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COMPUTING WITH THE SQUARE ROOT OF NOT

Alexis De Vos, Jan De Beule, Leo Storme

ABSTRACT. To the two classical reversible 1-bit logic gates, i.e. the identity
gate (a.k.a. the follower) and the NOT gate (a.k.a. the inverter), we add an
extra gate, the square root of NOT. Similarly, we add to the 24 classical re-
versible 2-bit circuits, both the square root of NOT and the controlled square
root, of NOT. This leads to a new kind of calculus, situated between classical
reversible computing and quantum computing.

1. Introduction. Reversible logic circuits, acting on m bits, form a
group, isomorphic to the symmetric group S,, of degree n and order n!, where n
is a short-hand notation for 2"*. Quantum circuits, acting on m qubits, form a
group, isomorphic to the unitary group U(n). Whereas S,, is finite, U(n) is an
infinite group, i.e. a Lie group (with an uncountably infinite order, i.e. 0™ ) with
dimension n?.

Although S,, is a subgroup of U(n), the step from S,, to U(n) is huge.
Therefore, the question arises whether groups X exist that are simultaneously a

subgroup of U(n) and a supergroup of S,:
(1) S, ¢ X C U(n).

ACM Computing Classification System (1998): B6.1, F1.1, G2.1.
Key words: Reversible computing, square root of NOT, discrete group.




360 Alexis De Vos, Jan De Beule, Leo Storme

Such group may exist in three different kinds:
e cither a finite group with order > n!,
e or a discrete group with a countable infinity as order,

e or a Lie group (i.e. a group with an uncountable infinity as order) with
dimension < n?.

Each of these possibilities deserves our attention. The larger the group X, the
more difficult it is to implement it into hardware, but the more powerful is the
resulting computer. Assuming that for a lot of interesting problems the quan-
tum computer, based on the whole group U(n), is an ‘overkill’, we have to look
for a satisfactory compromise between simplicity (found close to S,) and com-
putational power (found close to U(n)). Such a computer we may refer to as
‘reversible plus’ or ‘quantum light’.

We may tackle this problem in two ways: either bottom-up or top-down.
For bottom-up we start from the symmetric group and add some extra group
generators. For top-down we start from the unitary group and impose some
restrictions. In the present paper, we apply the former approach. We limit
ourselves to the cases m =1 (thus n = 2) and m = 2 (thus n = 4).

2. One-(qu)bit calculations. A qubit can be in a state ag¥g +a; V1,
where ¥y and ¥y are its two eigenstates. The complex coefficients ag and aq are
the two amplitudes. In quantum computing they can have any value, as long as
apag + aray = 1.

The classical reversible gates on one bit are represented by the two 2 x 2
(1) (1) > (i.e. the follower) and v = ( (1) (1) > (i.e.
the inverter or NOT gate), which form a group isomorphic to the symmetric group
So. We may enlarge the group by adding generators. In the literature [1, 2], the
2 x 2 Pauli matrices < 0 ! > and < 10

i 0 1 -1
the Pauli group (of order 16). In the present paper, on the contrary, we investigate

what happens if we introduce the generator

0_1 144 1—3
2 1—¢ 144 )’

permutation matrices ¢ = (

) have been proposed, leading to
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which satisfies 02 = v. Thus, ¢ is the notorious square root of NOT [3, 4, 5, 6].
It generates a group of order four with elements

_10 U_ww V_Ol andﬁ—ww
=\o1) " \zw)/) " \10) “\w 3 )

where the number w is given by

1+.
w=—-+1i—-
2
and w is its complex conjugate:
_ 1 1
W=—=—1i=.
2 2

The matrix & obeys 72 = v and thus is the ‘other’ square root of NOT. Together,
the four matrices form a group with respect to the operation of ordinary matrix
multiplication, isomorphic to the cyclic group of order 4, i.e. to Z4. Indeed, we
have 02 = v, 02 = 7, and 0* = ¢. Each of the four matrices has all line sums
(i.e. row sums and column sums) equal to 1.

Any of the four matrices transforms the input state agWo + a1 ¥, into an

output state pgWo + p1Vq:

<P0>:(U11 U12)<a0>
»1 Ua1 U ar )’

Because the matrix U is unitary, we automatically have popg + p1p1 = 1. If the
input is in an eigenstate (either (ag,a;) = (1,0) or (ap,a1) = (0,1)), then the
output is in a superposition. E.g.

