculus for the operators L

and l in C((0, a] × [0, ∞)). Consider the ring M of the multipliers of the
convolution algebra [C(∆), ∗], where ∆ = [0, a] × [0,∞).

Denote by M the ring of the fractions
M

N
, where M ∈ M, N ∈ M, N

being non-divisor of 0 in M. Such fractions are called multipliers fractions.

In M there can be embedded both the ring (C, ∗) and the numerical field

(R or C) and also, the convolution algebras (C[0, a],
(x)
∗ ) and (C[0,∞),

(t)
∗ ).

Of course, M also is a part of M, since M =
M

I
, where I is the identity

operator. Hereafter, we will denote I simply by 1.

Let f = {f(x)} be a function of the variable x only and ϕ = {ϕ(t)}–a
function of the variable t only, but considered as elements of C.

The operators

[f ]t : u 7→ f
(x)
∗ u

and

[ϕ]x : u 7→ ϕ
(t)
∗ v

are said to be numerical operators with respect to t and x respectively. In these

notations we have L = [x]t and l = [1]x. They belongs to M. We denote s =
1

l

and S =
1

L
.

The basic formulae of the operational calculus for l and L are

(4.9)
∂u

∂t
= su − [χτ{u(x, τ)}]t
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and
∂2u

∂x2
= Su − [Φξ{u(ξ, t)}]

x

where the indices t and x mean that the corresponding functions of t and x are
considered “partial” numerical operators.

These formulae express the relation between the partial derivatives
∂u

∂t

and
∂2u

∂x2
and the products su and Su, with s =

1

l
, S =

1

L
.

4.4. Duhamel-type representations of solutions of BVP. In order
to illustrate the application of the OC, briefly described above, let’s consider the
following class of BVP:

ut = uxx + F (x, t), 0 < x < a, t > 0
u(0, t) = 0, Φξ{u(ξ, t)} = 0
χτ{u(x, τ)} = f(x),

where Φ and χ are linear functionals respectively in C1[0, a] and C[0,∞].

Using the main formulae (4.9), we reduce the problem to the single equa-
tion:

(s − S)u = [f(x)}]t + {F (x, t)}

Assuming that s−S is not a divisor of 0 (this assumption is equivalent to
the requirement for uniqueness of the solution), we can write the following form
of the solution in M:

(4.10) u =
1

s − S
[f(x)]t +

1

s − S
{F (x, t)}

Consider the partial solution Ω(x, t) of the equation for F (x, t) ≡ 0 and
f(x) ≡ x. This solution is an algebraic object and it has the form:

(4.11) Ω =
1

S(s − S)
,

since [f(x)]t = [x]t =
1

S
.

Theorem 2. If Ω(x, t) is a function in C(∆), the problem

ut = uxx, u(0, t) = 0, Φξ{u(ξ, t)} = 0, χτ{u(x, τ)} = f(x)
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with f(0) = 0, Φ{f} = 0 and f ∈ C2 [0, a] has a classical solution u(x, t) of the
form

(4.12) u(x, t) =
∂2

∂x2

{

Ω(x, t)
(x)
∗ f(x)

}

The proof is given in [4].

Having in mind this theorem, the formulae (4.8), (4.12) and also the forms
of Ω, Φξ and χτ , we can obtain a representation of the solution of given BVP
for the heat equation.

In a similar way we can obtain formulae for the solutions of BVP for the
wave equation and for the equation of a supported beam. Such formulae were de-
rived during the work presented here. In most cases sequences of transformations
and simplifications were made in order to obtain forms convenient for analysis
and for program implementation. The obtained representations are given below.

4.5. Solving BVPs for equations of mathematical physics. We
consider local and non-local BVPs for the heat equation, for the wave equation
and for the equation of a supported beam. In all problems the partial solutions
are denoted by Ω and they are obtained in a form of series, once for every problem
(with use of the Mathematica system).

