ON SOME MODIFICATIONS OF THE NEKRASSOV METHOD FOR NUMERICAL SOLUTION OF LINEAR SYSTEMS OF EQUATIONS

Anton Iliev, Nikolay Kyurkchiev, Milko Petkov

Abstract. A modification of the Nekrassov method for finding a solution of a linear system of algebraic equations is given and a numerical example is shown.

1. Introduction. Let us consider the linear system $Ax - b = 0$ or

$$a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{ii}x_i + \cdots + a_{in}x_n - b_i = 0 = f_i(x_1, x_2, \ldots, x_n),$$

$$i = 1, 2, \ldots, n.$$

Suppose that the matrix A is diagonally dominant and $a_{ii} > 0$, $i = 1, \ldots, n$.

Key words: Solving linear systems of equations, Jacobi method, Richardson method, Nekrassov method, Chebyshev’s acceleration factors, pseudocode.

*This paper is partly supported by project IS–M–4 of Department for Scientific Research, Paisii Hilendarski University of Plovdiv.
One of the more effective iteration methods for solving the system (1) is the Jacobi procedure (his method is also known as the method of simultaneous displacements):

\[
x^{k+1}_i = -\sum_{j \neq i}^n \frac{a_{ij}}{a_{ii}} x^k_j + \frac{b_i}{a_{ii}}
\]

\[
= x^k_i - \frac{1}{a_{ii}} f_i(x^k_1, \ldots, x^k_n)
\]

\[
= x^k_i - \frac{f_i(x^k_1, \ldots, x^k_n)}{\partial f_i/\partial x^k_i},
\]

\[i = 1, 2, \ldots, n; \quad k = 0, 1, 2, \ldots,
\]

i.e., (2) is the Newton scheme applied for the equation \(f_i = 0\).

A more powerful class of methods can be described by the recursion (Richardson iteration):

\[
x^{k+1} = x^k - \alpha_k (Ax^k - b),
\]

where \(\alpha_i, \ i = 1, \ldots, k\) are damping factors.

For instance, the Richardson iteration (3) with the application of Chebyshev acceleration factors is defined by

\[
\alpha_i = 2 \left(a + b - (b - a) \cos \left(\frac{(2i + 1)\pi}{2(k + 1)} \right) \right)^{-1},
\]

\[i = 0, 1, \ldots, k\]

\(a \leq \lambda_i \leq b, \ i = 1, \ldots, n\) (\(\lambda_i\) are the eigenvalues of matrix \(A\)).

In [8] we give the following modification of the Richardson method:

\[
x^{k+1}_i = x^k_i - \frac{1}{M^k_i} \left(\sum_{j=1}^n a_{ij} x^k_j - b_i \right),
\]

\[i = 1, 2, \ldots, n; \quad k = 0, 1, 2, \ldots,
\]

where

\[M^k_i = \prod_{j \neq i} |x^k_i - x^k_j|, \quad i = 1, 2, \ldots, n; \quad k = 0, 1, \ldots.
\]
For other contributions see Saad and van der Vorst [14], Freund, Golub and Nachtigal [6], Ishihara, Muroya and Yamamoto [7], Maleev [10], Stork [17], Zawilski [18].

One geometric interpretation of method (4) is also given in [8].

In a similar manner other iterations can be obtained which are modifications of algorithms which have been explored in details in books by Björck [2], Fadeev, D. and Fadeev, V. [4] and Barrett, R., M. Berry and others [1].

As an example a scheme of the Gauss–Seidel or the Nekrassov method (see Nekrassov [13], Mehmke [11] and Nekrassov and Mehkte [12]) look thus:

\[x_{i}^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_{j}^{k+1} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_{j}^{k} + \frac{b_{i}}{a_{ii}}, \]

\[i = 1, 2, \ldots, n; \quad k = 0, 1, 2, \ldots. \]

