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CLASSIFICATION TREES AS A TECHNIQUE FOR

CREATING ANOMALY-BASED INTRUSION DETECTION

SYSTEMS

Veselina Jecheva, Evgeniya Nikolova

Abstract. Intrusion detection is a critical component of security informa-
tion systems. The intrusion detection process attempts to detect malicious
attacks by examining various data collected during processes on the pro-
tected system. This paper examines the anomaly-based intrusion detection
based on sequences of system calls. The point is to construct a model that
describes normal or acceptable system activity using the classification trees
approach. The created database is utilized as a basis for distinguishing the
intrusive activity from the legal one using string metric algorithms. The
major results of the implemented simulation experiments are presented and
discussed as well.

I. Introduction. Intrusion detection systems are essential parts of
the contemporary security systems, which are aimed at protecting various kinds
of networks, from simple home networks to multinational commercial networks.

ACM Computing Classification System (1998): C.2.0.
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Their role is to monitor the computer and network systems with the purpose of
detecting any violations of the accepted security policy.

Intrusion Detection Systems (IDS) monitor system behaviour and alert
on potentially malicious network traffic [3]. They were categorized, based on
their detection models, into the following: misuse detection model and anomaly
detection model. Misuse-based IDS looks for signatures of common attacks in
the current system data and alerts the activities accordingly [4], similarly to
most anti-virus products. They produce reliable results and a low level of false
attacks. The major disadvantage of these systems is their inability to detect new
attacks or variations of common attacks, since they discover only intrusions that
match previously known attack scenarios.

In contrast, anomaly detection approaches build models of normal data
and then attempt to detect deviations from the normal model in observed data
[26]. If any significant deviation is found, the IDS raise an alarm in the case the
event is classified as an attack. The anomaly-based IDS have the capability to
detect novel attacks and intrusions without known signatures, as they attempt
to search for malicious behaviour that deviates from established normal patterns
[22]. However, describing the normal activity and the deviation from it is not a
trivial task. Therefore, anomaly-based IDS produce higher false alarms compared
to misuse-based approaches and could miss real attacks because of a deficiency
in their ability to discriminate attacks from legitimate behaviours [24].

Until now, to model normal and abnormal system behaviours using in-
trusion audit data, various techniques have been applied: data mining [6, 25],
Hidden Markov Model [2, 23], fuzzy logic, genetic algorithms [8, 16, 17], neural
networks [7, 35], etc.

Among the most critical issues of the IDS is to profile normal behaviour
at a level that is both robust to variations in normal and perturbed by intrusions
[13]. The different methods for anomaly detection vary in how they describe
normal activity and how they define deviation from this baseline. Many anomaly
detection approaches [9, 30, 37] define normal behaviour using a run-time process
activity. System call traces are a common type of audit data collected for per-
forming intrusion detection. A system call trace is the ordered sequence of system
calls that a process performs during its execution [34]. This supervised approach
includes two major stages. The first phase involves collecting traces of normal
behaviors and building a database to characterize normal patterns from the ob-
served system calls. In the second phase, newly observed system call sequences
are matched against the normal pattern of the system behaviour [10].

Forrest and Ghosh [12, 13, 14] propose an approach that monitors the
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system behaviour at the level of running services (for example, ftp, sending or
receiving e-mail, etc.), which they referred to as privileged processes. In order to
be able to perform their functions, these processes are given much more privileges
in the system, compared to those of the ordinary users. For that purpose, they
are special targets for the attackers, since a successful intrusion would give them
much more control over the system compared to the attacks against the programs,
which are invoked by the ordinary users. Monitoring privileged processes also
offers some advantages over monitoring user behaviour, since the behaviour of
the privileged processes varies to a lesser extent compared to the behaviour of
the users, which can involve diverse actions. The functions performed by the
privileged processes rarely change over time.

The present work addresses the issue of anomaly-based IDS, which de-
scribes and monitors the behaviour of privileged processes, based on the system
call sequences. Since a complete set of system call sequences can hardly be built
in real environments, the proposed methodology applies some data-mining tech-
niques for description of the normal system activity. The detection of abnormal
process behaviour during the system work is performed using some similarity
coefficients and distance measures, which are widely used in various recognition
tasks.

