Serdica J. Computing 3 (2009), 371-380 Serdica
Journal of Computing

Bulgarian Academy of Sciences
Institute of Mathematics and Informatics
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ABSTRACT. A modification of the Nekrassov method for finding a solution
of a linear system of algebraic equations is given and a numerical example
is shown.

1. Introduction. Let us consider the linear system Az —b =0 or

a;121 + ajpro + -+ ajx; + -+ G, — by = 0= f’i(x17x27 .. 7$n)7

Suppose that the matrix A is diagonally dominant and a; > 0, i =

1,...,n.
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One of the more effective iteration methods for solving the system (1) is
the Jacobi procedure (his method is also known as the method of simultaneous
displacements):

i=1,2,....n; k=0,1,2,...,

i.e., (2) is the Newton scheme applied for the equation f; = 0.
A more powerful class of methods can be described by the recursion
(Richardson iteration):

(3) aF = aF — o (Axh —b),

where oy, i = 1,...,k are damping factors.
For instance, the Richardson iteration (3) with the application of Cheby-
shev acceleration factors is defined by

(2 + D\ *
. —9 _(p— RS
o (a—i—b (b — a) cos 2k D) ,
i=0,1,...,k

a<X <b, i=1,...,n (A are the eigenvalues of matrix A).
In [8] we give the following modification of the Richardson method:

1 n
k+1 _ k k
(4) i = ap - — E a;jxy —bi |,
MG\ =
j=1

i=1,2,....n; k=0,1,2,...,
where

n
Mzk:H‘xf_x;C" 1:17277”‘7 k:()’l’
j#i
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For other contributions see Saad and van der Vorst [14], Freund, Golub
and Nachtigal [6], Ishihara, Muroya and Yamamoto [7], Maleev [10], Stork [17],
Zawilski [18].

One geometric interpretation of method (4) is also given in [8].

In a similar manner other iterations can be obtained which are modifica-
tions of algorithms which have been explored in details in books by Bjorck [2],
Fadeev, D. and Fadeev, V. [4] and Barrett, R., M. Berry and others [1].

As an example a scheme of the Gauss—Seidel or the Nekrassov method
(see Nekrassov [13], Mehmke [11] and Nekrassov and Mehmke [12]) look thus:

i—1 n

Qi Qi b,
) e D D e R
Qg Qg Qg

j=1 j=i+1

i=1,2,....n; k=0,1,2,....

2. Main results. Let us explore the following modification of the
Nekrassov method (assume that z; # x; and 2¥ # x? for i # j):

(6) ‘T?Jrl Zaz] k+1+amx + Z az] b; |,

Z j=i+1

i=1,2,...,n; k=0,1,2,...,

where
i—1 n
f:H]xf—x;?H\ H ]wf—xf], i=1,2,....,n; k=0,1,....
j=1 j=i+1
Let i s
0; :W,Z:lﬂ,...,n;k:0,1,2,....

i
The iteration procedure (6) (successive overrelaxation procedure) can be
rewritten as

i—1
Qi Qi Qi s b

L a; a;
k k k Z] k+1 ’U k
= x7(1—-206F) =4 g + E
A4
Jj=1 Jj=i+1
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1. When 6% = 1 from (7) we obtain the Nekrassov method.

2. One geometric interpretation of method (7) is the following:

Let
Frg =z — ok (=@ —alyy) (o - ah),
Then
i—1 n
Fi by = TJF =5 T @f —2h)
j=1 j=i+1

and the previous expression can be used for approximation of a;; in the Nekrassov
procedure.
We give a convergence theorem for the relaxation method (7).

Theorem 1. Let
< laij| "L Jagj]
j:1 1 j:Z+1 1

1—|1-6F
T

Then the iteration procedure (7) converges to the unique solution x;, i =
1,2,...,n of the system (1).

@ere(o, )C(O,l), i=1,2,...,n: k=0,1,2,....

k+1

)

aef gy = a1 - F) —

Proof. For the error x — x;, we have

Z'il alA, n a.. iil a.. n alA,
—of | D it Y k= ay - Y -y
(9) j:1 1 j:Z+1 17 ]: 17 ]:Z"Fl 1
i_l alA, n a..
k
= ()0 1) YD Sy ) 3D Sy o)
=1 i jmiqr i
and
(10)
7—1 n
B ] < o b -] 4 oS i ey ey Ll
o G ST i
< 155~ 1flle — 2H]ls + 8Bl — 25Ul + Sl — 2,

= (10} = 1 +%0F) [l — 2*[[1 + 07 Billw — 211
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Let
max xf“ — x| = ]xfOH — Tig
Then from (10) we get
[l = 2"y = max|z; - ot = et — |
< (165 = 1 + 7065 ) [l — 2|1 + 85 Big [ — 1|3
and
SE — 1| + 7, 6F
) e —akgy < e ey e — ¥
1 — 63 Big
Evidently from (8) we have
& e (1108 1] A
1y, 9610 (T
K; =2 7’ 0 < - =1.
1-— 5i0/8i0 1- 5i0/8i0
This proves Theorem 1. O
Let
0 0 0 0 a2 a1in k
Ty
agg 0 -+ 0 0 0 - ag, N zk
L — 9 R: 9 X — . 9
. 1'7]3
Gnl Aan2 0 0 0 0
ai; 0 0 sko0 0
0 a 0 0 ok 0
P = ’ (Sk _ 22
0 0 - apm 0o 0 --- &k,

Theorem 2. The iteration (6) (or (7)) is convergent when all roots
(eigenvalues) of the equation

(12) ‘A(Sk —(P+d"L) +t <P+5kL)‘ ~0
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are |t;| <1, i=1,...,n.