2. Main results. Let us explore the following modification of the Nekrassov method (assume that \(x_i \neq x_j \) and \(x_i^0 \neq x_j^0 \) for \(i \neq j \)):

\[x_{i}^{k+1} = x_{i}^{k} - \frac{1}{N_{i}^{k}} \left(\sum_{j=1}^{i-1} a_{ij} x_{j}^{k+1} + a_{ii} x_{i}^{k} + \sum_{j=i+1}^{n} a_{ij} x_{j}^{k} - b_{i} \right), \]

\[i = 1, 2, \ldots, n; \quad k = 0, 1, 2, \ldots, \]

where

\[N_{i}^{k} = \prod_{j=1}^{i-1} |x_{i}^{k} - x_{j}^{k+1}| \prod_{j=i+1}^{n} |x_{i}^{k} - x_{j}^{k}|, \quad i = 1, 2, \ldots, n; \quad k = 0, 1, 2, \ldots. \]

Let

\[\delta_{i}^{k} = \frac{a_{ii}}{N_{i}^{k}}, \quad i = 1, 2, \ldots, n; \quad k = 0, 1, 2, \ldots. \]

The iteration procedure (6) (successive overrelaxation procedure) can be rewritten as

\[x_{i}^{k+1} = x_{i}^{k} - \frac{a_{ii}}{N_{i}^{k}} \left(\sum_{j=1}^{i-1} \frac{a_{ij} x_{j}^{k+1}}{a_{ii}} + x_{i}^{k} + \sum_{j=i+1}^{n} \frac{a_{ij} x_{j}^{k}}{a_{ii}} - b_{i} \right) \]

\[= x_{i}^{k} (1 - \delta_{i}^{k}) - \delta_{i}^{k} \left(\sum_{j=1}^{i-1} \frac{a_{ij} x_{j}^{k+1}}{a_{ii}} + \sum_{j=i+1}^{n} \frac{a_{ij} x_{j}^{k}}{a_{ii}} - b_{i} \right). \]
1. When $\delta^k_i = 1$ from (7) we obtain the Nekrassov method.
2. One geometric interpretation of method (7) is the following:

Let

$$F_{k,i} = (x - x_1^{k+1}) \ldots (x - x_{i-1}^{k+1})(x - x_{i+1}^{k+1}) \ldots (x - x_n^k).$$

Then

$$F'_{k,i}(x^k) = \prod_{j=1}^{i-1} (x_i^k - x_j^{k+1}) \prod_{j=i+1}^{n} (x_i^k - x_j^k)$$

and the previous expression can be used for approximation of a_{ii} in the Nekrassov procedure.

We give a convergence theorem for the relaxation method (7).

Theorem 1. Let

$$\beta_i = \sum_{j=1}^{i-1} \frac{|a_{ij}|}{a_{ii}}, \quad \gamma_i = \sum_{j=i+1}^{n} \frac{|a_{ij}|}{a_{ii}}, \quad \delta^k_i \in (1, 2),$$

(8)

$$\beta_i + \gamma_i \in \left(0, \frac{1 - |1 - \delta^k_i|}{\delta^k_i}\right) \subset (0, 1), \quad i = 1, 2, \ldots, n; \ k = 0, 1, 2, \ldots.$$

Then the iteration procedure (7) converges to the unique solution x_i, $i = 1, 2, \ldots, n$ of the system (1).

Proof. For the error $x_i^{k+1} - x_i$, we have

$$x_i^{k+1} - x_i = x_i^{k}(1 - \delta^k_i) - x_i$$

$$= \delta^k_i \left(\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} + \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_j^{k} - \sum_{j=1}^{n} \frac{a_{ij}}{a_{ii}} x_j - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_j - x_i \right)$$

$$= (x_i - x_i^k)(\delta^k_i - 1) + \delta^k_i \sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} (x_j - x_j^{k+1}) + \delta^k_i \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} (x_j - x_j^k)$$

(9)

and

$$|x_i^{k+1} - x_i| \leq |\delta^k_i - 1||x_i - x_i^k| + \delta^k_i \sum_{j=1}^{i-1} \frac{|a_{ij}|}{a_{ii}} |x_j - x_j^{k+1}| + \delta^k_i \sum_{j=i+1}^{n} \frac{|a_{ij}|}{a_{ii}} |x_j - x_j^k|$$

$$\leq |\delta^k_i - 1||x - x^k||_1 + \delta^k_i \beta_i ||x - x^{k+1}||_1 + \delta^k_i \gamma_i ||x - x^k||_1$$

$$= (|\delta^k_i - 1| + \gamma_i \delta^k_i) ||x - x^k||_1 + \delta^k_i \beta_i ||x - x^{k+1}||_1.$$
Let
\[\max_{i} |x_i^{k+1} - x_i| = |x_{i_0}^{k+1} - x_{i_0}|. \]