II. Similarity and distance measures. There are two major tech-
niques – similarity measures and distance measures, which could be applied with
the purpose of determining the degree of similarity between two sequences. The
similarity measure gives a quantitative value which is higher in the case of greater
similarity. Conversely, a greater value of the distance measure indicates a lesser
similarity.

The aim of this paper is to determine how the selection of a similarity
coefficient affects the resulting classifications when measuring the similarity of
two sequences of system calls. The results showed that for almost all methodolo-
gies and marker systems, the Jaccard, Sorensen-Dice and Anderberg coefficient
showed close results.

1. Wagner-Fischer distance, Jaro distance and Jaro-Winkler dis-

tance. In this section our attention is focused on the Wagner-Fischer distance
(WFD) [36], the Jaro distance (JD) [20] and the Jaro-Winkler distance (JWD)
[38]. The WFD is a string metric between two strings, which stands for the mini-
mum number of operations (insertion, deletion, substitution of a single character,
transposition of two characters) needed to transform one string into the other.
Let the weight for the cost of transforming symbol a into symbol b be denoted by
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w (a, b). Then w (a, b) is the cost of a symbol substitution a → b, w (a, ε) is the
cost of deleting a and w (ε, b) is the cost of inserting b. The WFD are computed
using the following recurrence relation:

dWF (i, j) = min

{

d (i− 1, j) + w (xi, ε) , d (i, j − 1) + w (ε, yj) ,
d (i− 1, j − 1) + w (xi, yj)

}

.

It calculates the exact number of operations needed to transform the
string into the other one. The distance between two strings is zero if they are
identical. This value is referred to as restricted edit distance.

The JD is a measure of similarity between two strings without being a
metric in the mathematical sense of that term. Given two strings s1 and s2, their
JD is
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vided by two).

The JWD are computed using the following formula:
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where

◦ l is the length of the common prefix at the start of the string;

◦ p is a constant scaling factor for the degree of closeness for having common
prefixes.

2. Similarity measures for sequences. Similarity s (p, q) is a numer-
ical measure of how alike two data sequences are. It gets values in the interval
[0.1]. Let pand qare the attribute values for two data sequences, then

s (p, q) =

{

1 if p = q

0 if p 6= q
.
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The similarity is symmetric, i.e. s (p, q) = s (q, p) for all p and q.

If a sequence x is defined as a concatenation of symbols from a finite
alphabet Σ, a language E ∈ Σ∗ comprises subsequences ω ∈ E, which are called
words. Given a language E, a sequence x can be mapped into an |E|-dimensional
space by calculating a function φω (x) for every ω ∈ E appearing in x. The
function φω (x) is defined as follows

φω : Σ∗ → R+ ∪ {0}, φω(x) = ψ(occ(ω, x)).Wω

where occ(ω, x) is the number of occurrences of ω in x, ψ is a numerical transfor-
mation, e.g. a conversion to frequencies and Wω is a position-depended weight.

Special attention is drawn to the following similarity coefficients for se-
quential data [1, 5, 19, 21, 31]:

Jaccard (J) sJ (x, y) =
a

a+ b+ c

Czekanowski-Sorensen-Dice (CSD) sCSD(x, y) =
2a

2a+ b+ c

Sokal-Sneath-Anderberg (SSA) sSSA(x, y) =
a

a+ 2(b+ c)

where
a =

∑

ω∈L

min (φω (x) , φω (y))

b =
∑

ω∈L

[φω (x) − min (φω (x) , φω (y))]

c =
∑

ω∈L

[φω (y) − min (φω (x) , φω (y))]

III. Description of the methodology. Data mining in general is the
process of discovering useful and previously unknown information from historical
or real-time data [18]. Data mining in intrusion detection may vary from the
simple task of determining the relationships among a set of host or network
data to modelling certain tasks, such as attacks classification and accordingly
a response choice. The data mining process involves several consecutive steps,
namely:
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• data pre-processing, which involves preparation, selection and more impor-
tantly understanding data characteristics;

• data analysis, which is essentially a search for useful patterns of any form
in the data;

• the process of intrusion detection itself, which includes scanning of real-time
or archived data collected during the system work.