()= 2)0)=(2)

But, as the output of one circuit may be the input of a subsequent circuit, we have
to consider the possibility of (ag,a;) being in such a superposition of eigenstates.
In fact, we have to consider all possible values of (ag,a1) and (pg, p1), which may
be transformed into one another. These values turn out to be either a column or a
row of one of the four matrices. Thus, in total, four states have to be considered:
(1,0), (0,1), (w,w), and (w,w). Such an object, which may be in four different
states, we can call a squabit, in order to distinguish it from a qubit, which can
be in as many as oo® different states, and from a bit, which can be in only two
different states.
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We see that, besides agag + a1a1 = 1, the amplitudes ag and aq fulfil one
more restriction, namely ag + a; = 1. Because each of the four transformation
matrices has constant line sum equal to 1, the property ag+ a1 = 1 automatically
induces pg+p1; = 1. Table 1 displays how each of the matrices acts on the column
matrix (ag,a;)”. The tables constitute the truth tables of the four reversible
transformations. Each of these tables expresses a permutation of the four objects
(1,0), (0,1), (w,w), and (w,w). Together they therefore form a permutation
group which is a subgroup of the symmetric group Sy.

Table 1. The members of the group with m = 1: (a) follower, (b) square root of NOT,
(c) NOT, and (d) square root of NOT

apa1 | Popi aopay | pPopPi aopai | PopPi apa1 | Popi

10 10 10 ww 10 01 10 W w

01 01 01 w w 01 10 01 w w

Ww | ww ww 01 ww | Ww ww 10

Dw | Ww o w 10 Dw | ww ww 01
(a) (b) (c) (d)

3. Two-(qu)bit calculations

Two qubits exist in a superposition agyWoo + ap1 Vo1 + a10¥10 + a11 V11
with > apar; = 1. Here, additionally we have > ag; = 1. The subset of 2-qubit
circuits we investigate has to comprise the circuit calculating the square root of
NOT of qubit # 2. This circuit is represented by the matrix

w w 0 0
w w 0 0
(2) 2710 0 w o
0 0 w w

This matrix is the generator of a group isomorphic to Z4. The wanted set of
2-qubit circuits should also contain all classical reversible 2-bit circuits. Those
are generated by two generators

0100 0100
100 0010
““1oo0o1 o0 and b= g o 1 |
0001 1000
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generating a group isomorphic to Sy.

Straightforward calculations (with the help of the computer algebra pack-
age GAP [7]) reveal that the group generated by the three generators {09, a, b} has
order 192. It constitutes the closure of the group (isomorphic to Z,) generated
by the first generator and the group (isomorphic to S4) generated by the two
other generators. We call this closure Y. All 192 different 4 x 4 unitary matrices
L1 ¢ 1} and all have line sums

fY h ies f h 1, o,w,—=, =, —=
o) ave entries from the set {0, , W, w, 237373

equal to 1. We have

24 matrices with entries from {0, 1},

72 matrices with entries from {0,w,w},

1
72 matrices with entries from {5, —%, %}, and

11
24 matrices with entries from {—5, 5}

The four classes of matrices are the four double cosets in which the group Y is
partitioned by its S4-subgroup. Representatives of these double cosets are e.g.

1 0 0 O w w 0 0 1 1 —
01 00 w w 0 0 1 1 ¢ — 1
001 0}’ 0 0 w w |’ 1 - ¢ 1 |’

0 0 0 1 0 0 W w - 1 1 4

-1 1 1 1

1 1 1 -1

and§ 11 -
1 -1 1

Figure 1 shows the four representative circuits.

We may note that the number 192 is really an ‘ordinary order’ for a finite
group. Indeed, according to Conway et al. [8], there are 6013 different groups
with order smaller than 200. Among them, not fewer than 1543 (i.e. about 26%)
have an order precisely equal to 192. With the GAP command IdGroup(), we
find that the group Y has the GAP library number [192, 944]. The group is
isomorphic to (Zyx Zsx Zs) : Ss, where x denotes the direct product and :
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Fig. 1. Four representative circuits: (a) follower, (b) square root of NOT, (c¢) double
square root of NOT, and (d) a more complicated circuit

denotes the semidirect product of two groups. Its subgroup isomorphic to Z4x
Z4x Zs is generated by the three generators

1 1 — 7 1 — 1 )
1 1 1 7 —1 1 —1 1 7 1
—1 ) 1 1 ’ 1 7 1 — ’
T —1 1 1 7 1 —2 1
-1 1 1
1 — 1 1 1
and = 1 1 1

1 1 -1 1
Noteworthy is the fact that a matrix like

100 0
010 0
(3) ““loowazl|
0 0 w w

which may be interpreted as a ‘controlled square root of NOT’ (or as a ‘square root
of controlled NOT’), is not a member of the group Y. In contrast, the ‘controlled
NOT’, i.e.