4.5.1. Heat equation.

A. Local BVP. Consider the following BVP:

ut = uxx, 0≤x≤1, t≥0, u(0, t) = 0, u(1, t) = 0, u(x, 0) = f(x)

Using Theorem 2 and also (4.8) and (4.12), for Φξ {u(ξ, t)} = u(1, t) we
can obtain the following form of the solution:

(4.13) u(x, t) =

∫ 1

0
[Ω(1 − x − ξ, t) − Ω(1 + x − ξ, t)] f(ξ)dξ,

Ω(x, t) =

∞
∑

n=1

(−1)n exp(−n2π2t) cos nπx

is a solution of the problem for f(x) = x.

An example with f(x) = x sin(πx) (Fig. 1) is considered. The obtained
solution has the relief shown on Fig. 2.
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B. Non-local BVP. The so-called “Samarskii–Ionkin problem”
(see [19]) is considered:

ut = uxx, u(0, t) = 0,

∫ 1

0
u(x, τ)dτ = 0, u(x, 0) = f(x)

We have a BVP with Φξ{u(ξ, t)} =

∫ 1

0
f(ξ)dξ.

After simplification of (4.12) Dimovski obtains (see [2]):

(4.14) u(x, t) = −2

∫ x

0
Ω(x − ξ, t)f(ξ)dξ −

∫ 1

x

Ω(1 + x − ξ, t)f(ξ)dξ

+

∫ 1

−x

Ω(1 − x − ξ, t)f(|ξ|)sgnξdξ,

where

Ω(x, t) =
∞
∑

n=1

{−2x cos 2nπx + 8πnt sin 2nπx} e−4n2π2t

This representation of u(x, t) is convenient for numerical computation of
an arbitrary number of values of the solution. A visualization of the solution can
be made as well.

An example is illustrated on Fig. 4. The boundary function f(x) is
“shown” on Fig. 3.

4.5.2. String equation.
A. Local BVP. Consider the BVP:

utt = uxx + F (x, t), 0 < x < a, 0 < t < ∞,
u(0, t) = 0, u(a, t) = 0
u(x, 0) = f(x), ut(x, 0) = g(x)
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The following representation is obtained for f(x) ≡ 0:

(4.15) u(x, t) = −1

2

∫ 1

x

Ω(1 + x − ξ)g′(ξ)dξ +
1

2

∫ 1

−x

Ω(1 − x − ξ)g′(|ξ|)dξ,

where

Ω(x, t) =
2

π2

∞
∑

n=1

((−1)n−1/n2) sin nπx sin nπt

is a solution of the same problem, but for the special choice g(x) ≡ x.

Using this formula, a solution obtained by means of the implemented
Mathematica system is illustrated in Fig. 6. The function g(x) is visualized in
Fig. 5.
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Fig. 6. Relief of the solution
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B. Non-local BVPs. Consider the following BVP for the string
equation:

utt = uxx, 0 < x < 1, 0 < t < ∞
u(0, t) = 0,

∫ 1
0 u(ξ, t)dξ = 0

u(x, 0) = f(x), ut(x, 0) = g(x)

Beilin considers problems of this type (see [1]) and states conditions for
the existence and uniqueness of the solution. We derived a formula, convenient
for numerical computation of the solution.

Case 1. f(x) ≡ 0, g(x) 6= 0.
We use the solution Ω(x, t) for g(x) ≡ x3/6−x/12 and f(x) ≡ 0; we have:

Ω(x, t) =

∞
∑

n=1

{

x cos(2n π x) sin(2n π t)

4n3 π3

+

(

t cos(2n π t)

4n3 π3
− 3 sin(2n π t)

8n4 π4

)

sin(2n π x)

}

The solution u(x, t) has the form (see [29])

u(x, t) =
∂2

∂x2

{

Ω(x, t)
(x)
∗ g(x)

}

and after its simplification the concrete form is derived:

(4.16) u(x, t) = −2

∫ x

0
Ωx(x − ξ, t)g′(ξ)dξ −

∫ 1

x

Ωx(1 + x − ξ, t)g′(ξ)dξ+

+

∫ 1

−x

Ωx(1 − x − ξ, t)g′(|ξ|)dξ,

Using this presentation, a problem was solved for g(x) = 2πx cos 2πx +
3

2
sin 2πx. This function and the solution are visualized respectively on Figures

7 and 8.
The numerical solution was compared with the exact solution of the same

problem. An error of order 10−13 was found. The series for Ω(x, t) was truncated
to n = 5.