Then from (10) we get
\[
||x - x^{k+1}||_1 = \max_{i} |x_i - x_i^{k+1}| = |x_{i_0}^{k+1} - x_{i_0}|
\leq (|\delta_{i_0}^k - 1| + \gamma_{i_0} \delta_{i_0}^k) ||x - x^k||_1 + \delta_{i_0}^k \beta_{i_0} ||x - x^{k+1}||_1
\]

and
\[
||x - x^{k+1}||_1 \leq |\delta_{i_0}^k - 1| + \gamma_{i_0} \delta_{i_0}^k \left(\frac{1 - |\delta_{i_0}^k - 1|}{1 - \delta_{i_0}^k \beta_{i_0}} \right) ||x - x^k||_1 = K_{i_0} ||x - x^k||_1.
\]

Evidently from (8) we have
\[
K_{i_0} = \frac{|\delta_{i_0}^k - 1| + \gamma_{i_0} \delta_{i_0}^k}{1 - \delta_{i_0}^k \beta_{i_0}} \leq \frac{|\delta_{i_0}^k - 1| + \delta_{i_0}^k \left(\frac{1 - |\delta_{i_0}^k - 1|}{\delta_{i_0}^k} - \beta_{i_0} \right)}{1 - \delta_{i_0}^k \beta_{i_0}} = 1.
\]

This proves Theorem 1. □

Let
\[
L = \begin{pmatrix}
0 & 0 & \cdots & 0 \\
a_{21} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & 0
\end{pmatrix}, \quad R = \begin{pmatrix}
0 & a_{12} & \cdots & a_{1n} \\
0 & 0 & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{pmatrix}, \quad X^k = \begin{pmatrix}
x_1^k \\
x_2^k \\
\vdots \\
x_n^k
\end{pmatrix},
\]

\[
P = \begin{pmatrix}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{nn}
\end{pmatrix}, \quad \delta^k = \begin{pmatrix}
\delta_{11}^k & 0 & \cdots & 0 \\
0 & \delta_{22}^k & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \delta_{nn}^k
\end{pmatrix}.
\]

Theorem 2. The iteration (6) (or (7)) is convergent when all roots (eigenvalues) of the equation
\[
|A\delta^k - (P + \delta^k L) + t (P + \delta^k L)| = 0
\]
are \(|t_i| < 1, \ i = 1, \ldots, n \).

Proof. In matrix terms the *successive overrelaxation procedure* (7) can be written as follows:

\[
X^{k+1} = (P + \delta^k L)^{-1} \left((I - \delta^k)P - \delta^k R \right) X^k + (P + \delta^k L)^{-1} \delta^kB,
\]

i.e.

\[
X^{k+1} = BX^k + c.
\]

Evidently, \(|B - tI| = 0 \) can be represented as

\[
|B - tI| = \left| (P + \delta^k L)^{-1} \right| \left| A\delta^k - (P + \delta^k L) + t \left(P + \delta^k L \right) \right| = 0,
\]

and the statement of Theorem 2 follows from the standard iteration theory. \(\square \)

3. In a number of cases the success of the procedures of type (5) depends on the proper ordering of the equations (and \(x_i, \ i = 1, \ldots, n \)) in system (1).

In spite of this fact the following variant of the Nekrassov method is known [4]:

\[
x^{k+1}_i = \frac{1}{a_{ii}} \left(\sum_{j=1}^{i-1} a_{ij}x_j^k - \sum_{j=i+1}^{n} a_{ij}x_j^{k+1} + b_i \right).
\]

Further, we are interested in the *successive overrelaxation procedure* (14) based on the method (7):

\[
x^{k+1}_i = x_i^k (1 - \delta^k_i) - \delta^k_i \left(\sum_{j=1}^{i-1} a_{ij}x_j^k + \sum_{j=i+1}^{n} a_{ij}x_j^{k+1} - b_i \right).
\]