Proof. In matrix terms the successive overrelazation procedure (7) can
be written as follows:

(13) Xt = (P + 5"“L>_1 ((I —shyp - 5’“R> Xk 4 (P + ékL>_1 5k,

i.e.
Xkl — BxF 4 ¢

Evidently, |B — tI| = 0 can be represented as
K\t k k k
1B —tI] = '(P+5 L) “A(S - <P+5 L) +t<P+5 L)‘ —0,
and the statement of Theorem 2 follows from the standard iteration theory. O
3. In a number of cases the success of the procedures of type (5) depends
on the proper ordering of the equations (and z;, i = 1,...,n) in system (1).

In spite of this fact the following variant of the Nekrassov method is
known [4]:

i1 Qi ® ik b
(14) I E gk E gkl 2
1 o] o ..
- Qg = Qg4 A4
Jj=1 J=i+1

Further, we are interested in the successive overrelaxation procedure (14)
based on the method (7):

i—1 n
Qs Qs b
(15)  att=af-ay - of (Yo el 0 Haltt o=
Qi Qi I Qi
j:1 (22 j:’l+1 (22 (22

In matrix terms the successive overrelazation procedure (15) can be writ-
ten as follows:

16)  x*l= (P + 6’“R)71 ((I Ly 6’“L> Xk 4 (P + 6’“R)71 5kb,

The pseudocode for the modification of Nekrassov method (6) is given in
Figure 1.
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Choose an initial quess x° for the solution .
for k=1,2,...,

for i=1,2,....n
k—1
i

NF-T =1

for j=1,2,...;i—1

k-1 _ ark—1) k—1 k
N7 = N7 |x; -z

Ty = Qi X

xr; =x; + aij:c?

end
for j=i+1,...,n
k=1 _ ark—1) k—1 k—1
N7 = N7 |x; — ]
k—1

xr; =x; + aij:cj

end

€Ty = (xl — bi)/NZ-k_l
end

a2k =kl — g

check convergence; continue if necessary
end

Fig. 1. The modification of the Nekrassov method (6)

3. Numerical example. As an example we will consider the system:

T1+3x9 — 223 =5
3x1 + 520+ 623 =7
2x1 +4xo 4+ 323 =8

The exact solution of the system is xz(—15,8,2).

For an initial approximation we choose 2°(—15.02,8.02,2.02).

We give the results of numerical experiments (8 iterations) for each of
methods (5) and (6).

In Table 1 the following notations are used:

— in the first column the serial number of the iteration is given;

— using the modified scheme (6) in the second column the obtained results
are given (array z[]);

— using the classical Nekrassov scheme (5) in the third column the ob-
tained results are given (array y[]).
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Table 1

[1] = —15.02000000000000
[2] = 8.01884259259259

[1] = —15.02000000000000
[2] = 7.98800000000000

3] =2.01906701123844 3] = 2.02933333333333

2 1] = —15.01999590828629 1] = —14.90533333333333
[2] = 8.01776735852021 [2] = 7.90800000000000
3] = 2.01820333133504 3] = 2.05955555555556

3 1] = —15.01998800937772 1] = —14.60488888888888

2] = 8.01676825375272
= 2.01740388676229
= —15.01997656688334
2] = 8.01583967575363
= 2.01666397500912
= —15.01996182501415
2] = 8.01497643146312
= 2.01597923762914
= —15.01994400998709
2] = 8.01417370750044
= 2.01534563522253
= —15.01992333132901
] = 8.01342704260065
= 2.01475942421623
= —15.01989998308720
[2] = 8.01273230196133
3] = 2.01421713531614

2] = 7.69146666666666

= 2.14797037037037

— —13.77845925925925
2] = 7.08951111111110

= 2.39962469135803

— —11.46928395061725
] = 5.40202074074072

= 3.11016164609054

— —4.98573893004107
2] = 0.65924938271599

= 5.11149344307273

= 13.24523873799748

] = —12.68093537448576
= 10.74442134064936
= 64.53164880475601
[2] = —50.21229489163284
3] = 26.59529398567311

[98)
w

[y
[y

w

o=

w
w

[y
[y

w
w

—
—

~
s

=l w

i el aciacgias acfiacgias acfacfias fafiacfia fafiacfia afacia:
= w

ot
e P e e R | R W B M e | R e B e e e R B B

4. A wide area of problems and practical tasks in tomography and image
processing are reduced to the problem of solving a system of algebraic equations
with constraint conditions for the initial approximations x?, i=1,...,n (see
Bjorck [2], A. van der Sluis and H. van der Vorst [16], A. Louis and F. Natterer
[9] and R. Santos and A. de Pierro [15]).
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