Case 2. f(x) 6= 0 and g(x) ≡ 0.

The representation of the solution now has the form (see [29])

u(x, t) =
∂

∂t

∂2

∂x2

(

Ω(x, t)
(x)
∗ f(x)

)
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For the purposes of simplification of this representation we introduce

Ω̃(x, t) =

∫ t

0
Ωx(x, τ) dτ

where Ω(x, t) is a solution of the problem under consideration for the special
choice f(x) ≡ x3/6 − x/12 and g(x) ≡ 0.

Ω̃(x, t) =

∞
∑

n=1

{

− x cos(2n π x) sin(n π t)2

n2 π2
−

t cos(n π t) sin(n π t) sin(2n π x)

n2 π2
+

sin(n π t)2 sin(2n π x)

n3 π3

}

The following representation of u(x, t) is derived:

(4.17) u(x, t) = −2

∫ x

0
Ω̃x(x − ξ, t) f ′′(ξ) dξ −

∫ 1

x

Ω̃x(1 + x − ξ, t) f ′′(ξ) dξ

+

∫ 1

−x

sgn x Ω̃x(1 − x − ξ, t) f ′′(ξ) dξ − 2 Ω̃(1, t) f ′′(x) + f(x)

A visualization of the numerical solution is presented on Fig. 10. On
Figure 9 the graph of the employed function f(x) is shown. The series for Ωx

was truncated to n = 10.
By comparison of the numerical and exact solutions of the problem an

error of order 10−9 was found.
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4.5.3. Equation of a free supported beam.
A. Local BVPs. Consider the following problem for the equation

of a free supported beam (see [14]):

∂2u

∂t2
= −∂4u

∂x4
, 0 < x < 1, 0 < t < ∞,

u(0, t) = 0, uxx(0, t) = 0, u(1, t) = 0, uxx(1, t) = 0

u(x, 0) = f(x), ut(x, 0) = g(x).

For the case f(x) ≡ 0 we obtain:
(4.18)

u(x, t) = −1

2

∫ 1

x

Ωx(1 + x − ξ, t) g(ξ) dξ +
1

2

∫ 1

−x

Ωx(1 − x − ξ, t)g(|ξ|) sgn ξ dξ,

where

Ωx(x, t) =
2

π2

∞
∑

n=1

((−1)n−1/n2) sin(nπ)2t cos nπx

Numerical values of the solution for the function, visualized in Fig. 11, are
computed using this formula. The relief of the solution is illustrated in Fig. 12.

B. Non-local BVPs. Consider the problem

∂2u

∂t2
= −∂4u

∂x4
, 0 < x < 1, 0 < t < ∞,

u(0, t) = 0, uxx(0, t) = 0
∫ 1

0
u(ξ, t)dξ = 0, ux(1, t) − ux(0, t) = 0

u(x, 0) = f(x), ut(x, 0) = g(x)
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Case 1. f(x) ≡ 0, g(x) 6= 0. The solution u(x, t) in this case has the form
(see [29])

u(x, t) =
∂2

∂x2

{

Ω(x, t)
(x)
∗ f(x)

}

After some simplifications an explicit representation is obtained:

(4.19) u(x, t) = −2

∫ x

0
Ωx(x − ξ, t)g′(ξ)dξ −

∫ 1

x

Ωx(1 + x − ξ, t)g′(ξ)dξ+

∫ 1

−x

Ωx(1 − x − ξ, t)g′(|ξ|)dξ

where

Ωx(x, t) =

{

∞
∑

n=1

cos(2n π x)
(

8n2 π2 t cos(4n2 π2 t) − 3 sin(4n2 π2 t)
)

8n4 π4
−

x sin(4n2 π2 t) sin(2n π x)

4n3 π3
)

}

An experimental computation of the solution using the above formulae
was made. By comparison with the exact solution an error of order 10−8 was
found, for n = 10 in the series for Ωx(x, t).