In matrix terms the *successive overrelaxation procedure* (15) can be written as follows:

\[
X^{k+1} = (P + \delta^k R)^{-1} \left((I - \delta^k)P - \delta^k L \right) X^k + (P + \delta^k R)^{-1} \delta^kB.
\]

The pseudocode for the modification of Nekrassov method (6) is given in Figure 1.
Choose an initial guess x^0 for the solution x.

for $k = 1, 2, \ldots,$

$$x_i = a_{ii}x_i^{k-1}$$

$N_i^{k-1} = 1$

for $j = 1, 2, \ldots, i - 1$

$$N_i^{k-1} = N_i^{k-1}|x_i^{k-1} - x_j^{k-1}|$$

$$x_i = x_i + a_{ij}x_j^{k-1}$$

end

for $j = i + 1, \ldots, n$

$$N_i^{k-1} = N_i^{k-1}|x_i^{k-1} - x_j^{k-1}|$$

$$x_i = x_i + a_{ij}x_j^{k-1}$$

end

$$x_i = (x_i - b_i)/N_i^{k-1}$$

end

$$x^k = x^{k-1} - x$$

check convergence; continue if necessary

end

Fig. 1. The modification of the Nekrassov method (6)

3. Numerical example. As an example we will consider the system:

$$
\begin{align*}
 x_1 + 3x_2 - 2x_3 &= 5 \\
 3x_1 + 5x_2 + 6x_3 &= 7 \\
 2x_1 + 4x_2 + 3x_3 &= 8
\end{align*}
$$

The exact solution of the system is $x(-15, 8, 2)$.

For an initial approximation we choose $x^0 (-15.02, 8.02, 2.02)$.

We give the results of numerical experiments (8 iterations) for each of methods (5) and (6).

In Table 1 the following notations are used:

– in the first column the serial number of the iteration is given;

– using the modified scheme (6) in the second column the obtained results are given (array $x[]$);

– using the classical Nekrassov scheme (5) in the third column the obtained results are given (array $y[]$).
4. A wide area of problems and practical tasks in tomography and image processing are reduced to the problem of solving a system of algebraic equations with constraint conditions for the initial approximations x_0^i, $i = 1, \ldots, n$ (see Björck [2], A. van der Sluis and H. van der Vorst [16], A. Louis and F. Natterer [9] and R. Santos and A. de Pierro [15]).

Acknowledgement. The authors are pleased to acknowledge a referee’s helpful remarks to the first version of this work.

Table 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-15.02000000000000</td>
<td>7.98800000000000</td>
<td>2.01906701123844</td>
<td>2.02933333333333</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-15.021999590828629</td>
<td>-14.90533333333333</td>
<td>8.017767355852021</td>
<td>7.90800000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-15.02174038667229</td>
<td>2.14797037037037</td>
<td>2.01820333133504</td>
<td>2.05955555555556</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-15.021583967575863</td>
<td>7.08951111111110</td>
<td>2.01666397500912</td>
<td>2.39962469135803</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>-15.0215097923762914</td>
<td>3.1101614609054</td>
<td>8.01497643146312</td>
<td>5.4020270470472</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-15.021417370750044</td>
<td>0.65024938271599</td>
<td>2.01534563522253</td>
<td>5.1149344307273</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-15.021475942421623</td>
<td>10.74442134064936</td>
<td>8.01342704260065</td>
<td>12.68009537448576</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-15.021421713531614</td>
<td>26.59529398567311</td>
<td>8.01273230196133</td>
<td>50.21229489163284</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

Anton Iliev

Faculty of Mathematics

and Informatics

Paisii Hilendarski University of Plovdiv

24 Tsar Assen Str.

4000 Plovdiv, Bulgaria

e-mail: aii@uni-plovdiv.bg

and

Institute of Mathematics

and Informatics

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 8

1113 Sofia, Bulgaria

Nikolay Kyurkchiev

Institute of Mathematics and Informatics

Bulgarian Academy of Sciences

Acad. G. Bonchev Str., Bl. 8

1113 Sofia, Bulgaria

e-mail: nkyurk@math.bas.bg

Milko Petkov

Faculty of Mathematics and Informatics

Episkop Konstantin Preslavski University of Shumen

115 Universitetska Str.

9712 Shumen, Bulgaria

Received September 7, 2009

Final Accepted November 24, 2009