1000
0100
000 1|
0010

is a member of Y. Also automatically a member is the circuit calculating the
square root of NOT of qubit # 1:

g1 =

o g o¢&
gl o & o
o & o gl
€ o g o
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The group Y may be regarded as a permutation group, provided we
introduce the necessary number of quantum superpositions. These states, again,
correspond to rows/columns of the matrices. E.g. Table 2 shows an example
of a truth table. Both this permutation table and the matrix (2) constitute a
representation of the same circuit in Figure 1b.

We see that, in order to guarantee that the set of input words (agg, o1, @10,
aj1) equals the set of output words (poo, po1, P10, P11), we need to consider not
fewer than 32 different words. Therefore, the group of circuits generated by the
three generators will be a subgroup of S3o. This group Y of 2-qubit circuits can
thus be represented by a subset of the 32! different 32 x 32 permutation matrices.
We may summarize that the 192 matrices of the group Y simultaneously form a
supergroup of the symmetric group S4 and a subgroup of the symmetric group
Sgg:

S, C Y C Sss.

With the GAP command SmallerDegreePermutationRepresentation(Image
(RegularActionHomomorphism())) we find that the matrix group is isomorphic
to a particular group of even permutations of twelve objects:

S4CTCA12,

where A,, denotes the alternating group of degree n (with order n!/2).

If we add the matrix (3) as a fourth generator, the group Y is enlarged to
a new group €2 (i.e. the closure of Y and ¢ ), which, according to GAP, has infinite
order. However, this result seems to be only a warning [9] that the order of one
of its elements ‘must be larger than 1000°. We thus will explicitly prove that the
new group has order equal to the countable infinity Ny. For this purpose, below
we will

e first demonstrate that the order is smaller than or equal to Xg and
e then demonstrate that the order is greater than or equal to N.

First, we note that each element of €2 is a matrix with 16 entries, all of
the form a + bi, with both @ and b rational numbers. The non-singular matrices
with such entries form a group. The latter group has order equal to Ng2 — N30,
i.e. order Ny. Our group €2 is a subgroup of it and therefore has an order smaller
than or equal to Ng.

Next, we note that the group generated by the four generators {03, a, b, c}
equals the group generated by the three generators {a, b, c}. Indeed, gate o9 can
be realized by combining two gates ¢ with two NOT gates. See Figure 2. Then we
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Table 2. The truth table of member o2 of the group Y

m R R =R =R = N R R i R R = L ) 1__2 HN O 33 © © 3 3 O ~a—a Jlarsian Hien e
m 3 300 — O~ ,z_2 N AN s O ﬂ_2 N O N 1,‘_2 3O O I3 3 © © |3 HaHa .z_Q.ﬂ_Q IO e
m oo 33 o onanasiasa TRl oA~ e 3 o 3 o © 3 o 3 1_A_2 IS e e e sl
W oo 3 3 oo ilamaaanan = st O Hame O 3 O 3 3 O 3 O i 1,_2 =1 e e e
au —oo0o 3IRI OB oS 3 o3 © o =i flesien Tamier e sien Tlen =1en =1en =1en =1en e —len v —ien
aw ©O—HOoOO 3320 30 30 300 3 < ﬂ_2 SO =IO | e 72_2 IO I sl Tler e Sl e 1_A_2 I =l
am COoO—HO ©OO0O3 13 3 3 0 S 30 O [3 o flarsien Tlesian =ie —en —ie Slensien Tle —len —ien 4_2 —le
W CoOOoOH OO0 © © O |3 13133 3 3 ~IN—a—a N N Hla Tlesien Tle i_2;_b_2 Sl N =N e 4_2
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I

v v

Fig. 2. An uncontrolled gate as a sequence of two controlled gates

note that, in order to prove that the order of a matrix group is infinite, it suffices
to demonstrate that one of its elements has infinite order. We chose the element

(4) y = abc =

_ o O O
O O = O
o g ot
o & o gl

The proof that matrix ¢ has infinite order is given in the Appendices: Appendix A
treats the case of an arbitrary unitary matrix z, whereas Appendix B treats
the particular case of the matrix y defined by equation (4). Thus the group
{1,9,9%,43, ...} has an order equal to Xg. Our group 2 is a supergroup of it and
therefore has an order greater than or equal to Ng.