Classification tree is another frequently applied approach in the field of
intrusion detection [15, 27]. In our approach the implementation of the clas-
sification trees is performed through the process of description of the normal
system activity. The normal activity patterns compose a set Q with N states
q1, q2, . . . , qN , which the system passes through its work in the discrete moments
of time t = 1, . . . , T . We assume that the probability of occupying a state is deter-
mined solely by the preceding state. Each state transition probability represents
the probability of transitioning from a given state to another possible state. Based
on the state transition probabilities, we construct classification trees of level L,
whose roots are all possible states qk, k = 1, . . . , N . The inheritors for each ver-
tex are the states for which the corresponding transition probabilities from their
predecessor are non-zero.

By traversing the tree from the root to the leaves we can obtain all possible
state sequences with length L along with the corresponding transition probabil-
ities. The obtained lists of system calls consist of all possible sequences with a
given state in kth position and contain states for which the transition probabilities
for each couple of neighbours is non-zero.

Within the created classification trees we apply the WFD, JD, JWD,
SSA similarity coefficient, CSD similarity coefficient and JD similarity coefficient
between the obtained sequence and normal sequences for the calculation of the
number of errors. The obtained value of 1 means that the observed sequence
contains no intrusions, while the value of 0 stands for a sequence of intrusions
only. Since the similarity coefficients report only the degree of proximity, for
the assessment of abnormal positions we apply the Hamming distance between
the received sequence and the list Si, consisting of the sequences with the same
maximal similarity coefficient:

dH =
n

∑

j=1

δj , δj =

{

1, si
j = yj

0, si
j 6= yj

, Si = (si
1, . . . , s

i
n), y = (y1, . . . , yn).
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IV. Statistical methods of evaluating the effectiveness of

IDS. The goal of our classification test is to determine whether a given sequence
belongs to one of two sets—the normal set or the intrusion set. For every possible
test value there are two kinds of errors—a false positive (FP) and a false negative
(FN ). A false positive occurs when an event is predicted as intrusive but it is in
fact normal. A false negative occurs when a truly intrusive event occurs without
being signalled. If the target value is greater than the given threshold, the data
is signalled as intrusive, and is considered as normal otherwise. We have a hit if a
truly intrusive session is registered by a given test as intrusive. We can compute
the hit rate (HR) as the ratio of number of the hits on the intrusive session to
the total numbers of intrusive sessions in the testing data and false-alarm rate
(FAR) as the ratio of the number of the false alarms to the total number of the
truly normal data.

A Receiver Operating Characteristic Curve (ROC curve) [11] plots hit
rates and false-alarm rates for various thresholds. The closer it is to the top left
corner, with 100% hit rate and 0% false-alarm rate, of a chart, the better the
performance. Hence, the ROC curve shows the overall detection performance of
a given test.

As a measure of the quality of binary classification can be used the
Matthews correlation coefficient (MCC ) [28].

MCC =
TP.TN − FP.FN

√

(TP + FP ) (TP + FN) (TN + FP ) (TN + FN)
,

where TP is the number of true positives and TN is the number of true negatives.
MCC = +1 represents a perfect prediction and MCC = −1 represents the worst
possible prediction.

The performance of each classifier was evaluated using the detection rate
and overall accuracy. The detection rate shows the percentage of the true in-
trusions that have been successfully detected. It is a function of the identified
intrusions:

Detection rate =
TP

TP + FN

The overall accuracy [33] is a percentage of correctly identified patterns:

Overall Accuracy =
TP + TN

TP + TN + FP + FN

The false positive rate (FPR) is the frequency with which the IDS reports
malicious activity in error.

α = False positive rate =
number of false positives

total number of negative instances
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To facilitate performance comparison among different methods the cost
function was used [29]:

Cost = (1 − hit rate) + γ.false positive rate,

where the parameter γ represents the relative cost difference between a false pos-
itive rate and a miss. The lower the cost is, the better performance an intrusion
detection system has.

Spearman’s Rank correlation coefficient [32] is a technique which can be
applied in order to summarise the strength and direction (negative or positive) of
the relationship between two variables. Spearman’s Rank correlation coefficient
is given by the following formula

SRCC = 1 −
6
∑

d2
i

n3 − n
,

where di is the difference between the ranks of corresponding values and n is the
number of pairs of values. If the SRCC value

• is −1, there is a perfect negative correlation;

• falls between −1 and −0.5, there is a strong negative correlation;

• falls between −0.5 and 0, there is a weak negative correlation;

• is 0, there is no correlation;

• falls between 0 and 0.5, there is a weak positive correlation;

• falls between 0.5 and 1, there is a strong positive correlation;

• is 1, there is a perfect positive correlation

between the two sets of data.