A visualization of the solution is illustrated in Fig. 14. The graph of the
employed function g(x) is shown in Figure 13.

Case 2. f(x) 6= 0, g(x) ≡ 0 The following representation is obtained after
simplification made in a way, similar to those in Case 2 for the string equation
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(for more details see [29]):

(4.20) u(x, t) = −2

∫ x

0
Ω̃xx(x − ξ, t)f iv(ξ)dξ +

∫ 1

x

Ω̃xx(1 + x − ξ, t)f iv(ξ)dξ−

∫ 1

−x

Ω̃xx(1 − x − ξ, t)f iv(|ξ|)sign(ξ)dξ + 2f iv(ξ)(Ω̃x(0, t) − Ω̃x(1, t)) + f(x),

where

Ω̃xx(x, t) =

{

−x cos(2n π x) sin(2n2 π2 t)
2

4n4 π4

−
(

4n2 π2 t cos(2n2 π2 t) − 3 sin(2n2 π2 t)
)

sin(2n2 π2 t) sin(2π x)

4n7 π5

−sin(2n2 π2 t)
2

sin(2n π x)

4n5 π5

}

An example for this case is given in the next subsection as an illustration
of the use of the developed program package for solving this problem.

For all derived formulae presented in section 4, a comparison with the exact
solutions of the BVPs with the solutions computed by means of our formulae, is made.
High precision and “good” time of the computations were ascertained.

Let’s note that at the moment the system Mathematica can’t solve nonlocal
BVPs.

4.6. Program packages for the considered BVPs. The presentations of
the solutions given above are used in 3 developed program packages (for each of the
considered equations). Each of the packages has functions for solving local and nonlocal
problems.
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An example of the use of the package for solving a nonlocal BVP for the equation
of a supported beam for f(x) 6= 0, g(x) ≡ 0 is given. A table of numerical values of the
solution in intervals, given by the user, is produced (a part of the table is included in the
picture). A visualization of the solution is made together with the boundary function f .
The series for the special solution Ω is truncated to n = 3. A comparison with the exact
solution is made and the minimal and maximal errors are obtained; this comparison
is required in the call to the package function named DSolveOCBeamN by the last
(optional) argument uexact.

Illustrative example: solving a nonlocal BVP for the equation of a supported
beam:
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5. Concluding remarks. The presented results allow some conclusions to
be made.

� The considered operational methods are efficient and convenient for obtaining
closed-form solutions and numerical solutions of some mixed boundary value problems.

� Modification of algorithms and development of steps of algorithms based on
the considered methods were performed as steps of their program implementation.

� Interpretation formulae providing a complete implementation of the Heaviside
algorithm and the modified Heaviside algorithm were derived.

� Duhamel-type representations of the solutions of BVPs, mainly for the string
and beam equations, were derived.

� 5 program packages for the computer algebra system Mathematica, aimed for
solving Cauchy problems and boundary value problems by the operational approach,
were developed.

� An experimental proof of the efficiency and the advantages of the considered
operational methods was obtained.

� The choice of the computer algebra system Mathematica providing efficient
symbolic and numerical computations, as well as convenient program language, was an
important precondition for the good results of the work.

The use of the implemented packages in the powerful computing environment of
Mathematica is convenient and efficient. It can be part of a complete problem solving
process in research or engineering, using a large scale of Mathematica tools.

Further research and applications of the presented results are under way. They
are connected with solving other boundary value problems (not considered yet in our
work), considering real phenomena (an example can be found in [8]), taking into account
some ideas presented in [27], etc.

Acknowledgement. The author expresses her gratitude to Prof. I. Dimovski
for proposing the problems, for the useful discussions during the work, and for the at-
tention to this paper.
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