4. Conclusions. There exist 2 reversible logic circuits acting on 1 bit
(forming a group isomorphic to Sy); there exist 24 reversible logic circuits acting
on 2 bits (forming a group isomorphic to S4). Adding to the former set the logic
gate called the ‘square root of NOT’ leads to a group of four circuits (isomorphic
to Z4). Adding the same square root of NOT to the latter set leads to a group Y
of 192 circuits. Additionally adding the ‘controlled square root of NOT’ leads to a
group Q with a (countable) infinity of circuits. This suggests that there might be
limited room for groups X satisfying (1), in contrast to what one would expect
from the huge difference between Order(S,,) and Order(U(n)).
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A. Order of an arbitrary unitary matrix x. We consider an nxn
unitary matrix x. The matrix x has infinite order if the sequence {z°, 2!, 22,...}
is not periodic, i.e. if all 27 with j > 0 are different from 2 = 1. The matrix
recursion equation x/ = 2771z yields n? scalar recursion equations. These fall
apart into n sets of n equations. Within a set the row number k is fixed and the
column number ¢ takes all values from 1 to n :

(xj)kq = Z(xj_l)kp Lpq-

p

0

Let X be the Z-transform of the matrix sequence 2%, ', 2, .... Then:

Xk

_ 74

qu—z > Lpg
P

or

Z TpgXip — 2Xpg = 0,
p

a set of n homogeneous equations, which has a non-zero solution iff
det(x —2) =0 .

The solutions z of this equation are the eigenvalues of the given matrix . Thus
the n poles 2, of the Z-transform of the matrix sequence {27} are the n eigenvalues
of x itself. Thus, if all eigenvalues z; of x are different, then

n—1 )
(5) =S e,
k=0

with n appropriate matrices x, each to be determined as a linear superposition
of the n initial conditions 20 = 1, 2!, ..., and 2"~!. This result is strongly
related to the Cayley—Hamilton theorem. Because of (5), 27 can only be periodic
if all the eigenvalues z; are located on the unit circle with rational phase angles.
Here, we call an angle rational iff it is a rational multiple of .

Because x is unitary, automatically all its eigenvalues are on the unit
circle, so that we only have to check the n phase angles. If  has an eigenvalue zj
with multiplicity s, then, beside a term proportional to zi, also terms proportional
to jzi, to j2zi, ey js_lzi appear and z7 is not periodic, even if zj, has a ra‘pional
phase angle (unless the starting values , 2, ..., m’fl of the sequence {2’} are
such that all the coefficients of jzj, j227, ..., 75 '] turn out to be equal to the
zero matrix).
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B. Order of the unitary matrix y. The power sequence {y/} of
the 4 x 4 matrix (4) is of the form

yj = COZ(% + dojzg + 612{ + ngg,
with zg, z1, and z the three solutions of the eigenvalue equation
(z—1)*+wz+i)=0

and with appropriate matrices ¢y, dy, c¢1, and co, determined” by the initial
conditions 3° = 1, 3!, 3%, and 3. We have 29 = 1 (with multiplicity 2),

CVTHL VT V-1 VT

z1 = 1 +1 1 and zo = . As expected, all three

numbers 2y, z1, and 2o lie on the unit circle of the complex plane. Their phase

7T—1
angles are y =0, 01 = 7/2 — 0, and 02 = 7 + 0, where 6 = Arccos \/_4 ) =

Arctan(V/7) — m/4 =~ 24°17'43" .

Neither z{ nor z% is periodic, because the angle 6 is not a so-called ratio-
nal angle, i.e. an angle which is a rational multiple of m. Indeed, according to
Jahnel [10], the only rational angles (between 0° and 90°) with a cosine equal to
a quadratic irrational are 30°, 36°, 45°, and 72° (with cosines equal to respec-
tively v/3/2, v/5/4+1/4, v/2/2, and v/5/4 — 1/4). Similarly, according to Calcut
[11], the only rational angles (between 0° and 90°) with a tangent equal to a
quadratic irrational are 15°, 22°30’, 30°, 60°, 67°30/, and 75° (with tangent equal

to respectively 2 — /3, V2 — 1, \/5/3, V3,v2+1, and 2 + \/3)

“Straightforward but lengthy calculations (involving the solution of 16 sets each of four

equations in four unknowns) leads to co = % G,dy=0,c1 = % H + g J+1i g K, and
1 V7o, VT
Cg—ngig]*’LHK,Where
1 0 1 1 2 0 -1 -1
0 3 00 0 0 0 0
G = 1 0 1 1 , H= -1 0 2 -1 ’
1 0 1 1 -1 0 -1 2
-1 0 -1 2 0 0 1 -1
0 0 0 0 0 0 0 0
Jo= 10 2 -1 |cwE=1 o g
2 0 -1 -1 1 0 -1 0