V. Simulation experiments and results.

1. Description of the simulation data. Extensive empirical testing
of the proposed methodology was performed on the data generated and published
by the Immune Systems Project of the Computer Science Department, Univer-
sity of New Mexico. The data are obtained from Unix system examination during
an extended period of time and consist of normal user activity patterns of some
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privileged processes executed on behalf of the root account as well as some anom-
alous data. The methods for pattern generation are described in [12] and [13].
They prove that the short sequences of system calls are a reliable discriminator
between normal and anomalous activities in the system. Each pattern is a se-
quence of system calls, which are the results of the examined process. The input
data files are sequences of ordered pairs of numbers, where each line consists of
one pair. The first number in each pair is the process ID (PID) of the process
executed, and the second one is the system call number. Forks are taken into ac-
count as separate processes and their execution results are considered as normal
user activity.

As a first stage based on the normal user activity patterns, the state tran-
sition probabilities for the sequences of the normal system activity were evaluated
and the normal database, which consists of the classification trees of level L, was
created. These trees compose the normal program behavior profiles. During the
second stage, which is the intrusion detection itself, the anomalous data were
divided into portions of length L and compared to the lists extracted by the
trees in normal database. The testing data contain both normal and anomalous
patterns for the following processes: inetd, login, named and synthetic sendmail.
The anomalous data for the processes login and named contain two separate files,
designated in the results as login1, login2, named1 and named2, respectively.

2. Simulation resuts. The anomalous activity was detected using
WFD, JD and JWD, as representatives of the string metrics, and SSA, CSD
and J similarity coefficients. The distance distributions for the string metrics
WFD, JD and JWD, which give us information about the number of anomalous

Fig. 1. The distances distributions of WFD
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Fig. 2. The distance distributions of JD

Fig. 3. Distance distributions for the processes inetd, login, named and synthetic
sendmail using the IDS based on JWD

patterns in the examined sequences of length L, are represented in Figures 1–3
respectively. The calculated distances are numbers between 0, which indicates
that the observed sequence is a result of normal activity, and L, which indicates
that the observed sequence contains only attacks.

The distributions of the number of anomalous patterns in the examined
sequences of observations with length L = 7 detected by IDS based on JD or
JWD with scaling factor p = 0.05 and p = 0.1 are represented respectively in
Figures 4 and 5.
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Fig. 4. Frequency of a number of intrusions in a sequence of observations with length
L = 7, detected by IDS based on JD

Fig. 5. Frequency of a number of intrusions in a sequence of observations with length
L = 7, detected by IDS based on JWD with scaling factor p = 0.05 and p = 0.1

According to the methodology described in the previous section, we cal-
culated the SSA, CSD and J similarity coefficients in order to evaluate the degree
of similarity between the observed sequences and the sequences obtained by tra-
versing the trees from the normal activity profiles. The calculated coefficients
are numbers between 0, which indicates that the observed sequence contains only
attacks, and 1, which indicates that the observed sequence is a result of nor-
mal activity. The result similarity coefficients for the processes named, synthetic
sendmail, inetd and login, are represented in Figures 6–8. From the figures we
can see that the coefficient distributions depend on the executed processes. In
the case that more than one normal sequence with maximum similarity coeffi-
cient was obtained, the sequence with minimum Hamming distance was searched
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Fig. 6. The distance distributions of the SSA, CSD and J
similarity coefficient for the process synthetic sendmail

Fig. 7. The distance distributions of the SSA, CSD and J
similarity coefficient for the process inetd

for. The relations between the similarity coefficients and the Hamming distances
obtained for the sequences with equal coefficient value are represented in Figures
9–11.

3. Effectiveness of the applied methodology. The presented anom-
aly detection methods could accurately ascertain a given unknown sequence to be
normal or anomalous with a detection rate whose values for the processes inetd,
login, named and synthetic sendmail are presented in the Tables 1 and 2. One
important question is whether the choice of the distance or similarity coefficient
has a significant influence on the efficiency of the methodology. With the purpose
of comparing the different intrusion detection methods, the Matthews correlation
coefficient and overall accuracy were computed and described in section IV.
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Fig. 8. The distance distributions of the SSA, CSD and J similarity coefficient for the
process login

Fig. 9. The relation between the SSA similarity coefficient and the Hamming distance
for the process synthetic sendmail

Fig. 10. The relation between the CSD similarity coefficient and the Hamming distance
for the process synthetic sendmail
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Fig. 11. The relation between the J similarity coefficient and the Hamming distance for
the process synthetic sendmail

The detection rate represents the percentage of the false negatives re-
garding the true positives. The closer to 1 the detection rate is, the better the
classification method is. All the presented values are between 0.700 and 0.996,
which means that the proposed method can identify the intrusion patterns from
the observed system call sequences with a very good detection rate. The lowest
value is obtained for synthetic sendmail and SSA and CSD similarity coefficients.

The obtained values of MCC for all the processes belong to the interval
(0.47; 0.87), which means balanced results, as a coefficient of +1 represents a per-
fect prediction. From Table 1 we can see that all MCC values obtained when the
methodology applies the string distances are between 0.57 and 0.86. The highest
values are obtained for the process named, the balanced results are obtained for
the processes synthetic sendmail and inetd, and the lowest (but good enough)
results are obtained for the process login. From Table 2 we can see that all MCC
values obtained when the methodology applies the similarity measures are be-
tween 0.47 and 0.86. The MCC results obtained when the methodology applies
the similarity measures are lower than the values obtained when the methodology
applies the string distances. These results suggest that there is more significant
correlation between the system behaviour profiles and the examined sequences of
system activity, when the methodology applies the string distances.

The overall accuracy results are between 0.730 and 0.996, which suggest
the number of false alarms is not significant, compared to the number of all
predictions. From Table 1 we can see that all the overall accuracy values obtained
when the methodology applies the string distances belong to the interval (0.9;
0.996). These results show the proposed methodology achieves an excellent level
of diagnostic efficiency when the string metrics are applied, as the overall accuracy
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Table 1. Detection rate, MCC and overall accuracy for the IDS based on the WFD, JD
and JWD

synthetic sendmail Detection rate MCC Overall accuracy

WFD 0.9279 0.7758 0.9363

JD 0.9228 0.7836 0.9331
JWD with factor p = 0.05 0.8929 0.6721 0.9035
JWD with factor p = 0.1 0.9151 0.7508 0.9253

named Detection rate MCC Overall accuracy

WFD 0.9823 0.8590 0.9832

JD 0.9772 0.8286 0.9783
JWD with factor p = 0.05 0.9726 0.8426 0.9745
JWD with factor p = 0.1 0.9731 0.8446 0.9749

login Detection rate MCC Overall accuracy

WFD 0.9960 0.6641 0.9964

JD 0.9951 0.5780 0.9950
JWD with factor p = 0.05 0.9705 0.7208 0.9714
JWD with factor p = 0.1 0.9701 0.7143 0.9711

inetd Detection rate MCC Overall accuracy

WFD 0.9910 0.7410 0.9912

JD 0.9844 0.6818 0.9854
JWD with factor p = 0.05 0.9861 0.7333 0.9863
JWD with factor p = 0.1 0.9861 0.7330 0.9863

is the total probability that a system call pattern will be correctly classified by
the proposed methodology. The values of the overall accuracy from Table 2 are
between 0.733 and 0.978. These results are slightly lower than the results in
Table 1, but still good enough, especially for the processes login and inetd, whose
values belong to the interval (0.8; 0.978). These results suggest the application
of the string metrics instead of the similarity coefficients achieves better results
again.

In a ROC curve each FAR value can be plotted against its corresponding
HR value for different cut-off points in order to create the diagrams. A test with
perfect discrimination has a ROC plot that passes through the upper left corner.
Therefore the closer the ROC plot is to the upper left corner, the higher the
overall accuracy of the test [39]. Figures 12–14 contain the ROC curves for the
processes synthetic sendmail, inetd and login, when the proposed methodology
applies the similarity coefficients.

The IDS based on the J similarity coefficient achieves the 95% HR at the
35% FAR for the process login. The IDS based on the SSA similarity coefficient
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Table 2. Detection rate, MCC and overall accuracy for the IDS based on the SSA, CSD
and J similarity coefficients

synthetic sendmail Detection rate MCC Overall accuracy

SSA 0.7000 0.4728 0.7334
CSD 0.7000 0.4728 0.9330

J 0.8812 0.8732 0.8447

named Detection rate MCC Overall accuracy

SSA 0.8841 0.6821 0.8611
CSD 0.8438 0.5180 0.7941

J 0.8608 0.6265 0.8681

login Detection rate MCC Overall accuracy

SSA 0.9647 0.4810 0.9546
CSD 0.9836 0.6120 0.9780

J 0.9887 0.8624 0.9733

inetd Detection rate MCC Overall accuracy

SSA 0.9727 0.6463 0.9579
CSD 0.8386 0.5343 0.8065

J 0.9728 0.6542 0.9631

achieves the 77% HR at the 35% FAR for the process login. The IDS based on the
CSD similarity coefficient achieves the 54% HR at the 35% FAR for the process
login. Since the area under the ROC curves for the process login is from 0.9
to 1, this methodology represents an excellent result. The area under the ROC
curves for the process synthetic sendmail is between 0.8 and 0.9, which means
that this methodology gives good classification results. Since the area under the
ROC curves for the process inetd in case of the SSA and J similarity coefficients
is between 0.8 and 0.9, this methodology represents a good result, and in case of
CSD similarity coefficients is between 0.7 and 0.8, which means a fair result.

The cost and its related hit rate are metrics of the performance of the
applied methodology and the lower the cost, the better performance the proposed
algorithm has. Table 3 presents the values of the cost for the examined processes.
The best results are obtained when the proposed methodology applies the string
distances JD, WFD, JWD with p = 0.05 and JWD with p = 0.05 respectively.

The results of the SRCC value are given in the Table 4.
The correlations between the results obtained by using different distances

were all close to 1, making it evident that they are highly related.
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Fig. 12. The ROC curve for the process synthetic sendmail in the case of the SSA,
CSD and J similarity coefficients

Fig. 13. The ROC curve for the process inetd in the case of the SSA, CSD and J
similarity coefficients

Fig. 14. The ROC curve for the process login in the case of the SSA, CSD and J
similarity coefficients
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Table 3. Cost for the processes synthetic sendmail, named, login and inetd

synthetic

sendmail

distance or
coefficient

WFD JD JWD

p=0.05

JWD

p=0.1

SSA CSD J

Cost 0.3512 0.3346 0.4940 0.3840 0.9089 0.9089 0.9819
named

distance or
coefficient

WFD JD JWD

p=0.05

JWD

p=0.1

SSA CSD J

Cost 0.2489 0.6504 0.5750 0.5634 0.9737 0.9925 0.9400
login

distance or
coefficient

WFD JD JWD

p=0.05

JWD

p=0.1

SSA CSD J

Cost 0.6026 0.6643 0.4647 0.4740 1,0006 0.9950 0.9731
inetd

distance or
coefficient

WFD JD JWD

p=0.05

JWD

p=0.1

SSA CSD J

Cost 0.5000 0.5278 0.4546 0.6841 0.9952 0.9736 0.9923

VI. Discussions.

1. Comparison of the Applied Algorithms. Let’s designate with A

the IDS based on WFD, with B the IDS based on JD, with C the IDS based on
JWD when p =0.05, with D the IDS based on JWD when p=0.1, with E the IDS
based on SSA coefficient, with F the IDS based on CSD coefficient, and with G
the IDS based on J coefficient.

The results, presented in Tables 1 and 2, show that all models achieve
a very high level of detection rate results. The models which apply the string
distances yield better results than the models which apply the similarity coeffi-
cients, as far as detection rate alone is concerned. The best results are achieved
by model A for all the processes. We should mention that models B, C and D

yield lower, but still very high detection rate levels, whose values are greater than
0.9 for all processes. Models E and G yield detection rate values greater than
0.9 for the processes login and inetd; and model F achieves detection rate values
greater than 0.9 for the process login. Consequently, the testing results show that
all models can identify the intrusion behaviours with very good detection rate.

The values of MCC presented in Tables 1 and 2 show balanced and reliable
results for all models according to MCC, since all obtained values are between
0.47 and 0.86.

The SRCC values, presented in Table 4, reveal that there is a strong
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Table 4. The values of SRCC

synthetic

sendmail

WFD JD JWD SSA CSD J

WFD 1
JD 0.99 1
JWD 0.98 0.99 1
SSA 0.82 0.88 0.81 1
CSD 0.84 0.87 0.82 0.98 1
J 0.84 0.87 0.82 0.98 1 1
named WFD JD JWD SSA CSD J

WFD 1
JD 0.98 1
JWD 0.96 0.97 1
SSA 0.85 0.89 0.83 1
CSD 0.84 0.87 0.81 0.98 1
J 0.83 0.86 0.82 0.99 1 1
login WFD JD JWD SSA CSD J

WFD 1
JD 0.99 1
JWD 0.98 0.98 1
SSA 0.82 0.83 0.81 1
CSD 0.87 0.87 0.79 0.97 1
J 0.82 0.85 0.78 0.98 1 1
inetd WFD JD JWD SSA CSD J

WFD 1
JD 0.97 1
JWD 0.98 0.96 1
SSA 0.88 0.88 0.81 1
CSD 0.86 0.85 0.83 0.98 1
J 0.86 0.85 0.81 0.96 1 1

relation between the results obtained by calculating the applied distances and
similarity coefficients between the observed and normal sequences. As all SRCC
values are between 0.8 and 1, the results indicate that the obtained distances and
similarity coefficients for all examined processes are significantly associated with
each other, since the value of 1 indicates that the two sets of data are identical.

Comparing the models’ characteristics with respect to overall accuracy, we
can conclude that model A yields the best results for all processes. Nevertheless,
we should point out that all models A, B, C and D achieve excellent overall
accuracy results, since the obtained values for all examined processes are greater
than 0.9. In addition, model E yields overall accuracy results which are greater
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than 0.9 for the processes login and inetd; model F yields overall accuracy results
which are greater than 0.9 for the processes synthetic sendmail and login; and
model G achieves overall accuracy results which are greater than 0.9 for the
processes login and inetd.

The cost values, presented in Table 3, evaluate the performance of the
proposed methodology depending on the applied distance or the similarity coef-
ficient. Comparing the obtained values we could see that the most cost-effective
technology is the one which applies the WFD for the process named. The lowest
cost for JD is achieved for the process synthetic sendmail, and the lowest costs for
the processes login and inetd are obtained when JWD with factor 0.05 is applied.
Comparing the models A, B, C and D on the one hand, and E, F and G on the
other hand, we observe the cost values for the first belong to the interval (0.24;
0.68), while the cost values for the second belong to the interval (0.9; 1). So
we can conclude that applying the similarity coefficients is more cost-consuming,
while applying the distances produces stable and more cost-effective results.

The results, obtained for models C and D and presented in Tables 2, 3
and 4, indicate that the values for all processes are very close. Consequently, the
value of scaling factor p does not significantly influence the detection ability of
the proposed methodology.

2. The algorithm complexity. The creation of the normal database,
i.e. classification trees, requires O(D) operations, where D is the number of the
normal system calls, and O(D∗L) integer storage locations. The transition prob-
abilities require a two-dimensional double array with O(N2) storage locations,
where N is the number of the different system calls performed by the exam-
ined privilege process. These operations, however, are performed once during the
initial system adjustment and configuration.

During the intrusion detection process we compare the normal activity
sequences with those of the current activity. The methodology requires O(logN)
time for each normal sequence extraction.

The Wagner Fischer algorithm requires O(m∗n) time and a (m+1)*(n+1)
memory locations, where n and m are the lengths of the two strings. In our case
the algorithm requires O(L2) time and a (L+ 1)2 two-dimensional array for the
storage of intermediate values for each comparison of sequences. The intrusion
detection process using JD and JWD needs O(L2) time for the calculation of the
distance. The similarity coefficients calculation requires O(3L2) operations for
each comparison of sequences.

VII. Conclusion. Intrusion detection systems were first implemented
in the early 90’s. Since that time the field of research in intrusion detection
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has focused on the ability to detect novel attacks and to minimize false alarms.
The IDS are very successful tools as a second line of the system defence. Beside
the attack detection, their purpose is to cause the attacker to spend a sufficient
amount of resources in order to make the intrusion cost high enough. Finally,
the actions of the intruder would be logged and analysed, which increases the
potential risk for the attacker.
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